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In his work [3], the author encountered dif-
ferential equations which can be reduced to the
following form L
(1) u (t) + fBu) =0
Here, # is an unknown function and f is a given
coefficient function. In this paper, the order of
decay of u (¢) as t— o is explicitly given in
terms of f(#).

To describe the results, we introduce a func-
tion space. For two positive numbers p and A, let
F 4.4 be the totality of real-valued C*-functions
f on an open interval containing I = [a, ), a
€ R, satisfying the following conditions :

(i) f(® is positive and convex on I;
(i) the inequality fF()f”(t) < (p + 1)f' ()*
holds for t € I;

(iii) for t € I, f/(H = Af(D.

The space of all real-valued solutions # of (1) is
denoted by 3, The main result of this paper is
the following theorem.

Theorem. If the coefficient function f in (1) is

1
in the family F,,, for some 0 <p <,a<€ R

and A > 0. Then u(t) = O™ as t— % for
all w in 8.

Moreover, an upper bound for |u(t)f(t)1/4| can
be explicitly given (see Proposition 7).

1. Properties about zeros of a solution of
equation (1). As a first step of our proof, we
give an estimate for solutions of (1).

Lemma 1. Let f be a function in %, , , with O

1
<p< y and u a solution of (1). Assume that for
two real numbers a and B (a < a < B), u(a) =0
and u(t) # 0 for @ < t < B. Then it holds that

0 < w(@ ul®) < fla)y "

sin (Ltf(s)l/zds>
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fora < t< B

*)

The following is an immediate consequence
of the definition of the family #,, ,.

Lemma 2. (i) If 0 < p, < p,, then F,, 4 <
Fapya foralla € R, A> 0.

(ii) Let f be a function in F,, 4, then f'(t) < C -
O for t = a, where C = f'(a)f(a)~"*"

Let f be a function in #,,, and # in S,
Then, it is easily seen that # has infinitely many
zeros on the interval [a, o). Since the set of all
zeros of # has no accumulation point, we enumer-
ate the totality of zeros of # in [a, °°) in an in-
creasing order by {a,|# =1, 2,...}. Then we
have the following relations between the growth
of f(#) and the distribution of zeros of u.

Lemma 3. Let f and u be functions in F,1,, 4
and i B, respectively. Take a constant C in such a
way that £/ () < C-fW>* (VY t = a,). (Such a
constant C always exists by Lemma 2.) Assume that
k > 1 be a constant and that f(t) = 25C*[256 (k*

— 1) for = £,(> @,). Then fﬁzf(t)mdtz
B8y

k™' for any two adjacent zeros B, and B, of # such
that t, < B, < B,.

Lemma 4. Let f, u and {a,} be as above.
Then,

f . fOY2at < (Y n) and

lim f nﬂf(t)wdt = .

n—oo

Let f€F,,,0<p <%) and u € J,
Since F 54 © Fu1/44, We can take a constant
T > a such that f()° ()" = 1/40 for t = T.
Since we are considering the behavior of func-
tions in B, as t— ©, we may remove finitely
many terms in {a,} and renumber them in such a
way that a; = T.

Now, define constants C,, j, and ¢, (j = 0,
1,...) by

Co = f(T)AT)™*,
j, = 12v10C *fla) ],
f(ty) = max{f(T), Cyj,;/40},



No. 7]

ft) = Co(j + j)*/40,
for > 0. Here, lx] denotes the largest integer
not exceeding x.

Note that j, > 0 and that #’s are uniquely
determined. It is easily seen that ¢; < {;,, for all
J and lim;_¢; = oo. We define sets of integers I,
by I = {nlt, < a, <t,})

Lemma 5. For a function f in F,,, (0 <p
<7) and u € 8, define I as above. Then, the
number of elements in I, is majorized by a constant
N =1+ V30 C[5An] |, independent of u €
B, forally =0, 1,....

2. Sketch of a proof of the main result.
Lemmas 1 to 5 altogether prove Lemma 6 below.
Then Lemmas 1 and 6 give our theorem.

Lemma 6. Let f, u, T and {a,} be as men-
tioned before the previous lemma. Then the sequence
{u () |f(er,) "} is bounded.

Sketch of proof. By Lemma 2(ii), we can
take two constants C, and C, so that () < C,*
FWO¥* and £/ < C,-f* for t = T. Also by

Ay
Lemma 4, f () Pds<mforn=1,2,....
ay

Define j, ¢; (7 =10,1,..
before Lemma 5.

Since «, and «,,, are adjacent zeros of u,
the signatures of #’(a,) and #’(a,,,;) are mutual-
ly distinct. If # € [}, then we obtain the following
inequality by using Lemma 1 and partial integra-
tions. In this computation, F (¢ ) stands for

j:f(s)l/zds.
0> u'(a) ™ (e
=u(a,)”" [u’(an) + j;am u”(t)dt]

.) and I; as mentioned

> 1 —fla,) " f OV A1) sin F(f) dt

Qan

> — fla) Ao, )" — lCO fla,) " sin F(a,,,)

- Cla) ™ f f<t>‘” VA sin (it
f(an )" fla n+1)1/4 —C of(a,) " sin F(a,,,)
— gclf(an)”-—l.

Put 7, = u'(a,)f(a,) """, then the above inequali-
ties imply that

- 1 - ) 5
2) lrartl<1+ 1) Y4C,sin F(a,,,) + 3
Clzf(afn) (317—3)/4f(an+1) —1/4.
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Since f(t;) > 25C; {256 [(1 + G+ -1
2y -1

] } , Lemma 3 gives that

T2 Fla,,) 2xll+ (G+)" 1" >r Q=G +5)™.
Combined with this estimate, the inequality (2)
gives that if n € I,

1+ 4f(t)‘”“c 7(j +J,)
+ le(t )21’ 1
1+— 40 n(5+ 7)) 2
+ C,(j +],)4‘° z
for a positive constant C, depending only on f.
Lemma 5 gives a constant N independent of
each # in J, such that |Ij| < N for all j. So,

|7’an_1| (n € I,-) is majorized by a constant as in
the following way:

| 7,n+17’—1 l

-1 B =1
lr | < H l7, 7Y = (H I |”i+17’i|>
=2 k=0 icI,
( I lri+lri|>
i€l i<n
j
< I ( ﬂ\/ 0k +j)%
k=0 + Ck + i)"Y
<A+ 1401t(k+ )T
k=0 4

+ C,(k + )" DY,

Since 4p — 2 < — 1, this infinite product con-
verges. So, the above inequality immediately
yields the assertion of the lemma.

We note that an expression of upper bound
for |u(t)f(#)"* is given as follows :

Proposition 7. Define constants T', M, C,

N, and C; by
T =T+ 2zf(T)7",
M= max |u(®) |,

T<t=<7T’
N =1+ W30 (T)*)AT)*"* 5471 7],
C = 3V40 n/4 + (10 — 20p) (40)*™*
ATYS22 (1) ™°/(8 — 32p),

C, = 2mexp(CN)A(T)*A(T) ™
Then, |u(t)f(t)”4| < MC, fort > T

Remark. The family %,,, is large enough
for certain applications. Put # = {P € RIlt] |
P(t) = X7 ,a;t' with n >0 and a, > 0}, then
we have the following facts for %, , 4.
(i) For any P= X7 ja;t' € P, exp(P () €
Z ap.a,y2 for sufficiently large a.
(ii) Let ¢ be a polynomial in & with deg ¢ = 2
and f be a smooth function in #,, 4. Then, @°f €
F 4 », for sufficiently large a’.
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(iii) Assume f€ #,,, and ¢ € F,, 5. Then, for
every number v > ¢, ¢°f € F_,, for sufficiently
large c.

3. Example. Take the coefficient function f
in equation (1) appropriately, then our result
gives well-known estimates for all the solutions
of Bessel's differential equation.

Here we give an example concerning our
work [3]. In that paper, we studied the embed-
dings of discrete series representations into
generalized principal series representations, for a
normal real form of a connected, simply con-
nected, complex simple Lie group of type G,.
Such an embedding is determined by observing
the structure of the solution space of a certain
differential equations [2]. Since discrete series
representations are unitary, we are especially in-
terested in their unitary embeddings into (un-
itarily) induced representations. To determine un-
itary embeddings, we should examine some condi-
tions, for example, square integrability of func-
tions in that solution space. So, evaluation of de-
cay of solutions of differential equations is of im-
portance in this problem. In the computation of
embeddings, a differential equation reduced to
the following one has appeared :

(3) u’ (t) + e'u@® = 0.
Let ¢; (=1, 2) be analytic functions defined
respectively by
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o, () = Z(— D)7,

n=0

©o n — n
o= S2(3 D)y

n=1 m=1 (n!)
and put ¢@,(#) = ¢,(e") and @,(t) = @,(e") — t¢,
(¢'). Then ¢, and ¢, are linearly independent
solutions of (3). By Remark above, we see that
out theorem is applicable for ¢, and ¢,. In gives
that ¢, (¢) = O (¢7"*) for j =1, 2. Using this
estimate, we obtain in turn ¢, (#) = O(t™"*) and
0, = 0@ logt) as t — .

Details of this work will appear elsewhere.
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