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1. Introduction and notation. Let f(x, y) division of the former by the latter.
R[x, y] be a square free polynomial with Let (al,..., as) be a sequence of real nurn-

real coefficients, namely f(x, y) is decomposed bers and (a,..., a) be the subsequence of all
into the irreducible factors whose multiplicities non-zero numbers. Then var(al,..., as), the
are only one. Let C be the set of points (x, y) number of sign variations, is the number of i,
R such that f(x, y) 0. Until now, only the <-- i< t, such thataai+, < O.
following primitive method has been used to Theorem (Sturm). Let f(zr) be a square free
draw the curve C by computer, within a given polynomial. When gcd(f(c), f’(c))= fk(a:), the
rectangle R. We decompose R into many small number of real roots off(z)in the interval a
rectangles D and obtain C 71 R by gathering C <- b Cs
71 D. C 71 D is found as follows, var(fo(a), fx (a)," ", fk(a))

Let D be the set {(c, y) It a <-- a: <_ b, var(fo(b), fx(b)," ", f(b)).
c <_ y<_ d}, and put P (a, c), P2= (b, c), Let D be the set {(:v, y) /la <--:r<-- b,
P3 (b, d) and P4 (a, d). For example, if c <_ y <-- d}. Using Sturm’s theorem we can deter-

f(P)f(P) < O, f(P3)f(P4) < 0 then we can mine whether f(:c, .c) 0 has a root in the inter-

find approximately a point P in C 71 PIP and a val [a, b] of not. Thus we can determine whether
point P6 in C 71 PAP4. Then the line PP6 can be C 71 OD 4 or not, and if C 71 OD 4= 0, find

considered approximately as C 71 D. this set approximately in considering from divi-

But the above method has next two prob- sions of OD.
lems. 3. Second case. When C 71 OD 0 then
(1) Even if f(P)f(P.) > 0, it is possible that we can find C 71 D in the following manner.

C 71 PP 4= O. If C 71 D 4= 0, then there is a point (Xo,
(2) Even if C 71 (the boundary of D)= 0, it is Yo) such that (Xo, Yo)
possible that C 71 (the interior of D) 4= 0. C D, then y_< Yo. Such a point (xo, Yo) will

In this paper, we would like to propose a be called a maximal point (of C f D with respect
more reliable method which permit us to liberate
from these incertainties,

to /). We write fx(a:, y) f(:c, y) and show

Let DD be the boundary of D and D be the fx(tro, Yo) 0 for a maximal point (:ro, Yo). If
interior of D. Then C 71 D is the direct union of f(:Co, Yo) 4= 0 then using implicit function
C 71 D and C 71 D i. The search for C 71 D is theorem, there exists a function g(y) near Yo
made separately in two cases: the first case for C such thatf(g(y), y) 0 and (:ro, Yo) cannot be a

f aD and the second case for C 71 D i. maximal point. Therefore we have f(tro, Yo) 0.
2. First case. This case can be treated as As f(a, y) is square free, we have gcd(f(c,

the equation f 0 is restricted to a boundary y), f(:c, y))= 1 in /(y)[r]. Using Euclidean
line. Then we can use Sturm’s theorem, algorithm we can find g(c, y), h(c, y) l[c, y],

The Sturm sequence associated with the F(y) /[y] such that
(one-variable) polynomial f(zr) is a sequence of (3) f(c, y)g(x, y) + f(v, y)h(zr, y) F(y)
polynomials with f0(:v), f(:r), fk(:r) defined If f(:v, y) 0, fx(:r, y) 0, then F(y) must be
by the following equations: zero. Using Sturm’s theorem, we can count cor-

f0(:c) f(:c), f(:c) f’(r), rectly the number of roots F(y) 0 in the inter-

f(a:) remainder (f_.(:c), f_(a:)) val [c, d] and we can calculate approximately all
where remainder means the remainder from the roots in this interval. Therefore we can calculate
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all points (x, y) such that f(x, y) 0 and fx(X,
y) --0. Thus we can decide whether C A D=/=
0 or not. Even if the set C N D is only one
point, we can find the point by this method.

4. Determination of whether C 0 or not.
Let O1 {(x, y) lxl 1 or ]Yl 1} and O

{(x, Y)II x < 1 or yl < 1}. Using Sturm’s
theorem we can determine whether D1 f C 0
or not. When D N C= 0 we can determine
whether D. ( C= or not by the above
method. Let Da {(x, y) Ix[ > 1, lyl > 1}.
We can determine whether D f’l C-- J or not
as follows.

When f(x y) m nF,=o a x here=o Y w
for some i, ai,n 4 0 and for some j, am, =/= 0, we

put g(x, y) xmynf(1/x, 1/y). Let C’ ((x,
y) Ig(x, y) 0}, Dt {(x, y)I Ixl < 1, ]y] <
1}, D= {(x, y) Dtlx= 0 or y= 0). D
C’ is a finite set of points (Pl, P2,..., Ps} which

can be computed by Sturm’s theorem. Let D[ be a
small rectangle such that p D[ D4, P D(i
=/= j). We can determine whether D[ C’--
(i0i} or not again by the above method. Therefore
we can determineD3 C or not.

5. Use of Gribner basis. Let I---- < f(x,
y), fz(X, y) > be the ideal in R[x, y] generated
by f(x, y) and fx(X, y). Using the Gr0bner

algorithm we can find a Gr0bner basis of L A
GrObner basis of I is a basis of I which has the
next desirable property. If I f"l R[y] (Fo(y)),
then Fo(y) is a member of Grobner basis (Lemma
{3.50 [31). Fo(y) is a devisor of F(y) in (3). Occa-
sionally the degree of F(y)becomes very large

even if the degree of Fo(y) is small. As the set S
(ylf(x, y) O, fx(X, y) 0 for some x} is

finite, we put S {Yl,..., Yn}. From (3) we have
Fo(y) O. Let G(y) be (y-- Yl)(Y-- Y.) (Y
--y,). From Hilbert Nulstellensatz, some power
of G(y) must be in /. Therefore if Fo(yo) --0
then Y0-- Y for some i(1 <_ <-- n). As we have
an algorithm to calculate F0(y), (cf. [3]), it is

more advantegeous to use it.
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