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The “abc” conjecture over function fields

By Pei-Chu Hu∗) and Chung-Chun Yang∗∗)

(Communicated by Shokichi Iyanaga, m. j. a., Sept. 12, 2000)

Abstract: This paper shows that the analogy of “abc” conjecture for non-Archimedean
entire functions is true.
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1. Introduction. Mason (see [4], [5], [6])
started one recent trend of thoughts by discovering
an entirely new relation among polynomials as fol-
lows. Let f(z) be a polynomial with coefficients in
an algebraically closed field of characteristic 0 and
let n(1/f) be the number of distinct zeros of f .

Theorem 1.1 (Mason’s theorem, cf. [3]). Let
a(z), b(z), c(z) be relatively prime polynomials in κ

and not all constants such that a+ b = c. Then

max{deg(a),deg(b),deg(c)} ≤ n
(

1
abc

)
− 1.

Influenced by Mason’s theorem, and considera-
tions of Szpiro and Frey, Masser and Oesterlé formu-
lated the “abc” conjecture for integers as follows:

Conjecture 1.1. Let q be a non-zero integer.
Define the radical of q to be

N

(
1
q

)
=
∏
p|q

p

i.e. the product of the distinct primes dividing q.
Given ε > 0, there exists a number C(ε) having the
following property. For any nonzero relatively prime
integers a, b, c such that a+ b = c, we have

max{|a|, |b|, |c|} ≤ C(ε)N
(

1
abc

)1+ε

.

This conjecture also is a consequence of the Vo-
jta’s Conjecture (see Vojta [7]). Over the field of
non-Archimedean meromorphic functions and its as-
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sociated notations such as T (r, a) and N(r, 1/a) used
in the value distribution theory (cf. §2). We can
prove the following main theorem in this paper:

Theorem 1.2. Let κ be an algebraically closed
field of characteristic zero, complete for a non-
trivial non-Archimedean absolute value | · |. Let
a(z), b(z), c(z) be entire functions in κ without com-
mon zeros and not all constants such that a+ b = c.
Then

max{T (r, a), T (r, b), T (r, c)}

≤ N
(
r,

1
abc

)
− log r +O(1).

If f is a polynomial, it is easy to show

deg(f) = lim
r→∞

T (r, f)
log r

, n

(
1
f

)
= lim
r→∞

N(r, 1/f)
log r

.

Obviously, Mason’s theorem can be deduced by The-
orem 1.2 over the field in Theorem 1.2, and so The-
orem 1.2 can be served as an analogue of “abc”
conjecture over the field of non-Archimedean mero-
morphic functions. For complex variables, it is
clear, by the second main theorem, that the term
max{T (r, a/c), T (r, b/c)} but not
max{T (r, a), T (r, b), T (r, c)} can be controlled by
N(r, 1/(abc)).

2. Basic facts. Let κ be an algebraically
closed field of characteristic zero, complete for a non-
trivial non-Archimedean absolute value | · |. Define

κ[0; r] = {z ∈ κ | |z| ≤ r}.

Let A(κ) be the set of entire functions on κ. Then
each f ∈ A(κ) can be given by a power series

f(z) =
∞∑
n=0

anz
n, (an ∈ κ),(1)
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such that for any z ∈ κ, one has |anzn| → 0 as
n→∞. Define the maximum term:

µ(r, f) = max
n≥0
|an|rn

with the associated central index :

n

(
r,

1
f

)
= max

n≥0
{n | |an|rn = µ(r, f)}.

Then n(r, 1/f) just is the counting function of zeros
of f , which denotes the number of zeros (counting
multiplicity) of f with absolute value ≤ r. Fix a real
ρ0 with 0 < ρ0 < ρ. Define the valence function of f
for a by

N

(
r,

1
f − a

)
(2)

=
∫ r

ρ0

n(t, 1/(f − a))
t

dt (ρ0 < r < ρ).

Then the following Jensen formula

N

(
r,

1
f

)
= logµ(r, f)− logµ(ρ0, f)(3)

holds. We also denote the number of distinct zeros
of f − a on κ[0; r] by n(r, 1/(f − a)) and define

N

(
r,

1
f − a

)
=
∫ r

ρ0

n(t, 1/(f − a))
t

dt (ρ0 < r < ρ).

The field of fractions of A(κ) will is denoted by
M(κ). An element f in the setM(κ) will be called a
meromorphic function on κ. Take f ∈ M(κ). Since
greatest common divisors of any two elements in
A(κ) exist, then there are g, h ∈ A(κ) with f = g/h

such that g and h have not any common factors in
the ring A(κ). We can uniquely extend µ to mero-
morphic function f = g/h by defining

µ(r, f) =
µ(r, g)
µ(r, h)

(0 ≤ r <∞).

Define the compensation function by

m(r, f) = max{0, logµ(r, f)}.

As usual, we define the characteristic function:

T (r, f) = m(r, f) +N(r, f) (ρ0 < r <∞),

where

N(r, f) = N

(
r,

1
h

)
.

Lemma 2.1 (cf. [1]). Let f ∈ Ar(κ) have q ze-
ros in κ[0; r] with q ≥ 1 (taking multiplicities into
account) and let b ∈ f(κ[0; r]). Then f − b also ad-
mits q zeros in κ[0; r] (counting multiplicity).

Corollary 2.1. Assume that f is a non-
constant entire function. Then for any b ∈ κ, we
have

N

(
r,

1
f − b

)
= O(1) +N

(
r,

1
f

)
.

Proof. Note that f and f − b all have at least
one zero since f − b also is a non-constant entire
function. Thus there is a r′ ∈ R+ such that f has at
least one zero in κ[0; r′] and such that b ∈ f(κ[0; r′]).
By Lemma 2.1, one obtains

n

(
r,

1
f − b

)
= n

(
r,

1
f

)
(r ≥ r′).

Therefore, when r ≥ r′, we have

N

(
r,

1
f − b

)
= N

(
r′,

1
f − b

)
+
∫ r

r′

n(t, 1/(f − b))
t

dt

= N

(
r′,

1
f − b

)
+
∫ r

r′

n(t, 1/f)
t

dt

= N

(
r′,

1
f − b

)
−N

(
r′,

1
f

)
+N

(
r,

1
f

)
,

and the corollary follows.
Let f be a non-constant entire function in κ.

Then

N

(
r,

1
f

)
= logµ(r, f)− logµ(ρ0, f)→ +∞

as r → ∞, and hence µ(r, f) > 1 when r is suffi-
ciently large. Therefore

N

(
r,

1
f

)
= T (r, f) +O(1),

and hence Corollary 2.1 implies

N

(
r,

1
f − a

)
= T (r, f) +O(1)(4)

for all a ∈ κ.
Take f ∈ M(κ) again and write f = f1/f0,

where f0, f1 ∈ A(κ) have no common factors. Then

f̃ = (f0, f1) : κ −→ κ2

is called a reduced representation of f . Write

µ(r, f̃) = max{µ(r, f0), µ(r, f1)}.
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Noting that

logµ(r, f̃) = max{logµ(r, f0), logµ(r, f1)}

= max
{

0, log
µ(r, f1)
µ(r, f0)

}
+ logµ(r, f0)

= max {0, logµ(r, f)}+ logµ(r, f0)

= m(r, f) + logµ(r, f0),

and by the Jensen formula

N(r, f) = N

(
r,

1
f0

)
= logµ(r, f0)− logµ(ρ0, f0),

we obtain

T (r, f) = logµ(r, f̃)− logµ(ρ0, f0),(5)

or equivalently

T (r, f) = logµ(r, f̃)− logµ(ρ0, f̃) +m(ρ0, f).(6)

By (5) and the Jensen formula, the following formula

T (r, f) = max
{
N(r, f), N

(
r,

1
f

)}
+O(1)

holds for a non-constant meromorphic function f in
κ. Thus it is easy to prove that the following formula

T (r, f)(7)

= max
{
N

(
r,

1
f − a

)
, N

(
r,

1
f − b

)}
+O(1)

holds for any two distinct elements a, b ∈ κ ∪ {∞}.
3. Proof of the main theorem. Write

f =
a

c
, g =

b

c
.

Then f and g all are not constants by our assump-
tions, and satisfy f + g = 1. By the second main
theorem (see [2]), and noting that

N

(
r,

1
f − 1

)
= N

(
r,

1
g

)
= N

(
r,

1
b

)
,

we obtain

T (r, f)

≤ N(r, f) +N

(
r,

1
f

)
+N

(
r,

1
f − 1

)
− log r+O(1)

= N

(
r,

1
c

)
+N

(
r,

1
a

)
+N

(
r,

1
b

)
− log r +O(1)

= N

(
r,

1
abc

)
− log r +O(1).

Similarly, we have

T (r, g) ≤ N
(
r,

1
abc

)
− log r +O(1).

By (7) and (4),

T (r, f) = max
{
N(r, f), N

(
r,

1
f

)}
+O(1)

= max
{
N

(
r,

1
c

)
, N

(
r,

1
a

)}
+O(1)

= max {T (r, c), T (r, a)}+O(1),

similarly,

T (r, g) = max {T (r, c), T (r, b)}+O(1),

and hence the main theorem follows from these esti-
mates above.
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