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The main purpose of this paper is to present
a proof of the following theorem with some ex-
positions for working mathematician’s who are
not set theorists.

Theorem 1. Suppose that is an uncountable
regular cardinal. Then, the splitting number of is

strictly larger than if and only if is a weakly
compact cardinal.

In August 1992, the author reported a
sketch of a proof of Theorem 1 and that of Prop-
osition 2, in a meeting at the Research Institute
of Mathematical Sciences, Kyoto University [10].
Since then, a previous version of our current
paper has been circulated among some set theor-
ists. In October 1992, Zapletal [11], who was a
graduate student of the Pennsylvania State Uni-
versity at that time, informed us that he im-
proved our results. Nowadays, the theory of
splitting number at uncountable cardinals relates
to various branches of set theory such as inner
model theory and Shelah’s pcf theory. Our cur-
rent paper is the final version of the preprint
with the same title, which appears at the list of
references of Zapletal’s paper [11].

It is not hard to see that our argument gives
an alternative proof of the following fact due to

Johnson [4, Corollary 2]: "Suppose that x is an
uncountable regular cardinal. Then, x is weakly
compact iff IX is WC iff IX is (x, X)-distribu-
rive". Johnson showed this fact by using forcing.
In [11, Lemma 4], Zapletal cited our Theorem 1,
and he presented a modified proof that uses
ultrapowers. On the other hand, our proof of
Theorem 1 is purely combinatorial.

1. The classical splitting number. Not
only the cardinality of the continuum, but also
some invariants of the continuum have applica-
tions in studies of topological issues;the split-
ting number s is one of such invariants [2]. To
see the definition of the splitting number, let us
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define some auxiliary concepts. For a set X and a

cardinal number c, the collection of all sets that
satisfy the following two conditions is denoted by
[X]: (1) it is a subset of X; (2) it has cardinal-
ity x. In accordance with usual manner of set
theory, we identify q o with N, the collection of
all natural numbers (including zero). In the fol-
lowing, co stands for l’ 0 (--N). Moreover, co
(= R a) denotes the a-th cardinal number; coo

co and w is the least uncountable cardinal.
For a cardinal number x, 2 denotes the cardi-
nality of the power set of x; thus, 2 is the car-

+
dinality of the continuum. If coa, then x
stands for coa+ 1. ZFC denotes the usual formal
system of set theory i.e. Zermelo-Fraenkel set
theory with axiom of choice. Jech’s book [3] is a

standard textbook of basic concepts of set theory.
_c co] o

is called a splitting family if for
each X [co], there exists an A 3 such that
X A I- IX\A I-w, where IX[ denotes

the cardinality of X. The splitting number s is the
minimum cardinality of a splitting family: s

aemin{ll" s3

_
co ] is a splitting family }.

The second assertion of the following fact is
shown by forcing.

Fact 1 ([ 2 ]).
1. gO " S 2.
2. The consistency of ZFC implies the consisten-

cy of the following: "ZFC + we <_ s".
2. The splitting number on COl. In 1991,

Shizuo Kamo at Osaka Prefecture University de-
fined the splitting number on an arbitrary infi-
nite cardinal number c as follows. ----- c] is
called a splitting family on if for all X c
there exists an A such that X A
]X\ A] c. The splitting number of c, which is
denoted by s(c), is the minimum cardinality of a
splitting family on x s(c) =de]min{l I" --x ] is a splitting family }. Clearly, the classical
splitting number s is s(co). His graduate student
Motoyoshi tried to show, under the assumption
that is an uncountable regular cardinal, the fol-
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lowing two assertions which are analogues of are slightly more complicated than Borel sets, be-
Fact 1. (I) "x+ <: s (x)". (II) "There exists a n’o havior of the real line under a strong axiom of
tion of forcing which forces the following asser- infinity is one major subject of modern set
tion: ’x is an uncountable regular cardinal and theory.
x++ N s (x)’". However, he found a counter ex- Although the classical splitting number was
ample of (I), especially s (w1) --w0. In the se- a subject of set-theoretic topology, Fact 2 sug-
quel, he showed that even a weak form of (I) is gests a relationship between splitting numbers
equiconsistent to a strong axiom of infinity, and strong axioms of infinity. In fact, it turned

Fact 2 ([9]). Suppose that is an uncountable out that there exists a close connection between
regular cardinal. Then, s ( tz ) if and.only if tc splitting numbers and strong axioms of infinity
is a strongly inaccessible cardinal, as we shall see in the next section.

Therefore, we can not prove the assertion 3. Strong axioms of infinity. In this sec-
(II) in ZFC provided that ZFC is consistent, tion, we consider the consistency strength of the

Remark. The assertion that there exists a following two assertions. (I’)"For some uncount-
strongly inaccessible cardinal is a strong axiom able regular cardinal x, we have x+N s (x)".
of infinity. More precisely, the assertion implies (II’) "For some uncountable regular cardinal x,
usual axiom of infinity, and the assertion is we have x++ --< s(x)". The following is a proof
strictly stronger than usual axiom of infinity of Theorem 1.
with respect to consistency strength. Then, why Proof of Theorem 1. Suppose that x is an
we are interested in adding strong axioms of in- uncountable regular cardinal.
finity to our formal system of set theory, or why Lemma 1. If we have + K s (), then is
we are not necessarily satisfied with usual ZFC weakly compact.
set theory ? Let us explain it by an example. Proof of Lemma 1. Suppose x+ <_ s(x). By
ZFC is too weak to settle some problems about Fact 2, x is strongly inaccessible. Assume for a
subsets of Euclidean space that are not Borel contradiction that x is not weakly compact. Then,
subsets. That is, assume that n is a sufficiently there exists a -Aronszajn tree (T, -< ), by [3,
large natural number and G1 is a Borel subset of Lemma 29. 6]. We may assume that T- x and
the n-dimensional Euclidean space Rn. Let us (T, -< ) is well-pruned; the reader may find the
take a positive integer rn that is slightly smaller definitions of a c-Aronszajn tree and a
than n and suppose that G2 is a projection of G well-pruned tree in [7, p. 69; p: 71]. For each
to Rm. Next, let G be the complement of G2 in t T, let St-- {u T: t’< u}. Let be de-
Rm. Again, we take a positive integer l that is fined by" de { St" t T and [St[ x}. Let
slightly smaller than rn and suppose that G4 is a us fix an arbitrary X T] u.
projection of G3 to R. Suppose that we iterate Claim. There exists an o < with the follow-
such a procedure finite times, and that Gk is a ing property: the -th level of T has two distinct
resulting subset of R. Then, in general, we can members u and v such that X A Sul X Sv
not prove in ZFC that Gk is Lebesgue measurable x.
in R. However, if we add certain strong axiom Proof of Claim. Suppose that Claim fails.
of infinity to ZFC, then we can remove such a Since x is strongly inaccessible, we can construct
pathology [8]. Strong axioms of infinity are often a branch of size x in T by induction. This contra-
called large cardinal axioms, because they are of dicts the fact that T is a x-Aronszajn tree.
the form "such and such large cardinal exists in (Q.E.D., Claim).
our universe of set theory". We can linearly Since X was arbitrary, is a splitting fami-
order most of known large cardinal axioms in ly on x. However, the size of is clearly at most
accordance with their consistency strength, x. Therefore we have s(x) K x, a contradiction.
Strongly inaccessible cardinals, weakly compact (Q.E.D., Lemma 1).

+cardinals and measurable cardinals are typical Lemma 2. If is weakly compact, then
examples of the notion of large cardinals. For de- K s(x).
finitions of these cardinals, see [6] or [3]. As is Proof of Lemma 2. Underlying idea of our
illustrated by the above example about sets that proof is the principle of successive division. Sup-
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pose that is weakly compact. Assume for a con-
tradiction that {S: a< } is a splitting
family on :. For each o, Define Sa and S as fol-
lows. S Sa, S \ Sa. Moreover, we define
T as follows. T {f <’2" I n F) {
domf}[= }. Since is strongly inaccessi-

ble, each level of (T, -) has size less than
and (T, c) has height . Hence, by our
assumption that is weakly compact, (T,---)
has a branch of size . That is, there exists a
function g 2 such that for all a , the in-
itial segment g c belongs to T.

Case 1. The case where the sequence

--a a(}" 0 ( () is eventually con-
stant. In other words, there exists a set X ]
and an ordinal number fl ( such that for any
ordinal number a, if fl < a ( then Sg(a) X.
Then for anya( we haveXC S

Case 2. Otherwise. Then, by a diagonal
argument, we can show that there exists a set X
] such that for any a (, X\ --’q(a) has

size less than .
In either cases, there exists no a such

that IX V S, [= IX\ S, [= . Hence 3 is not a
splitting family on , a contradiction. (Q.E.D.,
Lemma 2).

Now Theorem 1 follows from Lemmas 1 and
2. Q.E.D.

The following presents a lower bound of the
consistency strength of the assertion (II’).

++Proposition 2. If we have K s ( ) for
some uncountable regular cardinal , then there ex-

ists an inner model with a measurable cardinal.

Proof Assume that is an uncountable reg-
ular cardinal such that ++ s(). Let K be
the Dodd-Jensen core model. Assume for a con-
tradiction that there exists no inner model with a
measurable cardinal. Then, by [1], there exists no
non-trivial elementary embedding from K to K.
Moreover, K satisfies the generalized continuum

++
hypothesis. Hence, by our assumption of
s (), P() gl K is not a splitting family on ::
in other words, there exists an X :] such
that for any Y P() [’1 K, the following asser-
tion fails" X Y[ IX\ YI- . Therefore,
letting U be the set { Y P () fl K IX\ Y
I< } U is a K-K-complete ultrafilter. Hence
there exists a non-trivial elementary embedding
from K to K, a contradiction. Q.E.D.

Kamo [5] found an upper bound of the con-
sistency strength of the assertion (II’). He showed
that if is 2-supercompact, then there exists a
generic extension in which the assertion (II’)
holds. Tadatoshi Miyamoto at Nanzan University,
in his unpublished work, independently found a
similar upper bound.

On the other hand, Zapletal [11] improved
Proposition 2. That is, he showed that if we have
++ _< s ()for some uncountable regular car-

dinal , then there exists an inner model with
measurable cardinals of high Mitchell order.
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