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The uniformizing differential equation of the complex hyperbolic structure

on the moduli space of marked cubic surfaces

By Takeshi Sasaki∗) and Masaaki Yoshida∗∗)

(Communicated by Shigefumi Mori, m. j. a., Sept. 13, 1999)

Abstract: We find the uniformizing equation, governing the developing map, of a complex
hyperbolic structure on the(4-dimensional) moduli space of marked cubic surfaces. Our equation
is invariant under the action of the Weyl group of type E6.
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0. Introduction. For any hermitian locally
symmetric space M , its developing map f from M

to the model space can be given by solutions of a
(system of) linear differential equation(s) E on M ,
which is called the uniformizing differential equa-
tion. When the model space is a projective space
or a quadratic hypersurface, several interesting ex-
amples are known ([4], [8]); in most cases, the spaces
M are moduli spaces of algebraic varieties, and their
uniformizing equations are the so-called generalized
hypergeometric equations.

The original example is the elliptic modular
case: M = P1 − {0, 1,∞} is the moduli space of
the elliptic curves t2 = s(s− 1)(s− x) with parame-
ter x, the developing map f : M → H ⊂ P1 is given
by the ratio of two linearly independent solutions of
the hypergeometric equation

x(1− x)v′′ + (1− 2x)v′ − v/4 = 0,

where H is the upper half plane, and its monodromy
group is conjugate to the elliptic modular group Γ(2)
inducing the isomorphism f : M

∼=→ H/Γ(2).
In this paper, we find the uniformizing equation

E of the moduli space M of marked cubic surfaces,
which is known to be 4-dimensional and to carry a
complex hyperbolic structure ([1]). Its monodromy
group is a discontinuous group acting on the complex
4-dimensional ball B4, and solutions of E give the
developing map from M to B4, which induces the
equivalence between M and the quotient of the ball
under the monodromy group.
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The space M admits a bi-regular action of the
Weyl group of type E6, and can be identified with
a Zariski open subset of C4. Our E is a system of
differential equations in 4 variables of rank 5 defined
on M , and is invariant under this group. The system
E is unknown so far, though its restriction to a(ny)
singular locus turns out to be the Appell-Lauricella
hypergeometric system.

1. Moduli space of marked cubic sur-
faces. We recall a description of the moduli space
of marked cubic surfaces. (Refer to [3] and [5].) Since
any nonsingular cubic surface can be obtained by
blowing up the projective plane P2 at six points, the
moduli space M of such surfaces can be parametrized
by 3×6-matrices of which columns give homogeneous
coordinates of the six points; in order to get a smooth
cubic surface from six points, no three points are as-
sumed to be collinear and the six points are assumed
to be not lying on any conic. Killing ambiguity of ho-
mogeneous coordinates on P2 by left action of GL3

and right action of the diagonal subgroup (∼= (C×)6)
of GL6, we get the following expression

x =

1 0 0 1 1 1
0 1 0 1 x1 x2

0 0 1 1 x3 x4

 .

The cubic surface obtained by blowing up the six
points represented by this matrix x is non-singular if
and only if the quantity

D(x) :=
4∏

i=1

xi(xi − 1)× {x1x4 − x2x3}

×(x1 − x2)(x1 − x3)(x2 − x4)(x3 − x4)

×{(x1 − 1)(x4 − 1)− (x2 − 1)(x3 − 1)}
×{x1(x2 − 1)(x3 − 1)x4 − (x1 − 1)x2x3(x4 − 1)}
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does not vanish. Thus we can identify the moduli
space M and the affine open set

{x = (x1, . . . , x4) ∈ C4 | D(x) 6= 0}.

2. Hyperbolic structure on the moduli
space. Let CS(x) be the cubic surface correspond-
ing to x ∈ M and TC(x) the triple cover of P3

branching along CS(x). Let ω be a primitive cube
root of unity, and put E = Z[ω]. Following is known
([1], [2]):
(i) The 3-fold TC(x) has five E-independent peri-

ods (integrals of a 3-form along 3-cycles); the
(multi-valued) period map for an appropriate
choice of periods v1(x), . . . , v5(x),

f : M 3 x 7−→ v(x) = v1(x) : · · · : v5(x) ∈ P4

has its image in the ball

B4 ={v1 : · · · : v5 ∈ P4 |
tvhv := |v1|2 − |v2|2 − · · · − |v5|2 > 0}.

(ii) The projective monodromy group of f is the
principal congruence subgroup

Γ(1− ω):={g ∈ Γ | g ≡ I5 mod (1− ω)}/center,

with level (1− ω), of the modular group

Γ := {g ∈ GL5(E) | tḡhg = h}/center.

Moreover the isomorphism

E/(1− ω)E ∼= F3

(the field with three elements) induces the iso-
morphisms

Γ/Γ(1− ω)∼= {g ∈ GL5(F3) | tghg = h}/center
∼= W (E6),

the Weyl group of type E6.
(iii) Γ(1−ω) is a reflection group; let H be the union

of the mirrors (inside the ball) of the reflections.
Then f induces the isomorphism

M
∼=−→ (B4 −H)/Γ(1− ω).

This isomorphism gives a hyperbolic structure
on the moduli space M .
3. Uniformizing differential equations.

Since the functions vi(x) are defined by the integals,
they should satisfy a system of differential equations
defined on M of rank (= dimension of local solutions
at a(ny) generic point) 5. The aim of this paper is
to announce its explicit form.

Our recipe is the following: (In this section here
after, we freely use the properties of the Schwarzian

derivatives stated in §4.) Since M is covered by
the ball, and f is the developing map, we apply
Schwarzian derivatives

Sk
ij{f ;x} =: Sk

ij(x), i, j, k = 1, . . . , 4

to the map f with respect to the coordinates x =
(x1, . . . , x4). The map f can be recovered (up to
multiplying a function) by getting linearly indepen-
dent solutions of the system

E :
∂2v

∂xi∂xj
=

4∑
k=1

Sk
ij

∂v

∂xk
+ S0

ijv, (1 ≤ i, j, k ≤ 4)

where the coefficients S0
ij are polynomials in Sk

ij and
their derivatives. Thanks to PGL5-invariance of the
Schwarzian derivatives, Sk

ij(x) are single-valued, and
so they are rational functions with poles only along
{D = 0}. The local behavior and the integrability
condition would determine the system E, since Mos-
tow rigidity does not allow the existence of extra pa-
rameters. Instead of computing directly the integra-
bility condition, we take advantage of the invariance
of E under the action of a subgroup G ∼= W (E6) of
Aut(M).

4. Schwarzian derivatives. In general when
n ≥ 2 (in our case n = 4), for a non-degenerate map
(Jacobian 6≡ 0) x = (x1, . . . , xn) 7→ z = (z1, . . . , zn),
the Schwarzian derivatives are defined as

Sk
ij{z;x}=

(
k

ij

)
− δk

i

n + 1

∑
q

(
q

qj

)
−

δk
j

n + 1

∑
q

(
q

qi

)
,

1 ≤ i, j, k ≤ n, where δ is the Kronecker symbol and(
k

ij

)
=

∑
p

∂2zp

∂xi∂xj

∂xk

∂zp
.

They have the properties (cf. [7])
(j) (projective invariance)

Sk
ij{Az;x} = Sk

ij{z;x} for A ∈ PGLn+1.

(jj) (connection formula) For a change of coor-
dinates from x to y,

Sk
ij{z; y}=Sk

ij{x; y}+
∑
p,q,r

Sr
pq{z;x}∂xp

∂yi

∂xq

∂yj

∂yk

∂xr
.

(jjj) (local behavior along ramifying singularities)
If z = z(x) is ramified along {x1 = 0} with
exponent α, that is,

z1(x) = (x1)αv1, z2(x) = v2, . . . , zn(x) = vn,

|∂z/∂x| = (x1)α−1u,
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where vj(1 ≤ j ≤ n) and u are holomorphic
functions not divisible by x1, then

Sk
ij{z;x}, Sk

1j{z;x}+ δk
j

1
n + 1

α− 1
x1

,

(x1)−1S1
ij{z;x}, S1

1j{z;x},

x1Sk
11{z;x}, S1

11{z;x} − n− 1
n + 1

α− 1
x1

are holomorphic for 2 ≤ i, j, k ≤ n.
(jv) (relation with differential equations) Put

Sk
ij = Sk

ij(x) = Sk
ij{z;x} (1 ≤ i, j, k ≤ n) and

S0
ij=−

∂Sk
ij

∂xk
−

∑
t

St
ijS

k
kt +

∂Sk
kj

∂xi
+

∑
t

St
kjS

k
it,

where k 6= i (recall the assumption n ≥ 2).
Then the system

En :
∂2u

∂xi∂xj
=

∑
k

Sk
ij(x)

∂u

∂xk
+ S0

ij(x)u,

(1 ≤ i, j ≤ n) is of rank n + 1 satisfying the
(normality) condition∑

k

Sk
kj(x) = 0 (1 ≤ j ≤ n).

Let u0, . . . , un be linearly independent solutions
of En. Then u1/u0, . . . , un/u0 are projectively
related to z1, . . . , zn.
5. Automorphisms of the moduli space

M . Let us define after [5] six bi-rational transfor-
mations s1, . . . , s6 in x = (x1, . . . , x4):

s1 : x →
(

1
x1

,
1
x2

,
x3

x1
,
x4

x2

)
,

s2 : x → (x3, x4, x1, x2),

s3 : x →
(

x1 − x3

1− x3
,
x2 − x4

1− x4
,

x3

x3 − 1
,

x4

x4 − 1

)
,

s4 : x →
(

1
x1

,
x2

x1
,

1
x3

,
x4

x3

)
,

s5 : x → (x2, x1, x4, x3),

s6 : x →
(

1
x1

,
1
x2

,
1
x3

,
1
x4

)
.

If M is regarded as the configuration space of six
points in P2, the transformation s1, for example,
corresponds to the interchange of the two points la-
belled 1 and 2. Each si turns out to be a bi-regular
involution on M , and they form a group G isomor-
phic to the Weyl group of type E6; relation of the
generators are given by the Coxeter graph

s1 — s2 — s3 — s4 — s5

|
s6

If M is regarded as the moduli space of cubic sur-
faces, each transformation si takes cubic surfaces to
the isomorphic ones but changes linearly their cho-
sen cycles defining the period map f . Thanks to
the projective invariance of the Schwarzian deriva-
tives (see §4 (j)) our system E with coefficients
Sk

ij{f ;x} =: Sk
ij(x) ∈ C(x1, . . . , x4) is invariant un-

der the action of G. The invariance under s ∈ G

implies

Sk
ij(y) = Sk

ij{x; y}+
4∑

p,q,r=1

Sr
pq(x)

∂xp

∂yi

∂xq

∂yj

∂yk

∂xr
,

where y = sx, because the right-hand side equals
Sk

ij{f ; y} (see §4 (jj)), and the left hand side is the
pull-back s∗Sk

ij(x). The transformations s = s2, t =
s5 and u = ts give the identities:

S2
ij(x) = S1

t(i),t(j)(tx), t : 1 ↔ 2, 3 ↔ 4,

S3
ij(x) = S1

s(i),s(j)(sx), s : 1 ↔ 3, 2 ↔ 4,

S4
ij(x) = S1

u(i),u(j)(ux), u : 1 ↔ 4, 2 ↔ 3.

These identities and the local property (jjj) com-
pletely determine all the coefficients of the system
E. The details of procedures getting the coefficients
and further study on our system E will appear in our
forthcoming papers. We just state the result in the
next section.

6. Result: Explicit form of the system E.
The period map (developing map) f : M → B4 can
be given by five solutions of the system E with the
following coefficients Sk

ij = Sk
ij(x

1, x2, x3, x4). Since
the coefficients Sk

ij (k = 0, 2, 3, 4) can be expressed
by S1

ij (see §§4 and 5), we give only S1
ij .

S1
23 =

x1(x1 − 1)P 1
23

J
,

S1
24 =

x1(x1 − 1)P 1
24

(x2 − x4)J
,

S1
34 = S1

24(x
1, x3, x2, x4),

S1
44 =

x1(x1 − 1)P 1
44

x4(x4 − 1)(x3 − x4)(x2 − x4)J
,

S1
22 =

x1(x1 − 1)P 1
22

x2(x2 − 1)(x1 − x2)(x2 − x4)J
,

S1
33 = S1

22(x
1, x3, x2, x4),

where
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J = (x1x4 − x2x3)

×{(x1 − 1)(x4 − 1)− (x2 − 1)(x3 − 1)}
×{x1x4(x2 − 1)(x3 − 1)

−x2x3(x1 − 1)(x4 − 1)},

P 1
23 = −1

3
x4(x4 − 1)(x1 − x3)(x1 − x2),

P 1
24 =

1
3
(x1 − x3){2x4x2x3x1 − x3x1x2

+x3(x2)2 − (x4)2x3x1 + (x4)2x2x3

−2x4x3x2 − (x4)2x2x1 + (x4)2x1

−(x2)2(x3)2 + x2(x3)2},

P 1
44 = −1

3
{2x4x2x3x1 − x3x1x2 + x3(x2)2

−(x4)2x3x1 + (x4)2x2x3 − 2x4x3x2

−(x4)2x2x1 + (x4)2x1 − (x2)2(x3)2

+x2(x3)2}2,

P 1
22 =

1
3
(x4 − x2)J − 1

3
x2(x2 − 1)x4(x4 − 1)

×(x1 − x2)(x3 − x4)(x1 − x3)2.

S1
11 = −2

5
1
x1
− 2

5
1

x1 − 1
− 1

15
1

x1 − x2

− 1
15

1
x1 − x3

+ R1
11,

S1
12 =

2
15

1
x2

+
2
15

1
x2 − 1

+
1
5

1
x1 − x2

+
2
15

1
x2 − x4

+ R1
12,

S1
13 = S1

12(x
1, x3, x2, x4),

S1
14 =

2
15

1
x4

+
2
15

1
x4 − 1

− 2
15

1
x2 − x4

− 2
15

1
x3 − x4

+ R1
14,

where (in the following, we put x1 = x, x2 = y, x3 =
z, x4 = w)

R1
11 = −(−3zw2x + 2zw2y − zywx− 3w2xy

+4y2z2 + 2w3x2z + 2w3yx2 − wy3z2

−y2z3w + 2w2x2 + y3z3 + 6z2xwy2

−6z2xw2y − 2zx2w2y − 6w2y2zx

+3y2w2z2 + 2yw3zx− 3z2y2x

−2zx2w2 + 2zyx2w − w3yz + y3zw

−3wy2z2 + 3w2y2x− 2wyz2 + wyz3

−2wy2z − 2w2yx2 − y3z2 − y2z3

+11zyw2x− 2w3x2 − 3yw3x + 3xw3

+3xw2z2 − 3xw3z)/15J,

R1
12 = (4zw2x− 3zywx + y2z2 + 2w3x2z

+y2z3w − 3w2x2 − 2w3x3 − z2xwy2

+2z2xw2y − 4z3xwy − 2zx2w2y

+2z2x2wy + z3xy2 − z2x2w2

+2zx3w2 − 2x3zw − x2z2y − z2y2x

+4zx2w + z2xy − 4zx2w2 + z3xy

−wy2z2 − w2yz2 + 2w2x3 + wyz2

+wyz3 + w2yx2 − y2z3 + 3z2xyw

+y2xzw + 2w3x2 − yz3 − 4xwz2

−2xw3z + 2wz3x)/15J,

R1
14 = (−7zywx− 2y2z2 + 3y3xz2

−x2yw + 4w2x2 − 3y3z3 + 2z2xwy2

−4zx2w2y − 6ywx3z − 2z2x2wy

−2y2wx2z + 4yx3w2 + x2y2w − x3yw

+3z3xy2 + 4zx3w2 + 3x3yz − x3zw

−11z2y2x− 6x2yz − zx2w + 6z2xy

+6y2xz + x2z2y2 − 4zx2w2

+z2x2w − 3z3xy − 3y3xz + 17zyx2w

−wy2z2 − 4w2x3 − 4w2yx2

+3y3z2 + 3y2z3 + 4zyw2x + x3w)/15J.

7. Restriction of E along singular loci.
It is known that the configuration space of six points
in the projective line can be uniformized by the 3-ball
with the Appell-Lauricella hypergeometric system
ED(a; b1, b2, b3; c), defined below, as the uniformiz-
ing equation (see e.g. [8]). The most symmetric
uniformization comes from the family of curves

t3 = s(s− 1)(s− y1)(s− y2)(s− y3),

and the uniformizing equation is equivalent to
ED(2/3; 1/3, 1/3, 1/3; 4/3).

On the other hand, the hypersurface of C4, de-
fined by the factor

x1(x2 − 1)(x3 − 1)x4 − (x1 − 1)x2x3(x4 − 1)

of D(x), represents six points lying on a conic. So
this locus identifies with the configuration space
above. In this way, recalling that every singular lo-
cus is equivalent under the action of the group G, we
naturally expect that the restriction of E along a(ny)
singular locus is equivalent to the Appell-Lauricella
hypergeometric system.

Without loss of generality, we restrict our sys-
tem E to the divisor {x4 = 0}. We express solutions
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v of E as

v = (x4)λ(w(x1, x2, x3) + w1(x1, x2, x3)x4 + · · · )

and find the exponent λ and the system of differential
equations satisfied by w. From the equations

∂2v

∂xi∂x4
=

∑
Sk

i4

∂v

∂xk
+ S0

i4v

in E, we get λ = 2/15, and from the rest of E, we
find that w satisfies

∂2w

∂xi∂xj
=

3∑
k=1

T k
ij

∂w

∂xk
+ T 0

ijw, 1 ≤ i, j ≤ 3

where

T k
ij = Sk

ij |x4=0, T 0
ij = λ(S4

ij/x4)|x4=0 + S0
ij |x4=0.

Introduce the new variables y = (y1, y2, y3) by

y1 =
x1

x3
, y2 =

1
x3

, y3 =
(x1 − x2)
x3(1− x2)

and the new unknown u by multiplying the factor

(y1(y1 − 1)y2(y2 − 1)y3(y3 − 1))−2/15(y2)3/5

×(y2 − y3)4/15(y1 − y3)−1/5(y1 − y2)−1/3

to the old unknown w. Then the system with
the new unknown u and the new variable y is
exactly the Appell-Lauricella hypergeometric sys-
tem ED(2/3; 1/3, 1/3, 1/3; 4/3) in three variables,
where ED(a; b1, . . . , bn; c) is the system annihi-
lating the Appell-Lauricella hypergeometric series
FD(a; b1, . . . , bn; c | y1, . . . , yn):

∞∑
m1=0,···

(a,m1 + · · · )(b1,m1) · · ·
(c,m1 + · · · )m1! · · ·

(y1)m1 · · · ,

where (a, n) = a(a + 1) · · · (a + n− 1) (cf. [7]). Note
that the integrals∫

sb1+b2+b3−c(s− 1)c−a−1

×(s− y1)−b1(s− y2)−b2(s− y3)−b3ds

give solutions of the system.
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