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1. Introduction. Let K be an algebraically
closed field of characteristic zero and let X be a
Zariski open set of K" with a positive integer #.
We fix a coordinate system x = (xy,.. ., &,) of
X and write 0 = (0,,..., 0,) with 9,:= 0/0x,.
We denote by Py the sheaf of algebraic differen-
tial operators on X (cf. [2], [3]).

We assume that (a presentation of) a cohe-
rent left Py-module M is given. Let # be a sec-
tion of M and let f= f(xr) be an arbitrary
polynomial of # variables. Let s be an indeter-
minate. If /M is holonomic, then for each point p
of Y :={x € X| f(x) = 0}, there exist a germ
P(x, d,s) of PDyls]l at p and a polynomial
b(s) € Kls] of one variable so that
(1.1) Pz, 9, )(f'w) = b() fu
holds (cf. [11]). More precisely, (1.1) means that
there exists a nonnegative integer m so that

Q:=f"7(b(s) — P(x, 0, ) ) f° € Dyls]
satisfies Qu =0 in JM[s] = K[s] ;M. A
monic polynomial b(s) of the least degree that
satisfies (1.1) is called the (generalized) b-func-
tion for f and #. When J coincides with the
sheaf Oy of regular functions and # = 1, we get
the classical b-function (or the Bernstein-Sato
polynomial) of f Algorithms for computing the
Bernstein-Sato polynomial have been given by
several authors ([21], [25], [4], [16]) but not for
an arbitrary f.

One of the main purposes of the present pap-
er is to give algorithms for computing the b-
function for # and f and for computing the algeb-
raic local cohomology groups #|y, ()G = 0,1)
as left Dy-modules (cf. [11] for the definition).
The algorithm for the local cohomology groups
needs some information on the b-function.

These algorithms are actually obtained as
byproducts of the solution of more general prob-
lems as follows:

Let M be a left coherent PDg,x-module. For
the sake of simplicity, let us assume here that a

section # of Jl generates M. We identify X with
the subset {({,2) E KX X|t=0} of K X X.
Then the b-function of # along X at p € X is a
nonzero polynomial b(s) € K[s] of the least
degree that satisfies
(b(t2,) + tP(t, x, td,, 0))u =0

with a germ P(¢, z, t0,, 0) of Dg,x at p, where
we write 0,:= 0/0t. M is called specializable
along X at p if such b(s) exists.

We first present an algorithm which com-
putes b(s), or determines that there is none, by
using a kind of Grobner basis for the Weyl
algebra related to a filtration introduced by
Kashiwara [12]. Such Grobner bases were used
in [18], [19], [20].

If Al is specializable, then its induced system
to X is the complex of left Dy-modules My whose
cohomology groups are coherent Py-modules. We
also obtain an algorithm of computing the coho-
mology groups of Jly by using an FW-Grobner
basis. These algorithms for the b-function and
the induced system, combined with a viewpoint of
Malgrange [17], provide algorithms for the
b-function for a polynomial (and a section of a
holonomic system), and for the algebraic local
cohomology groups.

When K coincides with the field C of com-
plex numbers, we can consider the problems ex-
plained so far with &, replaced by the sheaf @;n
of analytic differential operators. Then our algor-
ithms yield correct solutions also in this analytic
case if the left Dy -module ™ in question is
written in the form M = Dy R, M with a
coherent Py-module M whose presentation is
given explicitly.

We have implemented the algorithms by us-
ing a computer algebra system Kan [24]. Details
of the present paper will appear elsewhere.

2. Grébner bases. Let us denote by A, and
by A,,; the Weyl algebra on # variables x, and
the Weyl algebra on # + 1 variables (¢, x) re-
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spectively with coefficients in K. Let 7 be a posi-
tive integer and put L:= N** =N x N x N”
x N" with N := {0,1,2,...}. An element P of
4,.)" is writ}en in a finite sum

(21) P=3X 3 a,.,t'c 0,

i=1 (uv,a,B)€L
with @, € K, ¢,:=(1,0,...,0),...,¢,:=
,...,0,1), %= xl‘%. . .xn“n, aﬁ c= 6151.
6,,5" for ¢ = (Cl'l,...,an),,8= (.Bp- -~,Bn) €
N".
For each integer m, we set

Fo(A D))= (P=3 % a,,t"c°05%,|

i=1 (uv,a,B) €L
Auoapi = 0 if v — p > m}.
Then {F,,((4,,)" )}, constitutes a filtration of
(A,.,)". For a nonzero element P of (4,,,)’, the
F-order ord;(P) of P is defined as the least m €
Z such that P € F,,((4,.)7).

Let <, be a total order on L X {1,..., 7}
which satisfies
(A-1) (a, i) <z (B,j) implies (a+ 7,1) <p
B+ 71,j) for any @, B, vy €L and i, J
e {1,...,n;
if v—pu<y —yu, then (g, v, a, B, 1)
<mW,v,a,B,j) for any a,B,a, B’
EN",u,v,, v’ €EN and any i,jE
1,...,7;

(u, , a, B, i) > (0,0,0,0, i) for any
LEN,a,BEN" i€ {1,..., 1.

Let P be a nonzero element of (4,,;)” which
is written in the form (2.1). Then the leading ex-
ponent lexpp(P) € L X {1,..., 7} of P with re-
spect to < is defined as the maximum element

max{(u, v, a, B, D) | e # 0}
with respect to the order <. The set of leading
exponents Er(N) of a subset N of (4,,,) is de-
fined by
E.(\) := {lexp,(P) | P € N\ {0}}.

Definition 2.1. A finite set G of generators
of a left A,,;-submodule N of (A,,,) is called an
FW-Grobner basis of N if we have

E.(N) = PUG (lexpr(P) + L),
(=3

where we write
(a, i) + L={(a+B,0)|Be L}
forao¢e€ Land i< {1,..., 7.

Since the order < is not a well-order, the
Buchberger algorithm ([5], [9], [6], [22]) for com-
puting Groébner bases does not work directly. In
order to bypass this difficulty to obtain an algor-
ithm of computing FW-Grobner bases, we use

(A-2)

(A-3)
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the homogenization technique.

Definition 2.2. For A, ¢, v, A, ¢/, vV EN
and a, B, a’, B’ € N”, an order <, on L, X
{1,..., 7} with L,:= N X L is defined so that
we have (A, u, v, a, B, 0) <, A, u, Vv, a, B,
7) if and only if one of the following conditions
holds:

(1) A<,
(2) A=, (u+lLy,apB,)<,(+1l,v, o,

B’,7) with [,1” € N such that v —py— 1=

v —u =,

3) Lyv,a,B,0)=Q,v,a,B,7),u<y
This definition is independent of the choice of [,
I’ in view of the condition (A-1).

Lemma 2.3. (1) <y isa well-order.

2) Ifv—pu—A=yv —uy — X, then A, u, v,

a,B,1) <, Q, ¢, v, a, B, ) if and only

if (u, v, a, B, 1) <, @, v, a, B, 7).

Definition 2.4. An element P of (A,,,[x,])"
of the form

P=3 X @yapiTo V250, 0%,
i=1Auv.a,B
is said to be F-homogeneous of order m if a,,,q4;
= (0 whenever v — u — A # m.

Definition 2.5. For an element P of (4,,,)"
of the form (2.1), put m = min{y — p| a, 44 #
0 for some o, BE€ N" and i € {1,..., 7}. Then
the F-homogenization P" € A, [z,])" of P is
defined by

,

P'i=3 3 G, " "t"279,0",.

i=1 pyv,a,B
P"is F-homogeneous of order m.

Proposition 2.6. Let N be a left A,.,lx,]-
submodule of (A,.,[x,))" generated by F-homo-
geneous operators. Then there exists an H- Grobner
basis (t.e. a Grobner basis with respect to <yg) con-
sisting of F-homogeneous operators. Moreover, such
an H-Grobner basis can be computed by the Buch-
berger algorithm.

Theorem 2.7. Let N be a left A,.,-sub-
module of (A,,,)" generated by P,, . .., P, €
(A,,,)". Let us denote by N" the left A,,,[x,]-
submodule of (A, [x,])" generated by (PD", . ..,
(P)". Let G=1{Q,(x),. .., Q(x)) be an H-
Grobuer basis of N b consisting of F-homogeneous
operators. Then G(1) := {Q,(1),..., @,(1)} is an
FW-Grobner basis of N.

Let us denote by Dy,x lx the sheaf theoretic
restriction of D,y to X = X X {0}. Then for a
germ @ of (Dg,x|x)” at p € X, there exist P €
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(A4,,)" and a(t, ) € K[t, x] with a(0, p) # 0
so that @ = a(¢, £) 'P. For each integer m, we
put
Fm((@KxX |X)r)p F= {a_IP | P e Fm((An+1)r)’
a = a(t, x) € K[t, x1, a(0, p) # 0}.
For a germ Q of (Dy.xl|y)  at p, its F-order
ord;(Q) is defined as the minimum m € Z so
that P € F,, (D, xlx)"). Put m := ord,(Q) and
let a(t,x) € K[t, ] and P € (4,,))" be as
above. Suppose that P is written in the form
(2.1). Then the formal symbol 6(Q) of @ is de-
fined by ,
7(Q) =5,Q :=a(0, 0" 21 >
i=1y—pu=m
@apit’2%0,0%e,.

Definition 2.8. Let P be a nonzero element
of (A,,)" (resp. D4 lx)") of F-order m. Then
we define ¢(P)(s) € (A,[s])” (resp. (@,[s17),
by

5,(t"P) = ¢(P) (3, if m = 0,
5,0, "P) = ¢(P)(#3,) if m < 0.

Theorem 2.9. We use the same notation as
in Theorem 2.7. Let N be the left Dyyx|x-
submodule of (Dgyx |x)” generated by N. Let ¢(N)
be the left Dyls]-submodule of (Dx[s])” generated
by the set {P(P)(s) | P € N, ord.(P) = 0}.
Then P(N) is gemerated by ¢(Q,(1)), . . .,
¢ (Q,(1)).

3. b-function of a D-module. Let J be a
left coherent Dy, x IX—module on X. We assume
that a left A,,,-submodule N of (4,,,) is given
explicitly so that M = Dy.x|x ®,,, M holds
with M = (4,,) /N. Set N = Dy xl|x D
N C (Dygrx|p)". For each integer m, put

F,(N) =N N F,((Dg.x IR

Fm(‘/ﬂ) = Fm((@KxX |X)r)/Fm(‘/V)
Then {F,,(#)},cz is a filtration of M satisfying

F.@gux |9 F,, (M) = F,,,, M)

for any k, m € Z. The b-function b(s, p) €
K[sl of M (with respect to the filtration
{F,,(U)}) at p € X is the monic polynomial b(s,
p) of s of the least degree, if any, that satisfies
(3.1) b(td,, p) (F,(u)/F_,(U)), = 0.
If such b(s, p) exists, M is called specializable
along X at p. It is known that if 4 is holonomic,
then J{ is specializable at any p € X ([13], [14])).

Let G be an FW-Grobner basis of N, which
can be computed by the homogenization and the
Buchberger algorithm with a set of generators as
input (Theorem 2.7). Put ¢(@) := {gbgP) |P e

n+l
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G} and let ¢(N) be the left A,[s]-submodule of
(A4,[s])” generated by ¢(G). Let <, be a total
order on L, x {1, . . ., 7} with L01=N1+2"
which satisfies (A-1) with L replaced by L, and
(A-4) (a, 1) >, (0, 1) for any @ € L, \ {0} and
e f{1,...,7;

(A-5) |B|<|B|implies (u, a, B, i) <, (,
o, B,j) forany u, €N, a, ', 8,8 € N”",
i,7€11,..., .

Theorem 3.1. Under the above assumptions,
let G, be a Grobner basis of ¢(N) with respect to
<p and put Gy:= G, N K[s, x1". Let T be the
Ox[s]-submodule of (Oxls])” generated by G,
Then M is specializable at p if and only if T, N
Klsle; #+ {0}. If M is specializable, then its b-
function b(s, p) is the monic polynomial of S of the
least degree that satisfies b(s, p)e; € T, N Klsl”
foramyi=1,..., 7

Since we have a set of generators of J, it is
easy to compute J N K[s]”. This can be done,
e.g., by primary decomposition of the Kls, x]-
submodule of K[s, z]” which is generated by G,
(cf.[8]). Thus we obtain an algorithm of determin-
ing if M is specializable at each point of X and of
computing the b-function if that is the case.

4. Induced system. We retain the notation
of the preceding section. The induced system of
M to X is the complex

My : 0= M~ M— 0
of left Dy-modules, where the homomorphism ¢
denotes the one defined by #(#) = fu for u € M.
Let us write My = M /tM. For each integer m,
we put
gty (M) := F,,(M)/F,,_, ().

Lemma 4.1. Assume that b(s) € K[s] satis-
fies b(t0,) grg(./ﬂ) = 0. Then the homomorphism
t:grr, (M) — gre (M) is bijective if b(k) # 0.

Proposition 4.2. Assume that b(s) € Kls]
satisfies b(1d,) gre (M) = 0. Put

k,:= max{k € Z| b(k) = 0},
k,:= min{k € Z| b(k) = 0}.
Then My is quasi-isomorphic to the complex
0— F, ,,(M)/F, (M) = F, (M)/F, _, (M) = 0
of left Dy-modules. In particular, t: M — M is bi-
jective if b(k) # O forany k € Z.

Proposition 4.3. Assume that there exists

b(s) € K[s] and m € N so that

b(t,)d," gry (M) = 0.
Assume, moreover, b(k) # O for any k € Z. Then
the homomorphism t : M — M is injective.
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Let P be an element of F,((4,,,)"). Then
we can write P in the form

P = é % P{k(tap x, a)atkei + R

i=1 k=0
uniquely with P, € A,[td,] and R € F_,((4,.)").
Then we put
14 m
pwww=§53mwﬁm%
t=1 k=Ko
for each integer k, with 0 < k, < m.
Theorem 4.4. Assume that
satisfies b(td,) gre (M) = 0. Put
k,:= max{k € Z| b(k) = 0},
k, := max{0, min{k € Z| b(k) = 0}}.
(We have ky=m — 1 and k, =0 wunder the
assumption of Proposition 4.3.) Let G be an FW-
Grobuer basis of N. Then we have an isomorphism
r k
My = (D keék Dyd, e)/ Ny
t=1 k=kg
of left Dy-modules, where Ny is the left Dy-module
generated by a finite set
{o(@/P, k) |PE G,jEN,
ko <j+ ord,(P) < k,}.

Our next aim is to give an algorithm for
computing the structure of the kernel # ' (/l}) of
t:M— M as a left Dy-module. For two integers
ky < k,, put

_ vk
ok ;= 63 kgg D[t0,1S,e;,

! ]
where we put S,:=d," if k>0, and S, :=1t"
if k<0. Let P be a section of (Dgxly) of
F-order m. Then we can write P uniquely in the
form

b(s) € Klsl

P= é % P,‘k(tat’x, a)skei

i=1 k=—o0

with P, € (24[t0,])". Then we define
[4 m
(P, ko) := 2 2 P, (td,, x, 0)S,e;.
i=1 k=,

Proposition 4.5. Let G be an FW-Grobuner
basis of N. Then, for any integers ko < k,, we have
an isomorphism 3

Fkl(./%)/Fko_l(J%) ~ @(kovh) /g(ko»h)
of left Dyltd,)-modules, where 4" is a left
Dy [td,]1-module generated by a finite set
{(«(SP, k)| PEG,jEZ,
ko <j+ ords(P) < k,}.

Let ¢: @ttt o ghol) po 3 left Dy

module homomorphism defined by

r Kk
o(2 2 P, z, 95,00

i=1 k=k,

T. OAKU
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k

—

I M=

P, i.(td, — 1, z, 0) Tye,

i=1 k=k

with
T {s,, (k<—1
ke t0,S, (k=0).

Theorem 4.6. Under the same assumptions
as 1n Proposition 4.2, we have an isomorphism

%—1(./%;() ~ (0—1({g(ko,kl))/(g(ko+l,kl+l)
as left Dyltd,)-modules. Moreover, @ (4**’) /
Gl R s finitely generated as left Dy-module.

The left Dy[td,]-module ¢ '(%**’) can be
easily computed by the same method as for com-
puting ideal intersection and quotient in the
polynomial ring by means of Grobner basis (cf.
[7]). Then by eliminating ¢0, also by means of a
Grobner basis, we get an algorithm of computing
a presentation of %_I(J/l;{) as a left Py-module.

5. Algebraic local cohomology. Let N be a
left A,-submodule of (4,)” and put M := (4,)" /N
and M= Dy @, M. Let f= f(x) € Klx] be a
polynomial and put Y := {xr € X| f(x) = 0}.
Then the algebraic local cohomology group

(M) has a structure of left Dy-module and
vanishes for j # 0,1 ([11]). Our purpose is to
give an algorithm of computing #y, (M) as a left
P x-module.

Let S be a left ideal of D,y generated by
operators t — f(x), 8, + (8f/0x)0,,..., 0, +
(0f/0x,) 0, and put €= Dy, x/F. Then by a
method similar to that used by Malgrange [17],
we get the following.

Theorem 5.1. We have isomorphisms

H (M Ry, D)) = #H13 (M)
of left Dy-modules forj = — 1,0.

Let p, and p, be the projections of X X K X
X to X and to K X X respectively and put

A:={(z,t,y) EXX KX X|x=y}.
Then we have by [11]

L L ~
M By, €= 0, D, (M BL)
with _
ML = @XxKxX ®Px_l®x®pz—1®m<x
@0l 50, D),

where é denotes the left derived functor of & in
the derived category. In other words, M ®qx.‘€
coincides with the induced system of MSDE
along A. It is easy to see that Ml @ & is specializ-
able along 4 (in fact, 4 is non-characteristic for
this module). Hence we can compute ®@X.‘£ by
applying Theorem 4.4 repeatedly with ky, = k; =
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0. Combining this fact with Theorems 4.4, 4.6,
5.1, we obtain an algorithm of computing
J;y](-/ﬂ) fOI'j = 0,1

Theorem 5.2. Assume » =1 and let u €
M be the residue class of 1 € Dy. Let b(s) be the
b- function of M Qg £ along X in the sense of Sec-
tion 3 and let b(s) be the b-function for f and u
defined by (1.1) both at a point p of Y. Then we
have the following:

(1) b(s) divides b(— s — 1) ;

(2) if the homomorphism f : M — M defined
by f(v) = fv for v € M is injective at p,
then we have b(s) = £ b(— s — 1) ;

(3) the homomorphism f : M — M is injective

if and only if
HHUM Ry, D)) = 0.

Thus the algorithm for b(s) provides an
algorithm to compute the b-function for f and u
in generic cases. Since f :0x— Oy is injective,
we have an algorithm to compute the Bernstein-
Sato polynomial of an arbitrary f.

It is also possible (in generic cases) to com-
pute #y,(M) for algebraic set ¥ of codimension
greater than one. For example, let f,(x), f,(x) be
two polynomials and put

Vii={xeX|fi(x) =0 (G=1,2),
Y=Y, NY,
Assume that Elt’{yll(/%) =0 for j # j,. Then we
can compute o '
Hin ) = 07, (D)
explicitly. The following computation was carried
out by using Kan ([24]).

Example 5.3. Put X = K3, fii= z?— ys,
fii=y"—2° and Y:={(x,y,2 € X|filz,y,
2) = f,(x,y, 2) =0}. Then we have #},,(0)
= 0 for j # 2 and

He, (0 = Dy/ S,

where 4 is the left ideal of @y generated by f;, f,
and

9x0, + 6yo, + 420, + 30,

92%y%0, + 6z2x6,, + 4yx0,.
Let u; be the residue class of £, in #y,(0,) =
OxLf;1/0x with Y;:= {(x,y, 2 | f,(x, y, 2)
= 0}. Then the b-function for f, and #, at 0 =

(0,0,0) is
(s + 1)(3 + 11—2><s + 15—2><s + 1l2>
&)+ 13)(s +5)

while the b-function for f; and #, at O is

(s+
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