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Abstract: The elliptic genus for a closed Riemannian Spin manifold, when regarded as a

pair of graded vector spaces, is shown to have the structure of a pair of modules over.a ver-
tex operator super algebra of parallel sections of an LSpin bundle. Some interesting parallel
sections and the corresponding vertex operators are described for various subclasses of
Riemannian manifolds defined by parallel geometric structures. In particular, vertex oper-
ators corresponding to Kthler forms generate affine Lie algebras and thus the elliptic genera

are their representations.
Key words: Elliptic genera; Spin representations; vertex operator super algebras; Vira-

soro algebras; affine Lie algebras; Kthler manifolds; modular functions.

1. Introduction. The elliptic genus of a rise to a geometric construction of various vertex
closed Spin manifold Mu is the Sl-equivariant operator super algebras and their modules.
signature of its loop space LM with respect to First we will observe that when a closed
the canonical Sl-action on LM [7]. In algebraic Spin manifold M has a Riemannian structure, the
topology, it has been studied as a modular form elliptic genus e(M) has the structure of a pair
valued genus, or a ring map, from cobordism of graded vector spaces. If we take the graded

rings [4]. This point of view leads to the con- dimension, we get the modular function valued
struction of so-called elliptic cohomology. The elliptic genus. The Spin representation V of an
name "elliptic" comes from the fact that the loga- orthogonal affine Lie algebra fi(2N) gives rise to
rithm series associated to this genus can be ex- a graded vector bundle UM of generalized dif-
pressed in terms of an elliptic integral of a Jacobi ferential forms on M with a covariant derivative
quartic [5]. The construction of elliptic genera in- induced from the Levi-Civita connection on TM.
volves graded vector bundles arising from the Let M--(UM) be the graded vector space of
Spin representation V, W of the orthogonal parallel sections in Uu.
affine Lie algebra 5(2N), each of which is a sum Theorem 1. For a compact Riemannian Spin
of two level 1 irreducible representations, manifold M without boundary, the graded vector

It is known that one of these Spin repre- space M of generalized parallel differential forms
sentations V has the structure of a vertex oper- has the structure of a vertex operator super algebra
ator super algebra (VOA) with W as its module and the elliptic genus q)en(M) has the structure of
[2]. To any vector v in a vertex operator super a super-pair of modules over M. The diagonal ac-

algebra V, there corresponds a family of infinitely tion of M on qJeu(M) is effective if the Spin index

many operators {V}n, n (1/2) Z, acting on the fI(M) ofM doesn’t vanish.
algebra itself and its modules. The main struc- Thus, the elliptic genus is a geometric device
ture of a vertex operator super algebra is that which produces a super-pair of modules en(M)
the totality of these operators satisfy a Jacobi over a vertex operator super algebra M for each
identity which is a generalization of the usual closed Riemannian Spin manifold Mu.
Jacobi identity for Lie algebras. Our result gives f Closed Riemannian] elliptic genus

Spin manifolds
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pends only on the holonomy group of the Rieman-
nian manifold M and it always contains a weight
2 vector corresponding to the Riemannian metric
tensor on g2N. The corresponding vertex oper-
ator generates a Virasoro algebra of rank .iV. So,
the elliptic genus of a Riemannian manifold is al-
ways a representation of a Virasoro algebra.
Since the total exterior bundle A*TM is a sub-
bundle of VM, any parallel differential forms on
g give rise to generalized parallel differential
forms, and then to vertex operators acting on the
elliptic genus. On a Kihler manifold, the Kihler
form is parallel. In particular, on a hyperktihler
manifold, there are three Kfihler forms I, ], Q
corresponding to parallel integrable almost com-

plex structures l, J, K satisfying quaternionic
relations. Consequences of Theorem 1 for this
case is described in Theorem 9.

We will describe similar results for other
geometric parallel sections and for various sub-
classes of Riemannian manifolds including
quaternion-Kihler manifolds.

Details of the results in this announcement
and more can be found in [6].

2. Elliptic genera. The fixed point index
formula for the Sl-equivariant signature applied
formally to loop spaces gives rise to elliptic
genera. Let TC T*M (R) C be the complexifica-
tion of the cotangent bundle of a closed Rieman-
nian Spin manifold. For 0 <-- k Z, let A k(Te),
Sk(Te be the k-th exterior power and k-th
symmetric power bundle of Te. Let At(Te)

S to A(Tc)t St(Tc) >o (To) be
formal series in t with bundle coefficients. We
define bundles Qt, Rt for (1/2) + by

Qtqt Sqm(Tc) (R) Aq,,,-(Te),
O l1/2Z O _rnZ mZ

Z Qq’- Sqm(Te) (R) A (R) @ Aqm(Te)
OlZ lmZ lmZ

where A- A+ A- is the complex 2N-dimen
sional total Spin representation which is a sum of
half Spin representations for Spin(2N). The bun-
dles A+/- (R) Qt make sense only for Spin man-
ifolds. Here, q is a formal variable which origin-
ates in the Sl-character in the SX-equivariant
signature on the loop space LM [7]. We consider
Dirac operators twisted by the above bundles:

dQ," F(A + (R) Q,) F(A- (R) Q,)
Similarly for dn, using R instead of Q. Since the
twisted Dirac operator d. is elliptic, the kernel

space (Ker d.)and the cokernel space (Coker
d.) are finite dimensional for * Qt, R, 1
(1/2) Z. We remark that the twisted Dirac oper-
ators are formally self-adjoint.

Definition 2. For a compact Riemannian
Spin manifold M2N, the elliptic genus #e*ll(M) for

Q, R is a super-pair of graded vector
spaces defined by
#o, (M) @ (Ker do,) qt--

011/2
@ (Coker do,)q---g8],
l1/2Z

(JlgeRll (M) 0 (Ker dR,) qt" @ (Coker dR,) q]
OlZ O<:lZ

The graded super-dimension of (eQll(M),
Qqel(M) = ot1/2zIndex(dQ)q-- for a Spin

manifold M, has its value in the ring Z[q-]
[[q-]], and the coefficients are linear combina-
tions of Pontrjagin numbers in view of index

theory. So, it is a Spin cobordism invariant. Simi-
larly, the graded super-dimension q)ell of
R(/)eu(M) has its value in Z[[q]] and it is an

oriented cobordism invariant. However, our ellip-
tic genera qe*n(M) are not cobordism invariants.,
The (numerical) elliptic genera Peu are multiplica-
tire on manifolds. For a multiplicative genus, the
logarithm series is of particular interest. One fea-
ture of elliptic genera is their modular in-

2rr ir
variance. When we let q e for v C in the
upper half plane, they are modular invariant for

some subgroups of SL2 (Z LetFo(2) {(a b)c d

SL2(Z) c 0 mod 2}.
R SO

Theorem 3. For the elliptic genus Pel’Q.-- Z[ [q] ], its logarithm loge! (X) is given by an

elliptic integral of the form
x dt1Oge,(X) V/1 28t + t4,

where

6 (q)
l-1/2- z 1 q’-1/2

+ H _1/2tz 1 + q
6 (q) is modular iuvariaut for an index 2 subgroup

of Fo(2).
Similar statement can be made for n which

is modular invariant for an index 2 subgroup of

Fo. In Theorem 3, the expression of n(q)is
proved by deducing a differential equation saris-
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fied by the elliptic function which is inverse to
the above elliptic integral. Here, its expression as
a quotient of certain theta functions is used. The
modular invariance of fir follows from the in-
variance of the solution (which is an elliptic func-
tion) under the change of basis for the lattices of
zeroes and poles of the solution function, together
with the modular properties of certain theta con-

stants. Note that all the coefficients of cR are
positive integers.

Since the coefficient of t4 in the above ellip-
tic integral is 1, the Landweber Exact Functor
Theorem [4] applies and we get a cohomology
theory whose coefficient ring is Z[1/2] [R(q)].
There is no obvious grading in this ring which
corresponds to the dimension of manifolds, for 6R
has weight 0. But in view of [3] in which elliptic
genera of manifolds of different dimension are
compared, the manifold dimension may not have
significant meaning in the cohomological setting.

3. Vertex operator super algebras and their
invariant subalgebras. Let (E2N,( ) be a
Euclidean vector space. Let A A+ A- E
(R) C be a decomposition of the complexification
of A into maximal isotropic subspaces. For
(1/2) Z, let A(-- m) be a copy of A of weight m.
The pairing can be extended to Az+1/2
A(-- m-- (1/2)) by letting (a(m), b(n)) (a,
6m+n,o for a, b A. So, the dual of Afin) is A (-- m).
The Clifford algebra associated to (A+1/2, (,
acts on the Clifford module given by
V- Vq: @ (V)tq ( Aqm+A(-m-1/2).

O<_l1/2Z OmZ
Note that the group Spin (2N) acts on Vq pre-
serving the weight via the action of SO(2N). It
is known that V has a structure of a vertex
operator super algebra and has Wq (A’A-) (R)

) lmezAq A(-- m) as its (Z.-twisted) module
[21.

The main structure of the vertex operator
super algebra (V, Y(, ), 1, w) consists of a
graded vector space V-- (0<1/2z(V)t and an in-
jective vertex operator map Y(, ) :V--*
End(V)[[, -x]], where Y(v, )- nz{v}
-’-, such that Y(1, )= Id for the vacuum
vector 1 (V)o and the vertex operator Y(w,

nzD(n)--2
for o) (V). generates a

Virasoro algebra Vir (nzCD(n) 9 CIdv
satisfying
[D(m), D(n)] (n m)D(m + n)

m(rn2- 1)+ 12 6,,_c’Idv,

for m, n Z. Here, c is a constant called the
rank of V. The operator {V}n lowers the weight

by n + 1 wt(v) for any n Z and satisfy the
following Jacobi identity. We let Ivl- 2wt(v)
mod 2.

({Vl}m+r-i{V2}n+i

(-- 1)Ivll Iv21+r{v2}n+r_i{Vl}m+i)

(m) {(v,) v)
okz k r+ m+n-k

for any v1, v V and m, n, r Z. The mean-
ing of the above Jacobi identity is as follows. For
w V and w* V*, the graded dual, we

assume that the power series of composed oper-
*)ators, (Y(Vl, l) Y(v2, 2) w, w on 1[ > [2[,

W*(Y(v., 2)Y(Yl, 1)w, ) on 1>15 I, and
*)

[2[ converge to the same rational function in

(, 2) Cp1 CPX with possible poles along

x- 2, , .- 0, c. The above Jacobi identi-
ty is the consequence of the residue formula ap-
plied to this rational function for any w V and
w V The notion of a module over a vertex
operator super algebra can be defined in an ob-
vious way. One can show that vectors in
generate an infinite dimensional Clifford algebra,

and vectors in (V)I generate an affine Lie algeb-

ra with an additional mild assumption on V.
From a given vertex operator super algebra,

we can construct new algebras.
Proposition 4. Let G c Spin(2N) be any Lie

subgroup. Then the invariant subspace V: has the
structure of a vertex operator super algebra.

The main point of the proof is that the ver-

tex operators have an intertwining property with

the action of the group Spin(2N). This fact
together with the Jacobi identity imply that the
vertex operators Y(v, ) for v Vv

preserve
Vv. The rest of the structures for a vertex oper-
ator super algebra follow by restriction from V.

4. Elliptic genera as modules over vertex
operator super algebras. Let (M2N, g) be a

closed Riemannian Spin manifold. Let To(--m)
be a copy of the complexified cotangent bundle

TM having weight m for 0 <-- m (1/2) Z. Its
dual vector space is denoted by Tc(m). At each
point x M, we can construct a vertex operator
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super algebra V from the Euclidean vector space ism )M VG in Theorem 5. In what follows, we

(T*M, gx). These graded vector spaces form a use the notation Iv] to denote a vector in M,
vector bundle of vertex operator super algebras and use {v}. to denote the corresponding vertex
on M given by

PM @ Aq 1/2To(-- m 1/2).
O<:m,

ToM and TM are identified with Tc(1/2),
To(--1/2), respectively. So the total exterior
bundle A*TM is identified with A*Tc(-- 1/2)
c M. We can regard PM as the graded vector
bundle of generalized differential forms. We can
also consider a graded vector bundle //M : A (R)

operators.
Riemannian manifolds. The Riemannian met-

ric g" TM (R) TM--* R is parallel on M. A gener-

alized Riemannian metric tensor " Tc(3/2)
(R) Tc(1/2)-- C defined by (v1(3/2), v2(1/2))

g(v1, v2) for v1, v. ToM is a weight 2 pa-
rallel section in F(Tc(-- 3/2) (R) To(-- 1/2)).

Theorem 6. On a closed Riemannian Spin
@1 mzAq,,Tc(-- m) of Ze-twisted modules manifold

.g
<- (M g), the vertex operator Y(-- []/2, )

over the bundle of vertex operator super algeb- mzD(m)-m-1
for the generalized Rieman-

ras PM. The Levi-Civita connection on M induces nian melric lensor (M)2 generales a Virasoro
a covarian.t derivative 17 on the graded vector algebra of rank N. Hence. lhe elliplic genus
spaces of smooth sections of M and of WM. Let q)e*.(Mg) is a super-pair of rank N representations
M be the graded vector space of parallel sec- of lhe Virasoro algebra.
tions in M. For a connected M, (M)O C" 1, Kiihleran manifolds. A Riemannian manifold
where I is the constant function. (M2N, g) with an isometric almost complex

Theorem 5. 9M has lhe following properlies" structure I is called Ktihlerian if I is parallel. In
(i) 9M has lhe slruclure of a reflex operalor su- this case, I is integrable and M is actually a corn-

per algebra plex manifold and the holonomy group of M is
(ii) For any parallel seclion a M, lhe contained in U(N). The Ktihler form

associaled reflex operalor commules wilh AT*M defined by /z(X, Y) :/Q(X, Y)
covarianl derivalive, i.e. [17, {a}.] 0 for n g(I(X), Y) for X, Y TM is parallel because g

(1/2) Z. and I are parallel. Through the embedding
(iii) If G Spin(2N) is the structure group A*TM c_ V, we obtain [] (M)I and [2]

of a holonomy bundle on M,M is canoni- (M).. In (M)., we consider vectors [0]-
cally isomorphic lo Va

as reflex, operalor su- ([/ze] [])/(2N) and [] ([/z] -+- (N--
per algebras. 1)[])/(2AO. Note that [0] 4- [] []/2

To prove (ii) above, we first note that the ac- generates the Virasoro algebra above.
tion of a vertex operator is a combination of ex- Theorem 7. Lel MaN

be a closed Kfzhlerian
terior multiplications and dual pairings. Then, we Spin manifold. The vertex operator super algebra M
use the fact that the covariant derivative com- contains the following Lie algebras:
mutes with dual pairings and acts as a derivation
on exterior products. (i) is essentially a consequ-
ence of (ii), (iii) follows from a fact that a globally
parallel section in a vector bundle is completely
determined by its restriction to a fiber over any
point x M.

5. Infinite dimensional symmetries in elliptic
genera. We describe some consequences of
Theorem 1 for various closed irreducible

(i) (Heisenberg algebra) The vertex operator
Y([:], ) K(n)-,-1 generates a

Heisenberg algebra D m,o CK(m)
CIdv with commutation relations [K(m),
K(n)] nNfm+,,,o ldv, for m, n Z.

(ii) (Unitary Virasoro algebra) The vertex oper-
ators Y([O], .) and Y([2], ) generate two
commuting Virasoro algebras of rank 1,
N- 1, respectively.

Riemannian manifolds [11. In view of the classi- The elliptic genus q)e*(M) is .a super-pair of repre-
fication theory of the holonomy groups, we con- sentations of the above algebras.
sider those Riemannian manifolds MaN

whose A Kfihler manifold M2N
whose holonomy

holonomy groups are contained in U(N), SU(N), group is contained in SU(N) has the vanishing
Sp(N’)Sp(1), and Sp(N’), with N 2N’. The Ricci tensor. So it is automatically a Spin man-
results below are proved through the isomorph- ifold and Theorem 7 applies. For these manifolds,
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the complex volume forms F(AN <1o>Tc’ M) and
their conjugates are also parallel and generate in-
teresting vertex operators.

Quaternion-Kiihler manifolds. A Riemannian
manifold (M4N’, g), N 2N’, is called quaternion-
Kihler if there exists a real 3-dimensional para-
llel subbundle L c End(TM) which is locally
spanned by isometric almost complex structures
I, J, K satisfying the quaternion relations. The
holonomy group of M is contained in Sp(N’)"
Sp(1). Quaternion-Kahler manifolds are not
necessarily Kihler manifolds. Corresponding to
locally defined almost complex structures I, J,
K which may not be parallel, we have locally de-
fined 2-forms to,, tcj, tc which may not be para-
llel nor closed. However, the sum of squares

to, %- tcj "+- tc is a globally defined parallel
closed differential 4-form on M. We have

[xo_], [] (u) z. We let [a]- ([tco_/]- 3
[])/2(N+ 4) and [z-] ([tco_/(] + (N + 1)
[])/2(N+ 4). Again note that [a] + [r]
[]/2 generates the rank N Virasoro algebra.
Theorem 8, Lel M4N"

be a closed qualernion-
Kahler Spin manifold. The elliptic genus Oe*n(M) is

a super-pair of representations of a symplectic
Virasoro algebra which is a direct sum of two com-
muting Virasoro algebras of rank 3N/(N + 4),
N(N + 1)/(N + 4), respectively, generated by ver-

tex operators Y([a], ) and Y([z’], ).
Hyperkiihler manifolds. A hyperkihler man-

ifold M4N"
possesses three isometric parallel

almost complex structures I, J, K satisfying the
quaternion relations. The holonomy group of M
is contained in Sp(N’). The corresponding
Kihler forms tcI, toy, tot; are parallel and closed,
so is tco_c tc %- tQ %- tc. For any integrable
almost complex structure ff aI %- bJ%- cK
with az+ bz+ c= 1, a, b, c R, the corres-
ponding Khler form is given by tc. atc -+-
+ cx. We let N 2N’. Thus, we have [x],
[toy], [t], [tc.r] (0)1 and [t%_], [t],
(0) .
Theorem 9. Let M4N"

be a connected closed
hyperkghler manifold. The vertex operator super
algebra u contains the following subalgebras

(1) (Affine Lie algebra .l The vertex oper-
ators corresponding to Khler forms
[tcy], Itch] (u) generate a level N"
affine Lie algebra Ap>.

(2) (Unitary Virasoro algebra) For any para-
llel almost complex structure - aI %- bJ
%- cK as above, the subspace C[t]
C[] (u)z generates a unitary Vira-

soro algebra of rank (1, N 1).
(3) (Symplectic Virasoro algebra) The sub-

space C[tzo_n] C[] c (u)z generates
a symplectic Virasoro algebra of rank (3N/
(N + 4), N(N %- 1)/(N + 4)).

(4) For any vector [tg] SZ(C[t,] C[tc,]
[t/]) (u)z, the corresponding vertex
operators {0}, satisfy commutation relations

of the form

[{Q}m+l, {0}n+l]- (m- n){{0} [0]}
2 m+n+l

3
where (0}1[0] S2(C[l,i ) C[K.I] [/K]) )
C[] c (u) and the pairing(,) on (Pu)o
C’I is such that (1,1) 1.

The elliptic genus q)e*u(M) is a super-pair of repre-
sentations of the above algebras.

The above results suggests the study of the
vertex operators generated by generalized Kfihler
forms and generalized Riemannian tensors.
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