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A Yang-Mills-Higgs gradient flow on R’ blowing up at infinity
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1. Yang-Mills-Higgs functional. We prove
long time existence of the Yang-Mills-Higgs gra-
dient flow on Euclidean 3-space Rs, with a
geometric characterization at the singular points.
Since a solution of the Yang-Mills-Higgs gradient
flow constructed in this paper has geometrically
reasonable properties at the ideal boundary of
Ra, we are motivated to propose our definition of
a global solution for the gradient flow.

Let P be the trivial bundle R® X SU (2)
over R’ and let C be the set of pairs of connec-
tions A on the principal bundle P and Higgs field
® on R®: an 3u(2)-valued map on R’ where 3u
(2) is the Lie algebra of SU (2). The Yang-
Mills- Higgs functional is a functional on C de-
fined by the following: for (A, @) € C,

1 B4 o) = [ (R +la,0av

where d, is the covariant exterior differentiation
on the bundle P and F, denotes the curvature
2-form of A. Critical points of the functional (1)
are called Yang-Mills-Higgs configurations.

2. Yang-Mills-Higgs gradient flow. We
define the following compactified configuration
space (cf. Groissor [2]):

C=1{(A, ®): E(A, ®) < oo,

|®(x)| — 1as|x|— o).
The configuration space C has a geometric in-
variant, N(A, @), defined by

1
2) N(A, &) = EJ;SFA A d, 0.

N (A, @) is called the monopole number (or
magnetic charge) of (A, @). Groissor [2] showed
that if (A, @) € C, then N(A, @) is an integer
and the functional N : C— Z gives a path com-
ponent decomposition on C. Restricting @ to a
sufficiently large 2-shpere S%in R® determines a
homotopy class of maps on S? Let S, be the
ideal boundary of R’. We can identify S, with

*) Graduate School of Mathematics, Nagoya Uni-

versity.
* %) Department of Mathematics, Faculty of Sci-

ence and Technology, Keio University.

the unit 2-sphere S®(1) canonically : given @, we
define a map @: S, — S? by

= . O, w)
(3) @(CI)) = lim m,

x
where @(r, w) = O(x), r = lz|, ® = T« Then,

we have N (A, ®) = — deg (@). Furthermore,
2N (A, @) gives the first Chern number of some
bundle over S Thus, in constructing a solution
of (4), it is reasonable to take its behavior at the
ideal bundary S, into account.

We consider the following heat flow associ-
ated with the Yang-Mills-Higgs functional (1):

@) {6,A= —djF, — [0,d,0],

0,0 = A,D,
with the initial condition (A (0), @(0)) = (A,,
D,).

We call a curve (A (¢), @ (¢)) in the con-
figuration space C a smooth solution of (4) if
(A(t), ©(t)) satisfies (4) in the classical sense.
To fix the geometrical meaning for solutions of
(4), we introduce the following notion:

Definition 1. A smooth solution
(A(t), @ (1)) of (4) is called extendable on (0, T]
if the following conditions are satisfied :

(i) For each t € (0, T1, there exists a gauge
transformation g (¢) such that g* () A (¢)
extends to a smooth connection over S,
= S*(1).

(i) NA(), ®(t)) of (4) is independent of

te (0, T1.

Let € be a positive constant. For w, € S*(1),
let B, (w,) be the geodesic ball centered at w,
with the radius 7.

Definition 2. A smooth solution (A(2),
@(t)) of (4) of has the e-property if

(5) lim inf r(F(t, 7, w)]

7—o0 By(wg)

+ |d, o, r, w)|dw < e,
for sufficiently small 7, for all t € (0, T] and
for all w, € S°.

This definition gives a criterion for obtain-
ing an extendable solution, and is one of the fun-
damental observations for constructing a global
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solution of (4). Namely, we have:

Theorem 3. There exists a universal constant
€ >0 such that if the smooth solution (A(t),
D(t)) on (0, T1 of (4) satisfies the e-property with
the following initial conditions, (A (0), @ (0)) =
(4,, D,):

(A1) |V3F,0, )| +|V3d, 00, 2| <
Clz|™ foralin € N U {0},

(A2) (A(0), 2(0) € C,

A3) |1 — @0, DI < Clzl™,

then (A(t), ©(t)) is extendable on (0, T].

Hessel (see [3]) showed that for any initial
value satisfying (A1)-(A3), there exists a global
smooth solution of (4). However, he did not in-
vestigate the asymptotic behavior of (A(#),
@ (t)) as |x|— o . The above theorem shows
that if a smooth solution satisfies the condition
(5) on (0, T1, then the solution can be continued
to an extendable solution beyond T.

We remark that the Prasad-Sommerfield
monopole (cf. Jaffe-Taubes [5, IV, 1]) satisfies the
assumptions (A1)-(A3). It is also known that for
any integer N, there exists at least one monopole
solution (A, @) with the monopole number
N (A, @) = N and such that (A1) is fulfilled for
n = 0 (see [5, p. 109]).

3. Main theorem. We first show the
existence of the time local solution of (4).

Theorem 4. Assume that the initial condition
(A,, @,) satisfies the conditions (Al)-(A3). Then
there exists a positive constant T* such that (4) has
an  extendable solution (A(t), ®(¢)) for (0,
T*) with the initial condition (A (0), @ (0)) =
(A, D,).

To state our main result, we introduce the
following notion :

Definition 5. A smooth solution (A(#),
D (1)) of (4) is called weakly extendable on (0, T),
0 < T < o if the following conditions are satis-
fied:

(i) CA(¢), @®(¢)) is a smooth solution of (4)

for (0, T) x R®.

(i) There exist {T}i,< [0, T]1, T,=0,
T, = T such that the solution (A (¢),
@ (t)) of (4) is extendable on the inter-

val (T, T,,), i=1, -, L — 1.
By Definition 5, the solution of Theorem 4 is
weakly extendable. Moreover, by the fact that the
L’-norm is lower semi-continuous, so is the map
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t€ (0, T)— E(t) € R. In this sense, we call
the solution obtained in (4) is weak.

The following is the main result:

Theorem 6. Assume that the initial condi-
tions (A, D,) satisfies (A1)-(A3). Then, we have
the following :

(i) There exists an extendable weak solution of

(4) on (0, ) with initial condition (A(0),
0(0) = (A, 9D,).

(ii) The set of times t € (0, o] where the
solution (A(t), ®(t)) given by (i) is not
extendable is a finite set of [0, ©°].

(ii) If (A (t), @ (t)) is not extendable at t
= T,, then there exists a finite set points
{w,} € S® such that at each point w,,
there exists a neighborhood U of w, such
that on U, a remormalized sequence of
A(t) can be extended to a non-flat U(1) -
Yang-Mills connection with finite energy,
and the renormalized sequence of @ (t) also
has finite energy.

As an easy consequence of Theorem 6, we

obtain:

Corollary 7. Under the same assumptions and
notations as in Theorem 4, assume that E(A,, @,)
< C,. Then there exists a classical extendable solu-
tion on (0, o).

Since Corollary 7 provides the global exist-
ence under a small initial data, it gives a global
solution with the monopole number zero.

Here, we note the outline of proof of
Theorem 6. Let T, > 0 be a maximal existence
time on which an extendable solution exists. To
prove Theorem 6, we may show that the energy
E(t) = E(A(t), @©(t)) satisfies
(6) E(T,) <E — C,
where the constant C depends only on &, and the
number of singularities at 7,. From the singular
time T}, we solve (4) as an initial condition (A(T,),
@(T,)), so we may find a next singular time 7.
Iterating this procedure, if the solution does not
extend to time infinity, by (6), the energy of the
solution is going to negative. This is a contradic-
tion to positivity of the energy. Therefore, we
may construct a global weak extendable solution.

Let T, > 0 be a singular time, that is, the
solution (A(¢), @(t)) of (4) is not extendable at
t=T, Let w,€ S* (1) be a singular point.
Then, there exists sequences {t;}, {r;}, {z;} and
{w,} such thatt; T Ty, ,— o, 7,— 0 and w;—
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w,. We may take the renormalized sequence (A,»,
®@,) in (iii) of Theorem 6 of the extendable solu-
tion as
O,(t, 7, w) = O, + t’t, r,r, W),
AL, r, w) = A, + Tit, Tr, ).
Since (A(t), @(t)) satisfies the equation (4), the
renormalized sequence (A4;(¢#), @,(¢)) satisfies
0,0,= 4,9, ,
0,A, = — dj,"‘ F, — 7/ lo, dA‘(D,»].
We can apply similar discussion to renormalized
sequence with the extendable solution. Hence
(A, (), D, () = (4,0, rt, ), 0, 77,
®)) converges to (A, @) in the smooth topolo-
gy under the suitable gauge transformation.
Moreover A _ extends to a non-flat U (1)-
Yang-Mills connection with finite energy on S?
and @m has finite energy.

In contrast to harmonic maps and Yang-
Mills fields, we characterize the singularity by
means of local concentration not of the energy
functional but of the L'-norms of the curvature
tensor and the first derivative of the Higgs field.
From an analytical point of view, such a charac-
terization should take place in the L’-space
whose norm is invariant under the change of
scaling. Unfortunately, for the Yang-Mills-Higgs
functional, the norm for which bounds imply the
smoothness of solutions does not coincide with
the norm defining the energy functional. This
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makes global regularity results for weak solu-
tions of Yang-Mills-Higgs gradient flow diffcult
to obtain. These problems must be overcome by a
diffierent technique.

Added in proof. After accepted this paper,
the authors show that for any T < oo, the ex-
tendable weak solution is extendable on (0, 7).
That is to say, any weakly extendable solution
has not singular point in finite time.
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