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Abstract:

We find the uniformizing equation, governing the developing map, of a complex

hyperbolic structure on the(4-dimensional) moduli space of marked cubic surfaces. Our equation
is invariant under the action of the Weyl group of type Fj.
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0. Introduction. For any hermitian locally
symmetric space M, its developing map f from M
to the model space can be given by solutions of a
(system of) linear differential equation(s) E on M,
which is called the uniformizing differential equa-
tion. When the model space is a projective space
or a quadratic hypersurface, several interesting ex-
amples are known ([4], [8]); in most cases, the spaces
M are moduli spaces of algebraic varieties, and their
uniformizing equations are the so-called generalized
hypergeometric equations.

The original example is the elliptic modular
case: M = P' — {0,1,00} is the moduli space of
the elliptic curves t? = s(s — 1)(s — x) with parame-
ter x, the developing map f: M — H C P! is given
by the ratio of two linearly independent solutions of
the hypergeometric equation

z(l—a)” + (1 —2z)" —v/4=0,

where H is the upper half plane, and its monodromy
group is conjugate to the elliptic modular group I'(2)
inducing the isomorphism f : M — H/T'(2).

In this paper, we find the uniformizing equation
FE of the moduli space M of marked cubic surfaces,
which is known to be 4-dimensional and to carry a
complex hyperbolic structure ([1]). Its monodromy
group is a discontinuous group acting on the complex
4-dimensional ball B#, and solutions of E give the
developing map from M to B*, which induces the
equivalence between M and the quotient of the ball
under the monodromy group.
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The space M admits a bi-regular action of the
Weyl group of type Eg, and can be identified with
a Zariski open subset of C*. Our E is a system of
differential equations in 4 variables of rank 5 defined
on M, and is invariant under this group. The system
E is unknown so far, though its restriction to a(ny)
singular locus turns out to be the Appell-Lauricella
hypergeometric system.

1. Moduli space of marked cubic sur-
faces. We recall a description of the moduli space
of marked cubic surfaces. (Refer to [3] and [5].) Since
any nomnsingular cubic surface can be obtained by
blowing up the projective plane P? at six points, the
moduli space M of such surfaces can be parametrized
by 3x6-matrices of which columns give homogeneous
coordinates of the six points; in order to get a smooth
cubic surface from six points, no three points are as-
sumed to be collinear and the six points are assumed
to be not lying on any conic. Killing ambiguity of ho-
mogeneous coordinates on P? by left action of G'L3
and right action of the diagonal subgroup (=2 (C*)5)
of GLg, we get the following expression

1001 1 1
0101 gt 2?2
0011 2% z*

€r =

The cubic surface obtained by blowing up the six
points represented by this matrix x is non-singular if
and only if the quantity

4 . .
= Hxl(x’ -1
i=1
x(zt — 2% (z! — 23) (2 — ) (23 )

{(@! =D - 1) - (@* - 1) *1)}
<{a!(2? = 1)(@® = Da* = (2 = 1)a?2’ (2" - 1)}

x {ztat — 2?23}
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does not vanish. Thus we can identify the moduli
space M and the affine open set

{z = (2! z*) € C* | D(x) # 0}.

2. Hyperbolic structure on the moduli
space. Let C'S(z) be the cubic surface correspond-
ing to # € M and TC(z) the triple cover of P3
branching along C'S(z). Let w be a primitive cube
root of unity, and put £ = Z[w]. Following is known
(11, [2)):

(i) The 3-fold TC(z) has five E-independent peri-
ods (integrals of a 3-form along 3-cycles); the

(multi-valued) period map for an appropriate

choice of periods vy (x),...,v5(x),
fiM3zr—v(z)=vi(z): - :v5(x) € P?
has its image in the ball
={vy:-:v5 € P4
Who = |v1)? — |va]? — -+ — |us]? > 0}.

(ii) The projective monodromy group of f is the
principal congruence subgroup

I'l —w):={gel|g=I5mod (1 —w)}/center,

with level (1 — w), of the modular group
I':={g € GL5() | 'ghg = h}/center.
Moreover the isomorphism
E/(1—w)E =~ Fy

(the field with three elements) induces the iso-
morphisms

I'/T(1—w)x{g € GL5(F3) | 'ghg = h}/center
= W(E6)7

the Weyl group of type Eg.

(iii) I'(1—w) is a reflection group; let H be the union
of the mirrors (inside the ball) of the reflections.
Then f induces the isomorphism

~H)/T(1 - w).

This isomorphism gives a hyperbolic structure

on the moduli space M.

3. Uniformizing differential equations.
Since the functions v;(x) are defined by the integals,
they should satisfy a system of differential equations
defined on M of rank (= dimension of local solutions
at a(ny) generic point) 5. The aim of this paper is
to announce its explicit form.

Our recipe is the following: (In this section here
after, we freely use the properties of the Schwarzian

M = (B

[Vol. 75(A),

derivatives stated in §4.) Since M is covered by
the ball, and f is the developing map, we apply
Schwarzian derivatives

Sifia} =: Sf(x),
to the map f with respect to the coordinates z =
(x',...,2%). The map f can be recovered (up to

multiplying a function) by getting linearly indepen-
dent solutions of the system

i k=1,...,4

2
v _Zs’f@jLSO (1<i,j,k<4)
c=1

0xi0xI 7 Oxk

where the coefficients S?j are polynomials in Sfj and
their derivatives. Thanks to PG Ls-invariance of the
Schwarzian derivatives, Slk](x) are single-valued, and
so they are rational functions with poles only along
{D = 0}. The local behavior and the integrability
condition would determine the system FE, since Mos-
tow rigidity does not allow the existence of extra pa-
rameters. Instead of computing directly the integra-
bility condition, we take advantage of the invariance
of F under the action of a subgroup G = W(Ejg) of
Aut(M).

4. Schwarzian derivatives. In general when
n > 2 (in our case n = 4), for a non-degenerate map
(Jacobian # 0) z = (z!,...,2") — z = (z,...,2"),

the Schwarzian derivatives are defined as

Sk_{z.x}:<’“>_5ﬁgz<q)_5fz<Q)
N ij) n+1 -~ \¢j n+1 . qi)’

1 <i,5,k <n, where ¢ is the Kronecker symbol and

E\ 92zP  9QxF
ij)

O dxi 9zP
They have the properties (cf. [7])
(i)  (projective invariance)

{Az z} =S¥ ‘{zw} for A€ PGLpya.

(i) (connection formula) For a change of coor-

dinates from x to y,
8xp Oz Oy
Oyt Oyd Oz’

Si{z yy=Si{z;y}+Y _ Spo{z o}

P.a,r

(local behavior along ramifying singularities)
If z = z(z) is ramified along {z! = 0} with
exponent «, that is,

(333)
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where v/(1 < j < n) and u are holomorphic
functions not divisible by z!, then

a—1
Sf]{zax}v Slj{z x}—l—(Sk +1 71 )
(xl)ilsilj{zéx}a Slj{z5x}a
n—1la—1
o {za), Shize) - 0

are holomorphic for 2 <, 5,k < n.
(relation with differential equations) Put
Sk = Sk(x) = Sf{z 2} (1 <4,j,k <n) and

. ask Sk

Sij: Z Skt

where k& # i (recall the assumption n > 2).
Then the System

k
Sth

E, :

Z + 8% (2)u,

(1 < 4,5 < n)is of rank n + 1 satisfying the
(normality) condition

Z S,ljj(x) =0
k

x@xﬂ

(1<j<n).

Let ug, ..., u, be linearly independent solutions
of E,. Then uj/ug,...,u,/ug are projectively
related to z1, ..., z,.

5. Automorphisms of the moduli space
M. Let us define after [5] six bi-rational transfor-
mations si,...,s¢ in v = (x!,..., z%):

1 1 2% 2t
S1:% — PRRINCEDSERCN
4

sgrx— (23, 2% 2t 2?),

b =23 2 -zt 28 xt
53:IH<1—I3’1 1 —1)’
) 1 22 1 z¢
84'x4)<l’1’.’171’$3’$3)’

s5:x — (22,2t x4 23),

5 11 1 1
If M is regarded as the configuration space of six
points in P2, the transformation s;, for example,
corresponds to the interchange of the two points la-
belled 1 and 2. Each s; turns out to be a bi-regular
involution on M, and they form a group G isomor-

phic to the Weyl group of type Eg; relation of the
generators are given by the Coxeter graph
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S§1 — 82— 83 — S84 — Sj5

S6

If M is regarded as the moduli space of cubic sur-
faces, each transformation s; takes cubic surfaces to
the isomorphic ones but changes linearly their cho-
sen cycles defining the period map f. Thanks to
the projective invariance of the Schwarzian deriva-
tives (see §4 (J)) our system E with coefficients
SE{fix} = Sfi(x) € C(2!,...,2*) is invariant un-
der the actlon of G. The invariance under s € G

implies
4

OzP 9z Oy
k k.. T
Sij(y) = Siz{as v} er ;r::l Spq(2) dyt Ayl Oz’

where y = sz, because the right-hand side equals
SE{f;y} (see 84 (jj)), and the left hand side is the
pull-back s*S} (). The transformations s = s3,t =
s5 and u = ts give the identities:

SS}(.I) = 53(1)76(])(317)7 s: 1« 3, 2« 4,
Sii(x) = S}L(i)’u(j)(ux), u:le 4,23

These identities and the local property (jjj) com-
pletely determine all the coefficients of the system
E. The details of procedures getting the coeflicients
and further study on our system E will appear in our
forthcoming papers. We just state the result in the
next section.

6. Result: Explicit form of the system FE.
The period map (developing map) f : M — B* can
be given by five solutions of the system F with the
following coefficients Sfj = Sfj (', 22,23, 2%). Since
the coefficients Sfj (k = 0,2,3,4) can be expressed
by Silj (see §84 and 5), we give only Silj.

al(z! — 1) Py

sy - 2 =D
o o Py
M (g2t
3314 = 8214(1'1,373,132,134),
Sl — al(z' —1)Pj
M A (et — 1) (a8 — 2 (22 — 2h) T
sh = al(zt —1)Ps

22(22 — 1) (2! — 22)(22 — 2%)J’
S%S = 5212($17$3,$2,$4),

where
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J = (z'a* — 2%2%)
(@ =)@ = 1) = (* = 1)(2* = 1)}
x{ztzt(z? - 1)(2® - 1)
(e’ (et - 1)),
1

P213 = —§x4(x4 — 1)(951 — 303)(:101 —z%),

1

P), = 5(1:1 — {222 %32t — 232t e
+I3($2)2 _ ($4)2$31‘1 + (l‘4)2$2$3
—2$41‘3$2 _ ($4)21‘21‘1 + (I4)2$1
—(a?)*(2%)? + 2(«%)*},

1

P}, = —§{2x4x2x3x1 —23zta? + 23 (2?)?
(@232t + (2h)22%2® — 20%a3a?
_(334

)2:1?21'1 4 ($4)2$1 _ (.’172)2(.1'3)2

_"_11‘2(.#3)2}27
1 1
Py, = g(x4 — %) J - gxz(IQ —Dat(z? - 1)
x(zt — 2?) (23 — 2 (2t — 23)%
g 21 2 1 11
e xSzl —1 1521 — 22
1 1 1
_Bxl ] +R117
G212 1 11
271522 T 1522 —1 ' 5l — a2
1 1
1522 — 24 + I,
S113 = S112(x17x37x27x4)7
gl _ 21 2 1 2 1
W52t T 1520 -1 1522 — ot
2 1 1
_B.’IJB — +R147
where (in the following, we put 2! =z, 22 = y, 23 =
z,at = w)
R}, = —(=3z2w’z + 22wy — zywzr — 3w’zy

+4y%2% + 2ud2?z + 2wiya® — wyd2?
—y? 23w 4 2wa?® + 32 + 622 zwy?
—622zw?y — 2222wy — 6wiy’zx
+3y2w? 22 4 2w zx — 32%%x
—2z2%w? + 2zyzw — wiyz + yPw
_ 2.2 2.2 2 3

3wy z® + 3wy r — 2wyz” + wyz
—2wy?z — 2wiyz? — y32% — 223
+1lzyw?s — 2wia? — 3ywiz + 3zw?
+3zw?2? — 3zw32) /15,

[Vol. 75(A),

R}, = (4zw’z — 3zywz + y*2% 4+ 2wiz?2
+y2 23w — 3w?z? — 2w3z® — 22rwy?
+222zw?y — 4232wy — 2222wy
+22222wy + 22xy? — 22a?w?
+2z23w? — 2282w — 2%2%y — 22y
+dzziw + 22y — 4zaw? + 2By
—wy?2? — w?y2? + 2wia® + wyz?
+wyz® + w?yr? — %23 + 32 2xyw
+ylzzw 4 2wia? 2
—2zwz + 2wzx) /15,

—yz® —dzwz

R, = (—Tzywz — 2y%22 + 3y3x2?
—z2yw + dw?z? — 3y32° + 222 zwy?

—4za?w?y — 6ywa’z — 2222wy

—2y2wx2z + 4ym3w2 + xzyzw — x3yw

+323zy? + 4zzdw? + 32x3yz — 232w

—112%9% — 622yz — 22w + 622y

+6y222 4+ 222%y% — dza?w?

+2%2%w — 32%xy — 3wz + 172yz’w

—wy?2? — dw?z® — dw?ya?

+3y32% + 3y 2% + dzyw’x + 23w) /15

7. Restriction of E along singular loci.
It is known that the configuration space of six points
in the projective line can be uniformized by the 3-ball
with the Appell-Lauricella hypergeometric system
Ep(a;by,ba,bs;c), defined below, as the uniformiz-
ing equation (see e.g. [8]). The most symmetric
uniformization comes from the family of curves

t3=s(s—1)(s—y")(s —y*)(s — y*),

and the uniformizing equation is equivalent to
Ep(2/3;1/3,1/3,1/3;4/3).

On the other hand, the hypersurface of C*, de-
fined by the factor

or(z? = 1)(2® — D)z — (2 — D22 (z* — 1)

of D(z), represents six points lying on a conic. So
this locus identifies with the configuration space
above. In this way, recalling that every singular lo-
cus is equivalent under the action of the group G, we
naturally expect that the restriction of E along a(ny)
singular locus is equivalent to the Appell-Lauricella
hypergeometric system.

Without loss of generality, we restrict our sys-
tem E to the divisor {z* = 0}. We express solutions
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vof E as

V= (;c4))\(w(x1’$27x3) + w1($1,:c2, xS)lA +o)

and find the exponent A and the system of differential
equations satisfied by w. From the equations

0% w Ov 0
Bridat ~ 2 Stiggr + St
in E, we get A\ = 2/15, and from the rest of F, we
find that w satisfies

9w
0zt 0xI

3

ow

_E k 0 -

- ngaxk +Tijwv ]—Sza] SS
k=1

where
Th = Shlpaco, T = MSi/a") |lssmo + S5ylwao-
Introduce the new variables y = (y!,32,¢%) by

ylzﬂl yzzi y3:($1_$2)
a3’ a3’ x3(1 — x2)

and the new unknown u by multiplying the factor

(' (' = D2 = D (° = 1) ()

><(y2 _ y3)4/15(y1 _ y3)71/5(y1 _ y2)71/3
to the old unknown w. Then the system with
the new unknown u and the new variable y is
exactly the Appell-Lauricella hypergeometric sys-
tem Ep(2/3;1/3,1/3,1/3;4/3) in three variables,
where FEp(a;by,...,by;c¢) is the system annihi-
lating the Appell-Lauricella hypergeometric series
Fp(a;by,....bpse |yt . yn):

o0

Z (a,m1+"')(b17m1)"'(y1)m1...

(C’m1+...)m1!...

m1=0,---
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where (a,n) =a(a+1)---(a+n—1) (cf. [7]). Note
that the integrals

/Sb1+b2+b3—c(8 _ 1)0—@—1

x(s—y") (s — ) (s — y®) s

give solutions of the system.
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