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1. Introduction. Let F be a discrete sub-
group of G- PSL(2, R). The group F acts on
the upper half plane H by the usual linear frac-
tional transformation. We assume that the fun-
damental domain of F, which is denoted by F\H,
is a finite volume surface with the hyperbolic
metric. The Laplacian A acting on the space
L2(F\H) has the spectrum consisting of the dis-
crete and continuous spectra in general. In this
setting, as two different expression of the trace
of an G-invariant integral operator L’f(z) -+

fr R(z, z’) f(z’)dz’(f L(F\H)) with the

kernel function
R(z, z’) :g /(z, z’) -/}(z, z’),

where k is a point pair invariant and H(z, z’) is
so defined that the continuous spectrum of A dis-
appears, Selberg showed his famous trace formu-
la of the following form (see [9]): for any function
h(p) (p C), which we call a test function,
satisfying the condition A below,

D(h) I(h) 4- H(h) + E(h) + CP(h),
where the left hand side D(h)- =oh(pn) is

the expansion of Tr(L)= f R(z, z)dz as the

sum of the eigenvalue h(pn) of L corresponding
1

to the discrete spectrum -- + p of A, i.e.

Lrp h(Pn)9 for Agn /p, the right hand
side is the expansion of Tr(L)with respect to
the conjugacy classes of F, and I(h) (resp. H(h),
E(h)) is the contribution of the identity (resp.
hyperbolic, elliptic) conjugacy class of /’, and
CP(h) is the sum of the contribution of the para-
bolic conjugacy classes of/" and the contribution
of _-I(z, z’). This formula has been one of the im-
portant objects of study in analytic number
theory. Especially the studies of the relations
among the Selberg zeta functions Zr(s) (see {}2)
which is induced from the term H(h) of this for-
mula for a special test functior, the arithmetic

zeta functions, and the spectral zeta functions are
very interesting in view of the ’unifying’ theory
of various zeta functions.

The condition A for a test function h(p) is
as follows"

(1) h(-- p) h(p),
(2) h(p) is holomorphic in the strip [Impl

<c(forsomec > 21--),
(:3) h(o) o(Iol -u) (a>2) as ol --+oo

in the above strip.
According to the condition A, for example,
h(t, p) -e- (t> 0)can not be taken as a test
function.

Now we consider the theta type function
--tPnOr(t) n=o e (t > O) associated with the
1

Loperator Zl - on (F’\H) (see {}4). This

function Or(t) is very interesting because of the
following view points" first, Or(t) is an analogue
of theta functions associated with Zl (see [8]); and
secondly, Or(t) is also an analogue of that
associated with the zeros of zeta functions (see
[1], [4], [5]). However, as stated above, the Selberg
trace formula can be of no help to study Or(t).

But for co-compact discrete subgroups F,
Cartier-Voros[2] showed the modified Selberg
trace formula to study Or(t). In this case, /’ has
no elliptic and parabolic conjugacy class and no
continuous spectrum. This Cartier-Voros type
modified formula demands the following condition
B for a test function h(p).

(1) h(p) is holomorphic in an open set V c C
containing the closed half plane Re p _> 0,

(2) h(p) o(Ipl -u) (a>2) as [pl --+oo

in the strip Im p[ < c(for some c > 0),

(3) h(p)dlogZr( + ip) is integrable in

argp<0 and h(p)dlogZr(
iO is integrable in 0 <-- arg0 <- 2"
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Here ’integrable in the sector S’ means that for
any two contours C, C’ in S joining a some Po
S to oo, the integral along C equals that along
C’. So one can apply the Cartier-Voros type Sel-
berg trace formula for h(t, p) and can study the
properties of r(t).

From our arithmetic interests, we wish to
discuss when F is a congruence subgroup, which
has a noneompaet fundamental domain. In the fol-
lowing sections, we extend the Cartier-Voros
type Selberg trace formula for such F (3), and
give the properties of Or(t)as its applications
(4). Note that our r(t)is many-valued. This
fact does not occur in the ease of co-compact F
(see [21; also compare with [11, [5]).

should like to express my gratitude to Pro-
fessor N. Kurokawa for his valuable guidance,
and to Professer S. Koyama for useful discus-
sions.

2. Determinant expression. In this section,
we review the determinant expression of Selberg
zeta functions that we need in 3. The details can
be found in [6].

Let F be the image of one of the typical con-
gruence sub’groups Fi(N) c SL(2, Z)(i 0,1,2)
by the natural quotient map SL(2, R)-- PSL(2,
R). Let 0 /o < /1 < 2 < be the eigenva-

lues of the Laplace operator A on L(F\H).
Then the discrete part of the determinant of A
s(1 s) is defined by

detD(A s(1 s))’= II’(2n s(1 s)) for s > 1,
n=0

where II’ means a regularized product (see [5],
[6], [7]). Now we denote the Selberg zeta function
by

Zr(s)’--II II (1--N(P) -<s+k)) for Res> 1,
P k=O

where P runs through the primitive hyperbolic
conjugacy classes of F, and N(P)is its norm.
Then one can prove that Zr(s) has a meromor-
phic continuation to the whole s-plane.

Then there exists a relation between detD(A
s(1 s)) and Zr(s) called determinant ex-

pression of Selberg zeta functions, that is (see [6])
deto(A s(1 s))detc(A, s)e+*’s-)=

Z, (s)Z(s)Z (s)Z(s)
where detc(A, s) is the contribution of the con-
tinuous spectrum of A, and Zi(s) (resp. Zz(s),
Zp(s)) is the contribution of the identity (resp.
elliptic, parabolic) conjugacy class of F, and c, c’

are certain constants depending on F. From this
identity, deto(A- s(1- s))is defined for all
s C except for the poles of the right hand side.
This relation contains the informations about the
zeros and the poles of Ze(s) and gives the sym-
metric functional equation. That is, if we put
Z(s) Z(s)Z(s)Z(s)Z(s), z(s) "= Z(s)
detl(A, s) then 2(s) 2(1 s) holds. The
determinant expression of Zr(s) plays a key role
in the next section.

3. Cartier-Voros type Selberg trace formula.
First we introduce the following notations. We

d
1

Lconsider an operator --- on (FH), and

normalize its eigenvalue as

2n if0 N n <"
We denote the number of the classes of order
2(resp. 3) by n (resp. n), and the number of ine-
quivalent cusps by K. For the scattering matrix

(s) of F whose entries come from the constant
term of the Eisenstein series, we define t.he con-
stant K0 as --lims_ #(s). We denote by A(n)

(n N)the yon Mangoldt function. Then our
first main theorem can be stated as follows.

Theorem 1. Let h(p) be a function of a com-
plex variable p which satisfies the condition B (see

1
1). Moreover when A has the eigenvalue , we

assume that h(O) O. And let g(u) be a Fourier

transform of h (p)
1

(e" + e h(o)do.

Then the following identity holds:
(1) (h) Co(h) + (h) + g(h) + N(h),
where

vo(r
2 h(0) otanh odo

(h) 2 h(--ix)2i--h(i,) dlogZr( + )
$(h)=_ e"+e-’

h(p) dp

2n e + e-{,
+ o e + e- (p) dp
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() Kg(O)og 2 + K+ Ko
4 h(0)

K
(1 + ip) + -- (1 ip)}h(p)dp

F’fo27r -f
K

7r A(n)z(n)+ g(0) log--- + 2 x
__

n g(2 log/n)
the contour in 2g(h) avoids the poles xnlO x,n

<---) totheright, A isapositiveintegercomposed

of the primes dividing N, and the product over
has K terms, in each of which Z is a Dirichlet char-
acter to some modulus dividing N (cf [6]).

Proof We consider the following Cauchy in-
tegral

(h) 2rri h (-- i:) d log detv ,4 - +
where C is a suitable contour containing all
in the inside. We calculate (h) by two different
ways.

First, according to the definition of detD, a
little computation shows

1 fch(_i).(h)
27ri -o

E h(o.),

2

where the last equality follows from the residue
theorem. In this computation, we remark the
fact that the series ,:=oP,, is convergent for

Secondly we divide the contour C into two
parts corresponding to Re x > 0 and Re < 0,
and denote by C +, C- the respective parts. From

( 1
the determinant expression in 2, deto ,4 ---+
x is equal to

e--, (1/4-’.)ZI( + ) Zr( + )

e_C_c, (1/4_2)Z,( ) Zr( )

Since each of Zx(X- I, E, CP)for our F are
known by Koyama[6], we can compute explicitly
the integrals

This yields the right hand side of the identity (1),
for the Stifling formula and the assertion (2), (3)
of the condition B allow us to change the contour
C+(C-) with the one along the real or imaginary
axis. Hence the proof is complete.

4. Application of theorem 1. In this sec-
tion, we assume that A has no eigenvalues equal

1
to -, and we consider the theta type function

1
Or(t) associated with the operator which

is defined by

tonOr(t)’- e- for t>0.
rt=0

--tNow we fix t > 0, and we put h(t, p)’-e
Since h(t, p)as a function of p satisfies the
assumptions of theorem 1, we can apply theorem
1 to this function. Then the left-hand side
g(h) of (1) becomes Or(t). Thus we obtain our
second main theorem.

Theorem 2. The theta function Or(t) has the
following properties.

(1) Or(t) has the meromorphic continuation to
the region ) "= C {x R" x <- 0).

(2) Or(t), t satisfies the functional equa-
tion.

Or(t) + Or(- t)

t
vol(F\ H) cos

47r t
sn 2

+ sec- n"t {csc(- + + csc(- +

2 2 1 i cot

where the double sign depends on whether Im t
> 0 orIm t< 0.

(3) Or(t), t ) has at most simple poles at
+ im log N(P)

(P prim. hyp. conj. class, m 1,2,3,...),
+/- 2ira logp (p: prime number, m 1,2,3,...).

Proo By a little calculation of the right
side of the identity (1) for h(t, p), we have the
following expression of Or(t) for t > 0:

o(t
vo(F + N (-
2 (t + 2)
1

sin td log Zr ++
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P ,n- N(p) ma

iat -iat

t + irn log N(P) + t irn log N(P)
m. (-- 1) m+ -- ?0 t

+ adX

+ 22
(-1)

+ - log
2K

+ 1__ X A (n) X (n)
TE x n=l n

t--2ilogn t+2ilogn
1

where a > is any constant and

log N(P)
Kp’m m log N(P)

2 sinh 2

5,4(t) 2 (1 + 2ip) +
F"

J
] _tdp 4 log 2

F (1 2ip) e t
Clearly each term of the right hand side of the
above identity except (93,4(t) has a meromorphic
continuation to the region t , and its poles
are simple and at

___
irnlogN(P), +__ 2irnlogp.

Using the formula F(1 + z)F(1 --z) rz csc
rz, we have

F (1 + 2io) + (1 2io)

2 (1 + 2iO) + i coth 2p

Hence we have the expression

Na,4(t) T 1 + e-do + i

{-- (-) + - --log-} 41og2
t

for t > 0. Therefore a,4(t) has the analytic

continuation to 7r < argt < Similarly

from the expression

4 [" F’ (1_ 2i__p) e_Odp i

a,4(t) has the analytic continuation to

< arg t < 7r. Hence the first assertion (1) of the
theorem is proved. Now (2) and (3) are clear
from the explicit expression of Or(t). The proof
is complete. -I

Remark 1. When A has the eigenvalue
1

2n -, Theorem 2 remains true if we suppose

--tOnthat the contribution of the term e of
1

Or(t) for p. 0 equals to -.
Remark 2. According to the expression of

Or(t), it is a many-valued function of t C.
This property is not observed when /" is a
co-compact subgroup.
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