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A Yang-Mills-Higgs gradient flow on R3 blowing up at infinity

By Hideo KOZONO,*) Yoshiaki MAEDA, * *) and Hisashi NAITO*)

(Communicated by Kiyosi IT6, M. J. A., May 12, 1998)

1. Yang-Mills-Higgs functional. We prove
long time existence of the Yang-Mills-Higgs gra-
dient flow on Euclidean 3-space R a, with a
geometric characterization at the singular points.
Since a solution of the Yang-Mills-Higgs gradient
flow constructed in this paper has geometrically
reasonable properties at the ideal boundary of
R3, we are motivated to propose our definition of
a global solution for the gradient flow.

Let P be the trivial bundle R3 x SU(2)
over and let be the set of pairs of connec-
tions A on the principal bundle P and Higgs field

R Ron ’an u(2)-valued map on where u
(2) is the Lie algebra of SU (2). The Yang-
Mills-Higgs functional is a functional on C de-
fined by the following" for (A, ) C,

1) E (A, f3(lFal + Ida ]2) dV
where da is the covariant exterior differenti,ation

on the bundle P and Fa denotes the curvature
2-form of A. Critical points of the functional (1)
are called Yang-Mills-Higgs configurations.

2. Yang-Mills-Higgs gradient flow. We
define the following compactified configuration
space (cf. Groissor [2])"

C- {(A, q))’E(A, q)) <
I<x)l 1 as lxl }.

The configuration space C has a geometric in-
variant, N(A, (P), defined by

(1 N( A, ) 4re F A d.
N (A, q))is called the mon@ole number (or
magnetic charge) of (,4, q) ). Groissor [2] showed
that if (A, q) C, then N(A, q)) is an integer
and the functional N" C---* Z gives a path com-

ponent decomposition on C. Restricting q) to a
S2 3

sufficiently large 2 shpere in R determines a
homotopy class of maps on Let S be the
ideal boundary of R3. We can identify S with
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Sthe unit 2-sphere (1) canonically’ given q), we
define a map " S---* S by

(r, co)
(3) (w) -lim I(r

X
where q(r, co) q(x), r- Ixl, co--. Then,

we have N(A, q) deg((P). Furthermore,
2N(A, ) gives the first Chern number of some

3 2"bundle over Thus, in constructing a solution
of (4), it is reasonable to take its behavior at the
ideal bundary S into account.

We consider the following heat flow associ-
ated with the Yang-Mills-Higgs functional (1)"

[ Ot A dFa [, dA ],
(4) O q) A a CI),
with the initial condition (A(0), P(0)) (Ao,

qo).
We call a curve (A (t), (t)) in the con-

figuration space C a smooth solution of (4) if
(A(t), q(t)) satisfies (4) in the classical sense.

To fix the geometrical meaning for solutions of
(4), we introduce the following notion"

Definition 1. A smooth solution
(A(t), (t)) of (4) is called extendable on (0, T]
if the following conditions are satisfied"

(i) For each t (0, T], there exists a gauge
transformation 9 (t) such that 9" (t)A (t)
extends to a smooth connection over
= S (1).

(ii) N(A (t), q)(t)) of (4) is independent of
t (0, T].

Let be a positive constant. For coo $2 (1),
let B (coo) be the geodesic ball centered at coo
with the radius z-.

Definition 2. A smooth solution (A(t),
(t)) of (4) of has the t-property if

lim inff, r([Fa (t, r,()
r(O)o)

+ IdA(I)(t, r, co)[)dco <- s,
for sufficiently small r, for all t (0, T] and
for all coo $2.

This definition gives a criterion for obtain-
ing an extendable solution, and is one of the fun-
damental observations for constructing a global



72 H. KOZONO, Y. MAEDA, and H. NAITO [Vol. 74(A),

solution of (4). Namely, we have:
Theorem 3. There exists a universal constant

> 0 such that if the smooth solution (A(t),
q) t ) on (0, T of (4) satisfies the e-property with
the following initial conditions, A (0), q (0))
(Ao, 60o):
(A1) VnAFA(O, Z)l + VAdA(O, z)l <

C Ix[-n-,foralln NU {0},
(A2) (A(0), q(0)) C,
(13) I1 --I(0, x)l[ < c Ix1-1,
then (A(t), (t)) is extendable on (0, T].

Hessel (see [31) showed that for any initial
value satisfying (A1)-(A3), there exists a global
smooth solution of (4). However, he did not in-
vestigate the asymptotic behavior of (A(t),

(t))as xl --- co. The above theorem shows
that if a smooth solution satisfies the condition
(5) on (0, T], then the solution can be continued
to an extendable solution beyond T.

We remark that the Prasad-Sommerfield
monopole (cf. Jaffe-Taubes [5, IV, 11) satisfies the
assumptions (A1)-(A3). It is also known that for
any integer N, there exists at least one monopole
solution (A, q)) with the monopole number
N (A, q)) N and such that (A1) is fulfilled for
n 0 (see [5, p. 1091).

3. Main theorem. We first show the
existence of the time local solution of (4).

Theorem 4. Assume that the initial condition
(Ao, q)o) satisfies the conditions (A1)-(A3). Then
there exists a positive constant T* such that (4) has
an extendable solution ( A ( t q( t for (0,
T* )with the initial condition (A (0), (0))--
Ao, qo ).

To state our main result, we introduce the
following notion:

Definition 5. A smooth solution (A(t),
(t)) of (4) is called weakly extendable on (0, T),

0 < T g oo if the following conditions are satis-
fied:

(i) (A (t), q (t)) is a smooth solution of (4)
for (0, T) R3.

(ii) There exist {T} [0, T] To- 0i=0

Tz T such that the solution (A(t),
#(t)) of (4) is extendable on the inter-
val (T, T+), i= 1,’", L- 1.

By Definition 5, the solution of Theorem 4 is
weakly extendable. Moreover, by the fact that the
L2-norm is lower semi-continuous, so is the map

t (0, T) E (t) R. In this sense, we call
the solution obtained in (4) is weak.

The following is the main result"
Theorem 6. Assume that the initial condi-

tions (Ao, o) satisfies (A1)-(A3). Then, we have
the following

(i) There exists an extendable weak solution of
(4) on (0, oo) with initial condition (A(0),
q(0)) (Ao, qo).

(ii) The set of times t (0, oo] where the
solution ( A t q t ) ) given by (i) is not
extendable is a finite set of [0, oo].

(iii) If ( A ( t t is not extendable at t
To, then there exists a finite set points

{cok} S such that at each point
there exists a neighborhood U of w such
that on U, a renormalized sequence of
A(t) can be extended to a non-flat U(1)-
Yang-Mills connection with finite energy,
and the renormalized sequence of q) ( t also
has finite energy.

As an easy consequence of Theorem 6, we
obtain"

Corollary 7. Under the same assumptions and

notations as in Theorem 4, assume that E ( Ao, o)
< Cs. Then there exists a classical extendable solu-
tion on (0, oo).

Since Corollary 7 provides the global exist-
ence under a small initial data, it gives a global
solution with the monopole number zero.

Here, we note the outline of proof of
Theorem 6. Let TO > 0 be a maximal existence

time on which an extendable solution exists. To
prove Theorem 6, we may show that the energy
E( t) E(A( t), q( t)) satisfies
(6) E(To) < E(O) C,
where the constant C depends only on s and the
number of singularities at TO From the singular
time To, we solve (4) as an initial condition (A(To),
#(To)), so we may find a next singular time T1.
Iterating this procedure, if the solution does not
extend to time infinity, by (6), the energy of the
solution is going to negative. This is a contradic-
tion to positivity of the energy. Therefore, we
may construct a global weak extendable solution.

Let TO > 0 be a singular time, that is, the
solution (A(t), q)(t)) of (4) is not extendable at
t TO Let Wo S (1)be a singular point.
Then, there exists sequences {t}, {r}, {v} and
{w} such that t T To, ri-’-* oo, v0 and co
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Wo. We may take the renormalized sequence (A,
qi) in (iii) of Theorem 6 of the extendable solu-
tion as

q)(t, r, w) q(t + vt, vr, w),
A(t, r, w) A(t + vt, vr, w).

Since (A(t), q(t)) satisfies the equation (4), the
renormalized sequence (Ai (t), 0 (t)) satisfies

O,A, FA-
We can apply similar discussion to renormalized
sequence with the extendable solution. Hence
( A (co), cb ()) (A (0, ri,, w ), (0,
o)) converges to (fioo, oo) in the smooth topolo-
gy under the suitable gauge transformation.
Moreover A extends to a non-flat U (1)-
Yang-Mills connection with finite energy on S2,
and (boo has finite energy.

In contrast to harmonic maps and Yang-
Mills fields, we characterize the singularity by
means of local concentration not of the energy
functional but of the L-norms of the curvature
tensor and the first derivative of the Higgs field.
From an analytical point of view, such a charac-
terization should take place in the LP-space
whose norm is invariant under the change of
scaling. Unfortunately, for the Yang-Mills-Higgs
functional, the norm for which bounds imply the
smoothness of solutions does not coincide with
the norm defining the energy functional. This

makes global regularity results for weak solu-
tions of Yang-Mills-Higgs gradient flow diffcult
to obtain. These problems must be overcome by a

diffierent technique.
Added in proof. After accepted this paper,

the authors show that for any T < oo, the ex-

tendable weak solution is extendable on (0, T).
That is to say, any weakly extendable solution
has not singular point in finite time.
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