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A condition of quasiconformal extendability
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Recently, Heinonen and Koskela showed, as a
corollary of their deep result, the following extension
theorem.

Proposition 1 ([3], 4.2 Theorem). Suppose
that f is a quasiconformal map of the complement
of a closed set E in R"™ into R™, n > 2, and suppose
that each point x € E has the following property:
there is a sequence of radii r;, r; — 0 as j — oo,
such that the annular region B(z,ar;) — B(z,r;/a)
does not meet E for some a > 1 independent
of j. Then f has a quasiconformal extension to
R" =R"U{oo}. Moreover, the dilatation of the
extension agrees with the dilataiton of f.

There, they remarked that this result may be
new even for conformal maps in the plane. So it is
noteworthy to give a different proof of a more general
extension theorem on 2-dimensional quasiconformal
maps of the plane based on some classical results in
the function theory.

We begin with the following definition, which
weakens the condition in the above theorem to a con-
formally invariant one.

Definition. We say that a closed set F in the
complex plane is annularly coarse if each point x € F
has the following property: there is a sequence of
mutually disjoint nested annuli { Ry} ;, RxNE = ¢,
such that the modulus m(Ry) of Ry, satisfies

m(Rg) > ¢

with a positive c. Here we say that a sequence of an-
nuli {R}72, is nested if every Ry, (k > 1) separates
Ry_1 from z.

Also note that the positive constant ¢ can de-
pend on x.

Now we will prove the following

Theorem 2. Suppose that [ is a quasiconfor-
mal map of the complement of a closed set E in the
complex plane C into C and suppose that E is an-
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nularly coarse. Then f has a quasiconformal exten-
sion to C. Moreover, the dilatation of the extension
agrees with the dilataiton of f.

1. Known facts and basic lemmas.
dimensional case, we have the following

In 2-

Proposition 3. Let E be a compact set in C.
Then the following conditions are mutually equiva-
lent.

1) Ewvery conformal map of D = C — E is the re-
striction of a Mébius transformaiton.

2) Every quasiconformal map of D = C—FE has a
quasiconformal extension to the whole C.

3) For every relatively compact neighborhood U of
E, every quasiconformal map of U — E has a
quasiconformal extension to U.

Proof . First assume the condition 1) and take
any quasiconformal map f of D = C — E. Here we
may assume that f(co) = co. Let u be the Beltrami
coefficient of f~% on f(C — E). Set 4 = 0 on C —
f(C = E), and we have a quasiconformal map g of
C with the complex dilatation u (cf. [2] and [4]).
Then, go f has vanishing complex dilatation on C —
FE, and hence the assumption implies that it is a
Mobius transformation 7. Thus f can be extended
a quasiconformal map ¢~! o T of the whole C.

Next assume the condition 2) and take a rela-
tively compact neighborhood U of E and a quasi-
conformal map f of U — E arbitrarily. Since F is
compact, the famous extention theorem ([6] II The-
orem 8.1) gives a neighborhood V of F in U and a
quasiconformal map g of C — E which coincides with
fonV —E. Then the assumption implies that g can
be extended to a quasiconformal map of C, which
clearly gives a quasiconformal extension of f to U.

Finally, assume the condition 3) and take any
conformal map f of D = C — E. Then f can be ex-
tended to a quasiconformal map g of C. Hence if F
has vanishing area, then this g is actually conformal,
and hence is a Md6bius transformation. If not, con-
sider the extremal (horizontal) slit map h of C — E.
Then h should be extended a quasiconformal map
of C. But this is impossible, for C — f(C — E) has
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vanishing area by Koebe’s uniformization theorem.

[l

Remark. Koebe’s uniformization theorem as-
serts that every planar domain €2 can map confor-
mally onto the complement of some union of horizon-
tal slits and points whose total area vanishes. And
an example of such univalent holomorphic maps are
the extremal slit maps (See for instance, [5]).

As a condition which assures these extension
properties, we know the following; we say that
a compact set E has absolutely vanishing area if
C — g(C — E) has vanishing area for every univa-
lent holomorphic map g of C — E.

Actually, the following fact is classically well-
known.

Lemma 4. Let E be a compact set in C with
absolutely vanishing area. Then every conformal
map of D = C — E is the restriciton of a Mobius
transformation.

Proof . Ahlfors and Beurling ([2] showed that
D belongs to Oxp if and only if E has absolutely
vanishing area, which is also equivalent the condition
1) in Proposition 3 (Also see [8] VI and [7] I §2). [

Now, it is clear from the definition that an an-
nularly coarse compact set is totally disconnected (or
even absolutely disconnected). Furthermore, we see
the following

Lemma 5. FEvery annularly coarse compact set
FE has absolutely vanishing area.

Proof . Tt suffices to show that E has vanishing
area. For this purpose, fix a point a € E arbitrarily.
Then there is a sequence of mutually disjoint nested
annuli Ry such that m(Ry) > c for every k with a
positive constant c.

Let d; be the diameter of the bounded com-
ponent Fj of C — Ri. Then we can find a pos-
itive constant 7 (depending only on ¢) such that
Ry N B(a,2dy,) contains a ball By with radius nd,
where and in the sequel, we set B(a,r) = {|z — a| <
r}.

For the sake of convenience, we include a direct
proof of this assertion. Let A be the distance be-
tween Fj, and F] = C — (Fy, U Ry), and 2, € Fj
and z;, € F} satisfy |z — 2| = Ag. Also take two
points wy, wj, € Fy, satisfing |wy, —wy},| = di. Further
we may assume that |wg — zx| > di/2. Then Ry
separates wy and zj, from z; and oo, and hence
zZ— Zk

Ti(2) = R
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maps Ry onto a region admissible to the extremal
problem of Teichmiiller (see [2]). Under the notation
of 2], we have

1
¢ < M(Ry) < 5-1og U(|(zk — 2i)/ (2 — wi)])
1

< —log V(24 /d

< 5 log W(24x/dy),
and since log¥(z) — 0 as ¢ — 0, we can find a
positive 7 = n(c) such that

Ay > n2dy,

for every k, which gives the assertion.
Now set r = 2dy, for every k, and we have
m(ndy)?

2
n
<1 TNy

e 4

Area(E N B(a,r))
Area(B(a,r))

This implies that a is not a density point of E. Since
a is arbitrary, we conclude that the area of E van-
ishes. L]

2. Proof of Theorem 2. First fix an annu-
larly coarse closed set E arbitrarily. For every n, set
E, = EN B(0,n). Then every E, is compact and
the assumption implies that there is a neighborhood
U, of E, such that the boundary of U, is a comapct
setin D=C — E.

Let f be a quasiconformal map of C — FE.
Then Proposition 3 implies that f can be extended
uniquely to a quasiconformal map, say f,, of C—FEN
U,° and the maximal dilataiton of f, is the same as
that of f by Lemma 5.

Since K-quasiconformal maps are sequencially
compact, we conclude that f has a desired extension
to the whole C.
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