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On the generalized Norlund summability

of a sequence of Fourier coefficients
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1. Introduction. Let f(t) be a periodic
function with period 27 on (—oo,00) and Lebesgue
integrable over (—m, 7). Then the conjugate series of
the Fourier series
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—agp + Z(an cos nt + by, sinnt)

2
n=1
of fis
o0 oo
Z(b cosnt — an sinnt) = Z
n=1 n=1

Since Fejer [3] found the relations between the
“jump” of f(t) at t = x and the sequence {nB,(z)},
there are many results which show how the behaviour
of f(¢) in the neighborhood of ¢ = z controls the
convergence of the sequence {nB,(z)} to the jump
in the sense of summability. To state the most re-
cent result of Khare and Tripathi [5], we need the
following definitions.

Given two sequences p = {p,} and ¢ = {qn},
the convolution (p * ¢) is defined by

an kqk = Zkan k-

Let {s,} be a sequence. When (p * q),, # 0 for all n,
the generalized Norlund transform of the sequence
{sn} is the sequence {tP?} obtained by putting

(p*q)n

th = an EGESk-

”ko

If lim tP9 exists and is equal to s, then the sequence
n—oo

{sn} is said to be summable (N, p,, q,) to the value
s.

If s, = s (n — o00) induces t27 — s (n — 00),
then the method (N, py,qy) is called to be regular.
The necessary and sufficient condition for (N, p,, ¢,)
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method to be regular is Z |Pr—k qr] = O(|(p*q)n|)
k=0

and pn—x = o(|(p * ¢)n]) as n — oo for every fixed
k > 0 (see Borwein [2]).

The method (N, p,, ¢,,) reduces to the Norlund
method (N, p,) if g, = 1 for all n and to the Riesz
method (N, g,) if p, = 1 for all n. We know that
(N,p,) mean or (N,gq,) mean includes as a spe-
cial case Cesaro and harmonic means or logarithmic
mean, respectively.

The method (N, py,,¢,)(C, 1) is obtained by su-
perimposing the method (N, p,,¢,) on the Cesaro
mean (C,1) of order one (see Astrachan [1]).

Throughout this paper, we shall use the follow-
ing notations:

Yo(t) = {f(z+1) + f(x —t) =1},

) = / e ()]s,

for any fixed z (—o0 < & < o0) and a constant !
depending on z. For two sequence {p,} and {g,},
we define P(t) (0 <t < o0) and R, (n =0,1,2,...)
by

[t]

:Zpk and R,
k=0

where [t] denotes the integral part of ¢.

Theorem KT (Khare and Tripathi [5]). Let
(N, pn,qn) be regular Néorlund method defined by a
non-negative, non-increasing sequence {p,} and a

non-negative, non-decreasing sequence {q,}. If the
condition

an kdk,

(p*q)n

|9 (2)]

(1.1) /;n :

holds for a number §, 0 < § < m, then the sequence
{nBy(x)} is summable (N, pn,q,)(C,1) tol/x.

In this paper, by generalizing a result of Hi-
rokawa and Kayashima [4], we shall give a theorem
which contains Theorem KT.

r (g) dt = o(Rnq,") (n — o)
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2. Statement of our result. We define an-
other function R, (t) (0 < t < n + 1) with a non-
negative integer n by

Ru(t) = /O ()

where r,(u) = prgn—k for k < u < k+1
0,1,2,...,n).
Theorem. Let (N, py,qn) be a regular Norlund

method defined by a non-negative, non-increasing se-
quence {p,} and a non-negative, non-decreasing se-

quence {qn}-
If the condition

s
(2.1) // U,(t) %w

holds for a number §, 0 < § < m, then the sequence
{nBn(x)} is summable (N, pp,qn)(C,1) to l/7.
Now we shall show that Theorem contains The-
orem KT. First of all, we remark
d R, (7/t)
dt t
for any t, 0 < w/t < n+ 1, because
d Ry(r/t) _ (=m/t)rn(7/t) — Rn(7/t)
(2.2) — = .
dt t 2

Since the condition (1.1) implies ¥, (¢) = o(t) (t —
0), we have

(k =

‘dto(Rn) as n — 0o

<0

o d R,(n/t)
0

_ [_\I,w(t)R"(”/t)} i/n+/: |92 (t)] R, (g) dt

t ot

oo ()

+ O(Qn /ﬂjn Wmt(m P (%) dt> =o(R,),

by virtue of the fact that R,(7/t) < ¢,P(n/t).
Hence the conditions (1.1) is implied in the condi-
tion (2.1).

From Theorem we immediately obtain the fol-
lowing corollary with another conditions (2.3) and
(2.4) which are considered by Singh [9] with respect

to convergence of conjugate series.

Corollary. Let (N,pn,q.) be a regular
Nérlund method defined by a mon-negative, non-
increasing sequence {p,} and a non-negative,
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non-decreasing sequence {q,} such that

(2.3) .

A
qn/ Mdu =O(R,) as n— oo,

1
where A(u) is a positive function of w. If the condi-
tion

t
t)\(ﬂ'/t))

2.4 / (U duzo( as t—0
20 [ awldn=o (50
holds, then the sequence {nBy(z)} is summable
(N, pn,qn)(C,1) to l/7.

Proof . Since the sequence {prpgn—ir}i_, is a
non-increasing sequence of k, we have

Oégrn(:>§Rn(§) <0<§<n+1).

Hence we obtain

LRl g ((Falrt),

dt t 2

from (2.2). If the conditions (2.3) and (2.4) hold,
then we have

«(t —|dt

O\ ’

é
/ v
T/n
B O AX(w/t)  Rn(m/t)

- /ﬂ/n Pxft) P dt)

_ ° A(m/t) Ry (T /t)
=o( [, s dt)

d Ry(r/t)

:l\
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k=2
=o0 ani2 p(];::ll) /:1 )\SJy)d >
oo [ ) = ot

which is the condition (2.1). L]
3. Proof of Theorem. We need the follow-
ing lemma for the proof of Theorem.

Lemma. Let {p,} be a non-negative, non-
increasing sequence and {qn } be a non-negative, non-
decreasing sequence. If we put

1 — sin kt cos kt
Kn(t):Rizpnfk Qk{th— 7 }a
" k=1
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then we have

(3.1) K,(t) = O(n) (o <t< %)
and
(3.2) Kn(t)=0 (R’;E;m) (% <t< 7r> .

Proof . If 0 <t < m/n, then we have
1 n
K,(t)=0 (- ki (K%t
(t) <Rn ;p @i ))

n n
@) <Rn ;pn—qu> - O(Tl),

which is (3.1).
To prove (3.2), we first put

1 & sin kt
I = — n— )
1 R, ZP Kk 2
k=1
1 & cos kt
IQZEan—ka rant
k=1
Then
(3.3) K ()] <[] + |12].

By virtue of the fact that

n
an_qu coskt = O (Rn (%)) (f <t< 77)
k=1 n
(see [6]), we immediately obtain

nl =0 (*70)

for any t (w/n < t < m). Next, by dividing I; into
two parts I and Iyo:

(3.4)

T—1 .
1 sin(n — k)t
Ly = —- n— ;
11 R, ];)qu k (n— k)t
1= sin(n — k)t
o= Y Prlnk o,
12 ‘R, k:Tpkq k (n— k)t

where 7 = [7/t], we have
(3.5) 11| < 1] + |112]-
If 7/n <t <m, then

Ry (m/t)
I, =0 212
u=o(HE)

By Abel’s transformation, we have

1 n—2
I = O(m{ Z(kan—k _pk+1Qn—k—1)

k=T

(3.6)
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+ Pn-141 + pTQnT}>

(i) o (42).

because

T
<—=-+41
_2+

Zn: sin ﬁ
k=1 k

for any positive integer n (see [10]). Thus (3.2) evi-
dently follows from (3.3)-(3.7). [

Proof of Theorem. From the method of Mo-
hanty and Nanda [7], we have

1 « l
o ZkBk(17) T
k=1

1 /° sinnt  cosnt
= — . — +0o(1).
7r/0 wl(t){ nt? t }dt o(1)

by Riemann-Lebesgue’s theorem. Since the method
(N, pn, qn) is regular, in order to prove Theorem, it
is sufficient to show that

1 & 1 /° sinkt coskt
—  Puktr— L) o — —— L dt
R, ~" ’“q’“w/o ¥ (){ k2 t }

1 5
=~ [ vaomawa = o).

Now we write

1 5 1 m/n 5
2 wosoa= ([T [ Juwmi
= I3+ Iy,

™

say. If the condition (2.1) is satisfied, we obtain
U, (t)=o(t) (t—0)

from (3.1) (see [8]). Hence we have

I = O(n) ( / o |¢w<t>dt) —of1).

Next, we obtain by (3.2)

n-o(g [ i wato 2 )

ol o] )

+o<an /ﬂjn (1) th"(:/t)‘dt)

R, R,
Therefore, these complete the proof of Theorem. [
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