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A note on the mean value of the zeta and L-functions. XV
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Abstract: The aim of the present article is to render the spectral theory of mean values of
automorphic L-functions – in a unified fashion. This is an outcome of the investigation commenced
with the parts XII and XIV, where a framework was laid on the basis of the theory of automorphic
representations and a general approach to the mean values was envisaged. We restrict ourselves
to the situation offered by the full modular group, solely for the sake of simplicity. Details and
extensions are to be published elsewhere.
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1. To begin with, we stress that all notations
and conventions will stay effective once introduced.

Let G = PSL(2,R) and Γ = PSL(2,Z). Write

n[x] =

[
1 x

1

]
, a[y] =

[ √
y

1/
√

y

]
,

k[θ] =

[
cos θ sin θ

− sin θ cos θ

]
,

and N = {n[x] : x ∈ R}, A = {a[y] : y > 0}, K =
{k[θ] : θ ∈ R/πZ} , so that G = NAK. We read this
as G � g = n[x]a[y]k[θ]; the coordinate (x, y, θ) will
retain this definition. The Haar measures on the
groups N, A, K, G are normalized, respectively, by
dn = dx, da = dy/y, dk = dθ/π, dg = dndadk/y,
with Lebesgue measures dx, dy, dθ.

The space L2(Γ\G) is composed of all left Γ -
automorphic functions on G, vectors for short, which
are square integrable over Γ\G against dg. Elements
of G act unitarily on vectors from the right. We have
the orthogonal decomposition

L2(Γ\G) = C·1⊕ 0L2(Γ\G)
⊕ eL2(Γ\G)

into invariant subspaces. Here 0L2 is the cuspidal
subspace spanned by vectors whose Fourier expan-
sions with respect to the left action of N have van-
ishing constant terms. The subspace eL2 is spanned
by integrals of Eisenstein series. Invariant subspaces
of L2(Γ\G) and Γ -automorphic representations of G
are interchangeable concepts.

2000 Mathematics Subject Classiffcation. 11F70.

The cuspidal subspace decomposes into irredu-
cible subspaces: 0L2(Γ\G) =

⊕
V . The Casimir op-

erator Ω = y2
(
∂2

x + ∂2
y

)− y∂x∂θ becomes a constant
multiplication in each V so that Ω|V ∞ =

(
ν2

V − 1
4

) ·1,
where V ∞ is the set of all infinitely differentiable vec-
tors in V . Under our present supposition, V belongs
either to the unitary principal series or to the discrete
series; accordingly, we have νV ∈ iR or νV = � − 1

2 ,
1 ≤ � ∈ Z. The right action of K induces the de-
composition of each V into K-irreducible subspaces:
V =

⊕∞
p=−∞Vp with dim Vp ≤ 1. If it is not triv-

ial, Vp is spanned by a Γ -automorphic function on
which the right translation by k[θ] becomes the mul-
tiplication by the factor exp(2ipθ). It is called a
Γ -automorphic form of spectral parameter νV and
weight 2p. If V is in the unitary principal series,
then dimVp = 1 for all p ∈ Z and there exists a com-
plete orthonormal system {ϕp ∈ Vp : p ∈ Z} of V

such that

ϕp(g, V ) =
∞∑

n=−∞
n�=0

�V (n)√|n| A
sgn(n)φp(a[|n|]g; νV ),

where φp(g; ν) = yν+ 1
2 exp(2ipθ), and

Aδφp(g; ν) =
∫ ∞

−∞
exp(−2πiδx)φp(wn[x]g; ν)dx,

with w = k
[

1
2π
]

the Weyl element. Our normaliza-
tion is such that the coefficients �V (n) do not de-
pend on the weight. Also we may impose the Hecke
invariance; in particular �V (−n) = εV �V (n) with
εV = ±1.
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We have skipped the discrete series. In the se-
quel as well, we shall argue as if there were no dis-
crete series representation. This should not cause
any confusion, as the discussions below, especially
those pertaining estimations, extend readily to the
discrete series. Nevertheless, it should be remarked
that the definition of ϕp(g, V ) given above has to be
modified for those V in the discrete series according
to the normalization [2, (2.21) and (2.25)].

2. Our discussion depends much on the uni-
form bounds for Aφp(a[y]; ν), A = A+, such as [2,
(4.3) and (4.5)]. In order to make our argument ap-
plicable to any irreducible cuspidal representation,
we derive from the latter a bound that is somewhat
weaker than the former but is still sufficient for our
purpose; in fact the proof of [2, (4.5)] works for all
cases. We thus put

Γp(s, ν) =
∫ ∞

0

ys−1Aφp(a[y]; ν)
dy

y
, Re s > 1;

we have shifted the argument in [2, (4.10)] by − 1
2 .

Let us assume that ν ∈ iR. We divide the integral
at y = |p| + |ν| + 1. To the part with smaller y

we apply the fact that Asgn(u)φp(a[|u|]; ν) is a unit
vector in L2(R×, d×/π), d×u = du/|u| (see e.g., [2,
Lemma 4]). Hence this part is � (|p|+ |ν|+1)Re s−1.
On the other hand, by [2, (4.5)] the remaining part is
� (|p| + |ν| + 1)Re s− 1

2 . We then invoke the identity

Γp(s, ν) = 4π · πΓp(s + 2, ν) − pΓp(s + 1, ν)
(s − 1

2 )2 − ν2
,

which can be proved by applying the operator Dν =
(d/dy)2 − (2π)2 − (

ν2 − 1
4

)
y−2 either to ys or to

Aφp(a[y]; ν) in the last integral, on noting that the
latter is a constant multiple of the Whittaker func-
tion Wp,ν(4πy) (see [2, (2.16)]). Then, by Mellin’s in-
version, we conclude that Aφp(a[y]; ν) � y

1
2−ε(|p|+

|ν| + 1)2+ε for any small ε > 0. Hereafter we shall
term this and [2, (4.5)] the basic bounds.

The above works with the discrete series as well.
Actually, any combination of p, ν such that either
− 1

2 < ν < 1
2 or ν = � − 1

2 with 1 ≤ � ∈ Z, � ≤ |p|,
could also be dealt with, as an explicit evaluation of
the norm of Asgn(u)φp(a[|u|]; ν) in L2(R×, d×/π) can
then be performed by using [2, (4.14)] that is proved
in [5] (see also [2, pp. 98–99]). Further extensions
to the situation ν �∈ iR can be obtained by iterating
the last recursive relation amongst the values of Γp.
We remark that Dν is connected with the operator
∂θ via the Kirillov map.

3. We now define the automorphic L-function
associated with an irreducible representation V by

LV (s) =
∞∑

n=1

�V (n)n−s.

This converges absolutely for Re s > 1 and continues
to an entire function which is of a polynomial order
both in s and in νV if Re s is bounded.

We fix an A among V ’s, and consider the mean
square

M(A; g) =
∫ ∞

−∞

∣∣L( 1
2 + it

)∣∣2 g(t)dt, L = LA,

where the weight function g is assumed, for the sake
of simplicity, to be even, entire, real on R, and
of fast decay in any fixed horizontal strip. Our
aim is to establish a full spectral decomposition of
M(A; g). Our method is applicable to any repre-
sentation, though we shall deal with only the case
where A is in the unitary principal series. The fourth
moment of the Riemann zeta-function could be dis-
cussed equally.

We start with the integral

I(u, v; g) =
∫ ∞

−∞
L(ū + it)L(v + it)g(t)dt.

This is entire in u, v; and M(A; g) = I
(

1
2 , 1

2 ; g
)
. In

the region of absolute convergence, we have

I(u, v; g) =
R(u + v)

ζ(2(u + v))
ĝ(0) + J(u, v; g) + J(v̄, ū; g).

Here R is the Rankin zeta-function attached to A, ĝ

the Fourier transform of g, and

J(u, v; g) =
∞∑

f=1

∞∑
n=1

�(n)�(n + f)
(2n + f)u+v

(√
n(n + f)
2n + f

)2α

·g̃(f/(2n + f); u, v),

where � = �A and

g̃(x; u, v) = 2u+v+2α ĝ(log((1 + x)/(1 − x)))
(1 − x)u+α(1 + x)v+α

,

with 0 ≤ x ≤ 1. Here α is a sufficiently large positive
integer, which is implicit throughout the sequel. We
have slightly modified our procedure given in [6].

Let g∗ be the Mellin transform of g̃. It is im-
mediate to see that g∗(s; u, v) is of rapid decay with
respect to s, provided Re s and u, v are bounded;
moreover, g∗(s; u, v)/Γ(s) is entire over C3. Thus,
by Mellin’s inversion,
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J(u, v; g)

=
1

2πi

∫
(η)




∞∑
f=1

f−sDf (u + v − s)


 g∗(s; u, v)ds,

where (η) is the line Re s = η > 0, and

Df (s) =
∞∑

n=1

�(n)�(n + f)
(2n + f)s

(√
n(n + f)
2n + f

)2α

.

Checking the convergence, we see that the condition
Re (u + v) > max{2, 1 + η} is required here.

4. Now, we need to have a full spectral decom-
position of Df(s) which is to yield a continuation,
with a polynomial growth, to the left of Re s = 1
so that J(u, v; g) can also be continued to a neigh-
bourhood of the point

(
1
2 , 1

2

)
. Recently, V. Blomer

and G. Harcos [1] succeeded in establishing such an
assertion on Df (s). They started with an old idea of
ours, published in [6], to employ the Kirillov model
to pick up a favourable vector in dealing with the
problem of the spectral decomposition of Df (s), and
proceeded one step further by a use of the Sobolev
norms with which they could derive the crucial poly-
nomial growth that we had left open in [6]. In what

follows, we shall take an alternative way by modify-
ing [6] with certain simple devices from [2] and [5].
The present article can be read independently of [1].

Thus, let A, α be as above, and τ a parame-
ter in the right half plane; all implicit constants in
the sequel may depend on A, α and Re τ at most.
We apply the inverse Kirillov map to the function
w(y, τ) which is equal to yα+ 1

2 exp(−τy) for y > 0,
and vanishes for y ≤ 0. By [2, Lemma 4] there exists
a vector Φ(g, τ) in A such that

Φ(n[x]a[y], τ) =
∞∑

n=1

�(n)√
n

w(ny, τ) exp(2πinx).

More precisely, it equals
∑∞

p=−∞ ap(τ)ϕp(g, A), with

ap(τ) =
1
π

∫ ∞

0

wα(y, τ)Aφp(a[y]; νA)
dy

y
.

The function Φ(g, τ) is regular for Re τ > 0, since

ap(τ) � (|τ | + 1)2α(|p| + 1)−α

and ϕp(g, A) � (|p|+1)2, for any g, as can be shown
by [2, (4.5)].

To prove this bound for ap(τ), we use the oper-
ator Dν again: We may assume that p �= 0; then,

ap(τ) = − 1
4πp

∫ ∞

0

wα(y, τ)DνAAφp(a[y]; νA) dy,

Integrate in parts, and repeat the procedure α times;
and we get the bound.

5. Next, we put Ψ(g, τ) = Φ(g, τ)Φ(g, τ ). We
have, for any integer f ≥ 0,∫ 1

0

Ψ(n[x]a[y], τ) exp(−2πifx)dx

= y2α+1
∞∑

n=1

�(n)�(n + f)(n(n + f))α

· exp(−(2n + f)τy).

The Parseval formula implies that the left side is
equal to

∑
V

�V (f)√
f

∆(fy, τ ; V )

+
∫

(0)

f−νσ2ν(f)√
fζ(1 + 2ν)

∆(fy, τ ; ν)
dν

4πi
,

where V runs over all irreducible cuspidal represen-
tations, and

∆(y, τ ; V ) =
∞∑

p=−∞
〈Ψ(·, τ), ϕp(·, V )〉Aφp(a[y]; νV ),

∆(y, τ ; ν) =
∞∑

p=−∞
〈Ψ(·, τ), Ep(·, ν)〉Aφp(a[y]; ν).

Here 〈 , 〉 is the natural inner product on L2(Γ\G),
and Ep is the Eisenstein series of weight 2p (see [2,
(3.19)]).

The convergence of the spectral expansion of Ψ
is in fact absolute and fast, provided α is sufficiently
large. To confirm this, we apply the operator Ω+i∂2

θ

repeatedly as is done at [2, (5.9)]; and we get, via the
above bound for ap(τ),

〈Ψ(·, τ), ϕp(·, V )〉 � (|τ | + 1)4α(|νV | + |p|)− 1
2 α,

Then we appeal to the basic bounds, getting

∆(y, τ ; V )

� (|τ | + 1)4α(|νV | + 1)−
1
4αy

1
2−ε(1 + y)−

1
5 α.

The contribution of the continuous spectrum or ra-
ther the function ∆(y, τ ; ν) is to be discussed later.
This yields our assertion.

In order to pick up a particular Fourier coeffi-
cient, we have used the projection procedure as was
done in [1] to avoid an inner product argument that
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had been applied in [6]. It is worth pointing it out
that in [2, Sections 3–5] a procedure of the same
kind was developed, employing the Kirillov model
as a main implement to evaluate projections to ir-
reducible subspaces of a certain Poincaré series, ex-
plicitly in terms of its seed function. Therefore, we
surmise that the projection ∆(y, τ ; ·) could also be
handled more precisely with a modification of the ar-
gument of [2]. To this issue we shall return elsewhere.
In passing, we remark that ∆(y, τ ; ·) is regular for
Re τ > 0.

6. We are now to make the last estimation pro-
cedure explicit. Thus, we note that∣∣(νV

2 − 1
4 − i(2p)2)q〈Ψ(·, τ), ϕp(·, V )〉∣∣

=
∣∣〈(Ψ(·, τ), (Ω − i∂2

θ)qϕp(·, V )〉∣∣
=
∣∣〈(Ω + i∂2

θ)qΨ(·, τ), ϕp(·, V )〉∣∣
≤ ∥∥(Ω + i∂2

θ )qΨ(·, τ)
∥∥ ,

for any integer q ≥ 0. By definition

Ψ(g, τ) =
∞∑

k=−∞

∞∑
l=−∞

ak(τ)al(τ̄ )ϕk(g)ϕl(g)

with ϕk(g) = ϕk(g, A), ϕl(g) = ϕl(g, A). Since

Ω = 1
4EE − 1

4∂2
θ + 1

2 i∂θ,

with the Maass operator E = e2iθ(2iy∂x + 2y∂y −
i∂θ), we see that Ωϕkϕl is a linear combination of
ϕk+jϕl+j , j = −1, 0, 1, the coefficients of which are
polynomials of the second degree on k, l; note that
νA is now regarded as a constant. Thus

(Ω + i∂2
θ )qΨ(g, τ) =

∞∑
k=−∞

∞∑
l=−∞

bk,l(τ ; q)ϕk(g)ϕl(g),

where

bk,l(τ ; q) =
q∑

j=−q

dj(k, l)ak+j(τ)al+j(τ̄ )

with a polynomial dj(k, l) of degree 2q on k, l. We
have

bk,l(τ ; q) � (|k| + |l| + 1)2q (|τ | + 1)4α

((|k| + 1)(|l| + 1))α
,

for each fixed q. We then note as before that ϕk(g) �
(|k| + 1)2; and thus, with q =

[
1
3α
]
, say, we get the

uniform bound (Ω+i∂2
θ )qΨ(g, τ) � (|τ |+1)4α, which

gives the first inequality in the last section.

7. As to the continuous spectrum, we invoke
the functional equation for Ep ([2, (3.33)]), and have,
for Re ν = 0,

〈(Ω + i∂2
θ )qΨ(·, τ), Ep(·, ν)〉

= γp(ν)
∫

Γ\G
(Ω + i∂2

θ )qΨ(g, τ)E−p(g, ν)dg,

with

γp(ν) = π−2ν ζ(1 + 2ν)
ζ(1 − 2ν)

Γ
(

1
2 + ν + p

)
Γ
(

1
2 − ν + p

) .
Assuming Re ν > 1

2 , we unfold the last integral,
and see that it equals R

(
ν + 1

2

)
Yp(ν, τ ; q)/ζ(2ν + 1),

where R is as above, and

Yp(ν, τ ; q) =
∞∑

l=−∞
bl+p,l(τ ; q)

·
∑
δ=±

∫ ∞

0

Aδφl+p(a[y], νA)Aδφl(a[y], νA)yν− 3
2 dy.

Again by the basic bounds, we see that Yp(ν, τ ; q) is
regular and � (|τ | + 1)4α for Re τ > 0 and Re ν >

− 1
2 . Hence, in the same domain,

∆(y, τ ; ν) =
R
(
ν + 1

2

)
ζ(1 − 2ν)

Λ(y, τ ; ν),

with

Λ(y, τ ; ν) =
∞∑

p=−∞

π−2νYp(ν, τ ; q)(
ν2 − 1

4 − i(2p)2
)q Γ

(
1
2 + ν + p

)
Γ
(

1
2 − ν + p

)Aφp(a[y]; ν).

One may conclude, via [2, (4.3) and (4.5)], that

Λ(y, τ ; ν)

� (|τ | + 1)4α(|ν| + 1)−
1
4αy

1
2−|Re ν|−ε(1 + y)−

1
5α

for Re τ > 0 and Re ν > − 1
2 .

8. We now set τ = s, and observe that

Df (s) =
ss+2α

Γ(s + 2α)

∫ ∞

0

ys−2

·
∫ 1

0

Ψ(n[x]a[y], s) exp(−2πifx)dxdy

=
∑
V

f
1
2−s�V (f)Ξ(s, V )

+
∫

(0)

f
1
2−νσ2ν(f)

ζ(1 + 2ν)ζ(1 − 2ν)
R
(
ν + 1

2

)
Ξ(s, ν)

dν

4πi
,

where
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Ξ(s, V ) =
ss+2α

Γ(s + 2α)

∫ ∞

0

ys−2∆(y, s; V )dy,

Ξ(s, ν) =
ss+2α

Γ(s + 2α)

∫ ∞

0

ys−2Λ(y, s; ν)dy.

The bound for ∆(y, τ ; V ) implies that Ξ(s, V ) is reg-
ular and � |s|4α+ 1

2 (|νV |+ 1)−
1
4α for Re s > 1

2 . Sim-
ilarly, Ξ(s, ν) is regular and � |s|4α+ 1

2 (|ν| + 1)−
1
4α

for Re s > 1
2 + |Re ν| and Re ν > − 1

2 .
Therefore we have proved that Df (s) is indeed

regular and of polynomial growth for Re s > 1
2 ([1,

Theorem 2]).
It is to be observed that in order to offset the

exponential growth of the factor 1/Γ(s+2α) we have
adopted an old idea of Ju.V. Linnik which he intro-
duced in his investigation on approximate functional
equations for Dirichlet L-functions.

9. We return to the function J(u, v; g); thus
we impose Re (u + v) > max{2, 1 + η} initially. In
view of the fast decay of g∗(s; u, v), the last assertion
on Df (s) yields immediately that

J(u, v; g) =
∑
V

LV

(
u + v − 1

2

)
Θ(u, v; V ; g)

+
1

4πi

∫
(0)

ζ(u + v − 1
2 + ν)ζ(u + v − 1

2 − ν)
ζ(1 + 2ν)ζ(1 − 2ν)

·R( 1
2 + ν

)
Θ(u, v; ν; g)dν,

where

Θ(u, v; V ; g) =
1

2πi

∫
(η)

Ξ(u + v − ξ, V )g∗(ξ; u, v)dξ,

and the factor Ξ(u + v − ξ, ν) appears instead in the
continuous spectrum. The Θ is of fast decay either
in νV or in ν, as Ξ is.

We fix a sufficiently small ε > 0; we may move
the last contour to (ε), provided Re (u+ v) > 2

3 , say.
Hence, the last expansion of J(u, v; g) holds under
Re (u + v) > 3

2 . This lower bound is required to
get the factors LV

(
u + v − 1

2

)
and ζ

(
u + v − 1

2 ± ν
)
.

However, the former is entire and of a polynomial
order in νV if u, v are bounded. Thus the cuspidal
part of J(u, v; g) is regular in a neighbourhood of the
point

(
1
2 , 1

2

)
at which it takes the value∑

V

LV

(
1
2

)
ΘA(V ; g),

with ΘA(V ; g) = Θ
(

1
2 , 1

2 ; V ; g
)
.

As we are about to deal with the continuous
spectrum, we should remark that Θ(u, v; ν; g) re-
mains regular in the three complex variables and of

fast decay in ν, throughout the procedure below, be-
cause of the property of Ξ(s, ν) mentioned above.
Thus, we restrict (u, v) so that 2 > Re (u + v) > 3

2 .
Then, in the last expression for J(u, v; g) one may
shift the ν-contour to

(
1
2 + ε

)
, encountering the pole

at u + v − 3
2 with the residue

− R(u + v − 1)
ζ(2(2 − u − v))

Θ
(
u, v; u + v − 3

2 ; g
)

as well as those of the factor R(1
2 + ν)/ζ(1 − 2ν);

we may assume, without loss of any generality, that
u, v are such that all the residues in question are
finite. This yields a meromorphic continuation of
the continuous spectrum part, so that one may move
(u, v) close to

(
1
2 , 1

2

)
as far as Re (u + v) > 1 is sat-

isfied; this condition is needed to have the last Θ
factor defined well. Then, shift the ν-contour back
to the original. All the residual contribution com-
ing from R(1

2 + ν)/ζ(1− 2ν) cancel out those arising
from the previous shift of the contour. Only the
pole at 3

2 − u − v contributes newly. The result-
ing integral is regular at

(
1
2 , 1

2

)
; we get the factor

ΘA(ν; g) = Θ
(

1
2 , 1

2 ; ν; g
)
, Re ν = 0.

10. Collecting all the above, we obtain
Theorem. We have the spectral decomposition

M(A; g) = m(A; g) + 2Re

{∑
V

LV

(
1
2

)
ΘA(V ; g)

+
∫

(0)

ζ
(

1
2 + ν

)
ζ
(

1
2 − ν

)
ζ(1 + 2ν)ζ(1 − 2ν)

RA

(
1
2 + ν

)
ΘA(ν; g)

dν

4πi

}
,

where RA = R, and m(A; g) is the value at
(

1
2 , 1

2

)
of

the function

R(u + v)
ζ(2(u + v))

ĝ(0) +
1

ζ(2(2 − u − v))

·
{
R(u + v − 1)Θ

(
u, v; u + v − 3

2 ; g
)

+R(1 − u − v)Θ
(
u, v; 3

2 − u − v; g
)

+R(u + v − 1)Θ
(
v, u; u + v − 3

2 ; g
)

+R(1 − u − v)Θ
(
v, u; 3

2 − u − v; g
)}

.

Albeit the Θ factors in the last expression is defined
so far only under the condition 2 > Re (u + v) > 1,
the expression can in fact be continued to a neigh-
bourhood of

(
1
2 , 1

2

)
, for I(u, v; g) and all other parts

in the spectral expansion of J(u, v; g) and J(v̄, ū; g)
are regular there. We could make the continuation
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procedure more explicit, using the property of Γp

given in the second section, but the above suffices
for our present aim.

Our theorem is to be compared with [3, The-
orem] and [4, Theorem 4.2] which respectively deal
with the mean square of automorphic L-functions
associated with discrete series representations and
with that of the product of two values of the Rie-
mann zeta-function, i.e., the L-function associated
with the continuous spectrum or Eisenstein series.
Unlike those highly explicit results, admittedly the
above asserts only the existence of a full spectral de-
composition for M(A; g). The construction of the
transform ΘA(·; g) has to be made explicit in terms
of the weight function g before one attempts any ap-
plication; we shall take this task in our forthcoming
works. Nevertheless, the present work could be a
means to broaden the perspective of the theory of
the mean values of the zeta and L-functions that is
rendered in [7] via particular examples.
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