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Radon Transform on Distributions
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Abstract: In the literature there are three apparently different definitions of the Radon
transform on various spaces of distributions: Gelfand-Graev’s, Helgason’s and Ludwig’s. In
this paper a new definition of the Radon transform on the space of the tempered distributions
is given and it is proved that, properly understood, the earlier definitions are all equivalent
to the new one. A constructive description (a characterization) of the space of test functions
is given. A simple method for studying the range of the Radon transform on some spaces of
distributions is described.
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1. Introduction. In the literature there are
three apparently different definitions of the
Radon transform R on the spaces of distribu-
tions. The first, given by I. Gelfand and M.
Graev, (GG definition), (see [1]), Helgason’s defini-
tion (H definition) based on the duality formula
([21), and Ludwig’s definition (L definition)([31).

In this paper these definitions are analyzed,
their common features are demonstrated; a new
definition is given and it is proved that, properly
understood, the earlier definitions are all equiva-
lent to the new one and, therefore, they are all
equivalent; a constructive description of the
space of test functions is given; a simple method
for studying the range of R on distributional
spaces is described.

We use the notations and some results from
the forthcoming monograph [4]. In [5]-[6] some
properties of the Radon transform on various
spaces of distributions are given and H definition
is used. In [7] and [8] some related results are
obtained.

2. The three definitions of R. 2.1. Let us
introduce the standard notations: s3’:= ’(R/g)
is the space of tempered distributions on
a3(//g), fl0’ is the space of distributions on

Co (//g), and $’ is the space of distributions on
$:= C=(//g). The Radon transform R on is
defined by the formula:
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(1) Rf ff"- ]. f(x)ds,
.t

where lp-- {x’c’x--p} is a plane, ds is the
Lebesgue measure on this plane, p
S/g-1 the unit sphere in

Let f f f,,exp(ix. ) f(x)dx, Fh

exp(ip2)h(a, p)dp, . An elemen-

tary corollary of the Fourier slice theorem is [4]:
(2) R F-

Let e’--e(Z) be the Schwartz space of
even functions h(-- , --p) h(a, p) on Z :=

"- x R. If R is considered as an operator from
into e(Z), then its range is the subspace

c e which consists precisely of the functions
h e(Z) satisfying the moment conditions

(3) h(a, p)pdp (a), k- 0,1,2

where (a), a- (% an) is a restriction
on - of a homogeneous polynomial of degree

n.defined on The well known result is:
RA.

Let (f, ) denote the L(Rn) inner product,
and (g, h) denote the L( inner product. Let
R* be the adjoint operator

R*h _h(a, a.z)da.(4)

2.2. The GG definition is based on the
Parseval formula for the Radon tranorm:
() (f, ) (f, )
where
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(6)
(- i)n n-1 1 n-1 .:
(27:)

0p p- i0 @ ’ OP p-l,
and @ denotes the convolution with respect to
p-variable. One can check that
(7) (, q)) (, KR) Vf, ,
where [41

n-1

O(8) K 7"(-- 1)-- -
7( 1)- -

and

(9) Wh "=

if n is odd,

if n is even,
1,

2 (2c)-’

1 1 (’’ h(a q) dq
c@ h "= J-ooc p q
Fh isgn Fh

Let f s3’. Choose fn , fn f in a3’. By pas-
sing to the limit, equation (7) is verified for any f

a3’. One can prove that [4]:
(Sa) K- rF-
For any f ’, the left-hand side of (5) is a
bounded linear functional on . The GG defini-
tion of f, based on formula (5), defines/ on the
set of the test functions q) of the form (6), where

runs through . A description of this set for
odd n is given in [1] and it is claimed that the
case of even n can be treated similarly. There is,

however, an essential difference in the rate of de-
cay of the test functions: if n is odd, the decay is
faster than any negative power of p as
if n is even, the decay is, generally, as O(] p I-n).

2.3. The H definition is based on the dual-
ity formula:
(9) (Rf, h) (f R’h)
This formula is used in [2] to define Rf for f
8’, but not for f A’. The reason is simple: for
h e, the function R*h may decay not faster
than O(] x I-1> as lx] o. Therefore R*h is
not, in general, in the space , so that the
right-hand side of (9) is not well-defined for f

’ and an arbitrary h e.
2.4. The L definition [3] is based on the

duality formula (9) as well, but the space of the
test functions h is not e, as in [2]. This space in

[3] is KR, where K is defined in (8). One has
an identity
(10) R*KR I on ,
which is an immediate consequence of the inver-
sion formula for R on . Therefore, if h KR,, then R*KR , so that the right-hand
side of (9) is a well defined bounded linear func-

tional on . Thus, for any f s, formula (9) de-
fines f on the space KR. a3t of the test func-
tions. If in H definition we change the space of
the test functions, we get L definition. Therefore
H and L definitions are applicable to ’ if the
space of test functions h is a3 t, and H and L de-
finitions are identical in the case.

2.5. Let us prove that the GG definition is
equivalent to the H and L definitions. What we
have to prove is formula (7).

Lemma 1. Formula (7) holds.

Proof One has (p- i0) -1= p-1 + ic6(p).
Thus, formula (6) yields

(}, q))_-(, (--i) n-, )(2r)
(- rar + ir)

n-1 n--7"(-- 1)--v-(f, 0 1R), n odd,

7(-- 1)(f, 0-1R), n even,
where we have used the formula oJf , and
the evenness of f. Indeed, if n is odd, then
(f 8-1R)- 0, while if n is even then

n_l
p

(f, Op Re) 0. The proof is complete. [--]
Remark 1. Note that equation (Sa) can be

written as
(ii) FKF-I 712 In-!,
where 7 is the same as in (8), and the right-hand
side of (11) is an operator of multiplication by
7[/ [n-1. It follows from formulas (5) and (7) that
the GG definition is identical to L definition. Let
us summarize the results.

Theorem 1. The GG, H, and L definitions of
R on ’ are equivalent.

3. The new definition. We want to define
R on ’ using formula (2), The reasons are:

(1) this definition is very convenient for
actual calculations of Rf;

(2) it allows us to study the range of R easi-
ly.

Definition 1. Let f 3". Then f Rf is

defined by the formula
1

(12) (f, h) =<f, I/ll-’Fh> Vh.t.
The motivation is simple. By Parseval’s for-

mula for f s and h s3 one has

1 (f(,aoe) ,a "- 11-*Fh)21r
1 <?, IAI_Fh>.
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One can also write (12) in the form
--1

(12’) f, h> r <f II-nFh>.
Therefore
(12") R* ’--1’’--1 [,[’--nF.
Thus (12) holds for f
’, then the right-hand side of (12) is a bounded
linear functional on the space t, where At is the
space of such h for which

(13) [X-F_h
We have denoted this space by the same letter as
the space At KRA defined earlier. Let us
prove that so defined At is identical with KRA.

Theorem 2. Fori (13) holds iff h
KRA

Proo Sufficiency: if h KRA, then h
Thu , I’- Fh

] [I-FKF-I . Thus, h t. Here
we have used formula (11), which implies

Necessity" if h t, then
A and @’---1 A, since ’AA is an
isomorphism. Thus

h F-l[ [-1 F-l[ [-lFF-X
KR .

Here formulas (2) and (Sa) were used. Theorem 2
is proved.

1 -FhRemark 2. Note that RI if h

KR. The conclusion of Theorem 2 follows
from this equation as well.

As an immediate consequence of Theorem 2
we obtain

Theorem 3. Definition 1 is equivalent to the
GG, H, and L definitions of R on ’.

Proog By Theorem 1 it is sufficient to
check that Definition 1 is equivalent to the H de-
finition. Let h t. By Theorem 2 and formulas
(12’) and (12") one has:

1 (, [-Fh) 7- (f,- I-*Fh}
(f, R’h).

Theorem 3 is proved.
Remark 3. Definition 1 and Theorem 3 can

be considered a justification of formula (2) as a
definition of R on distributions. Indeed, (12) can

be written as (Rf, h) (f, Fh)

(F-f, h) by Parseval’s formula or by the for-
mula F* 2F-, where F* is the adjoint oper-
ator to F with respect to the inner product (-,’).

The operator R -1-- :-IF is well defined on R

Remark 4. The following important prob-
lem was not discussed in the literature: suppose
(A) f ’ Ctoc(Rn) and

If(x)Ids < oo ’ca, p,

so that formula (1) defines the classical Radon
transform Rcf of f.

Is it true that Rf Rf, where Rf is under-
stood as in Definition 1, or in the GG, H or L de-
finitions?

This problem is important because it is
known (see [4, section 2.7.3]) that there exists an

f 0, f C(R), for which Rf=-0 (L. Zalc-
man’s example). Clearly, at this f either Rf in
the sense of Definition 1, is not defined, so that

f A’, or Rf 4: Rf, otherwise, by the injectivity
of R, one has to conclude that f--0, while, in
fact, f 0. If, in addition to (A), we assume that

f LI(Rn) or, less restrictively, that (1 + x[)-i
f(x) L(Rn), then we can prove that Rf
Rf. It is an open problem to find the maximal set
of f on which the last equation holds.

4. A constructive description of the space of
test functions. Let 3s be a subspace of A(Z),
which consists of the functions, whose parity is
opposite to that of n, satisfying the shifted mo-
ment conditions:

p)pkdp

+_,(a), k > n- 1,
O, O<_k(n--1,

where m(Cr) is a restriction to Sn- of a
homogeneous polynomial of degree of the vari-
ables (oh,..., an) and the parity of h(cr, p) is
opposite to that of n. Define Ae -sm where
fie is defined in (9).

Theorem 4. One has is

sm, if n is odd,
(15) .

z if n is even.

Proof One has
(16) 3 KRA K3em.

Let n be odd. Then, by formula (8), K is prop-
ortional to Op Thus
(17) Op "em"

The right-hand side of (17) is precisely the space
sm, because the derivative of order n- 1 with
respect to p of a function h(c, p), which satisfies
the moment conditions (3), is a function satisfying
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the shifted moment conditions (14). Conversely, if
h s3e and (14) hold, then O(n-1)h .em,
where O(’*-l)h 1 f_P(n- 2)! (p- q)n-2h(cr, q)dq.

This claim can be easily checked using conditions
(14) and integrating by parts.

If n is even, then (16) and (8) yield:
(18) s "= z
Theorem 4 is proved.

5. Range theorems. Suppose g(a, p)
(Z). When does there exist an f ’ such
that Rf g ?

By Definition 1, formula (2) holds, so one
has to calculate f "= -XFg and check if f ’.

Alternatively, (g, h) (Fg,

t, so that g Rf for some f

Recall that an entire function f() is of ex-

ponential type E a iff I <OI c exp[(a
I] for any > 0.
Let (R) be the subset of (Z) which

consists of distributions g(, p)such that for
any Sn-x

the distribution g(a, p) ’(R).
Denote B {x x a).

Theorem 5. Let g(a, p) (R) and
assume that Fxg is an entire function of the vari-

able - of exponential type
-F,_xg. Then f 8", suppf B and Rf
g. Conversely, iff 8" and g’-- Rf then f()
F,_xg is an entire function of exponential type a
and g F2f (R).

Proof If g (R), then f(x) ": -F,_xg
is well defined. By the Paley-Wiener-Schwartz
theorem f 8’, suppf B and g x_,f

Conversely, if f ’ and suppf B, then

f is an entire function of exponential type
a, g’= F-lf a(R), and g Rf
One can use the above method to study the

range of R on other spaces of distributions. If
g Y, where Yis some space of distributions or
functions, then f X, where X---xFY, pro-
vided that the operator -xF is well defined on

K In [5] a different characterization of the range
of R on distributional spaces is given.

6. Examples. The results in the following
examples are new" although the two examples
were mentioned in [1, p.71], the results were
given without proofs and only for the odd n. Our

result for the first example and odd n agrees

with the one in [1, p.71], while our formulas,
proved in Example 2, differ from formulas 4 and
5 in [1, p.71].

Example 1. Let us consider f(x)- 1, x
Rn, f-(2zr)n6(). If n is odd then h
I[l-n- - and, using conditions (14), one
gets:
(R1, h) ,- (6(), [2l -nFh}

-1 1-

--1
N m

r <6(0, m+-(O + O(I l+-n))
-1 .n-1

(n_l)c,

where T is defined in (8).
Thus, if n is odd, one gets

.n-

RI=
()

(n- 1)
where a() is an arbitrary smooth even function

a(a) a(-- ), such that ._ a(a)d- 1. The

evenness of a() is an a priori assumption moti-
vated by the evenness of the members of the
range of R on . If one imposes a priori the re-

quirement that the members of the range of R
should be homogeneous of degree --1, then the
corresponding homogeneity requirement should
be imposed on a(). We see that R1 is not un-

iquely defined.
If n is even then -’-- sgn2, h

g, g , Fh isgnFg, and one gets

(19) (R1, h) (n-- 1)
Therefore, for n even, the result is:

-inp-a
(20) R1 (n- 1)
where the action of the distribution (20) on a test
function is defined by (19) and a(a) is described
above.

Example 2. Let f(x) 6(x, x,..., x), 1
N k < n. Then

f(O (2)-(+1
and Definition 1 yields for real-valued h"

2 - da d26(+ )

Z2 dp exp(-- ip)h(a, p)
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zz dadph(a, p) (27E) n-k-1._ d, exp (-- ip) 6 (/ak+l)" (an)

Thus
(21) Rf (2r)n-k-16(ak+l,..., an)

To calculate this integral, we use the formulas:
(22) F(]/ -zm-1) CoCZ+)P c_+>’zp In IP l,

F(I 2 -zm) (- 1) (2m- 1)! p I-,
where the coefficients cm+) are defined by the
expansion:

(n)
TE 6_ ._ c n .jl_--2 sin--F(2 + 1) 2 - n

For example, let n-- 2, k= 1. Then f=
2rS(z), m 0, and

(Rf, h)- f dadph(a, p) 6(o) _[ / 1-1
exp (-- i2p) d2

(1) (1)
dadph6 (a.)" Co c_In p I).

Thus, for n 2 and k 1,
Co c_lnp).
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