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Abstract:
entire functions is true.
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1. Introduction. Mason (see [4], [5], [6])
started one recent trend of thoughts by discovering
an entirely new relation among polynomials as fol-
lows. Let f(z) be a polynomial with coefficients in
an algebraically closed field of characteristic 0 and
let 7(1/f) be the number of distinct zeros of f.
Theorem 1.1 (Mason’s theorem, cf. [3]). Let
a(z), b(2), c(z) be relatively prime polynomials in k
and not all constants such that a +b = c. Then

max{deg(a),deg(b),deg(c)} <m <albc) -1

Influenced by Mason’s theorem, and considera-
tions of Szpiro and Frey, Masser and Oesterlé formu-
lated the “abc” conjecture for integers as follows:

Conjecture 1.1. Let q be a non-zero integer.
Define the radical of q to be

— /(1
KON
q
plg
i.e. the product of the distinct primes dividing q.
Given € > 0, there exists a number C(g) having the
following property. For any nonzero relatively prime
integers a, b, ¢ such that a + b = ¢, we have

1 1+
b < C(e)N [ — )
malal. o} e} < OV ()
This conjecture also is a consequence of the Vo-
jta’s Conjecture (see Vojta [7]). Over the field of
non-Archimedean meromorphic functions and its as-
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This paper shows that the analogy of “abc” conjecture for non-Archimedean
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sociated notations such as T'(r,a) and N(r,1/a) used
in the value distribution theory (cf. §2). We can
prove the following main theorem in this paper:

Theorem 1.2. Letx be an algebraically closed
field of characteristic zero, complete for a non-
trivial non-Archimedean absolute value | - |.  Let
a(z), b(z), c(z) be entire functions in k without com-
mon zeros and not all constants such that a + b = c.
Then

max{T(r,a), T(r,b),T(r,c)}

—/ 1
<N(r—) =1 1).
< (7“, abc) ogr+O(1)

If f is a polynomial, it is easy to show

T60) (1) < oy FLLT)

deg(f) = lim og

r—oo logr
Obviously, Mason’s theorem can be deduced by The-
orem 1.2 over the field in Theorem 1.2, and so The-
orem 1.2 can be served as an analogue of “abc”
conjecture over the field of non-Archimedean mero-
morphic functions. For complex variables, it is
clear, by the second main theorem, that the term
max{T'(r,a/c),T(r,b/c)} but not
max{T'(r,a), T(r,b),T(r,c)} can be controlled by
N(r,1/(abc)).

2. Basic facts. Let k be an algebraically
closed field of characteristic zero, complete for a non-
trivial non-Archimedean absolute value | - |. Define

klO;r]={z €k ||z]| <7}

Let A(k) be the set of entire functions on k. Then
each f € A(k) can be given by a power series

(1) f(Z) = Z anznv (an S /"3)7
n=0
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such that for any 2z € &, one has |a,z"| — 0 as
n — 00. Define the mazimum term:

_ n
p(r, ) = max|an|r
with the associated central index:
1 n
o (r7) = maxto ol =t

Then n(r,1/f) just is the counting function of zeros
of f, which denotes the number of zeros (counting
multiplicity) of f with absolute value < r. Fix a real
po with 0 < pg < p. Define the valence function of f
for a by

o ()

By AICEP

; (po <7 <p).

0

Then the following Jensen formula

3 N (r, }) — log u(r, ) — log 1(po, f)

holds. We also denote the number of distinct zeros
of f —a on k[0;7] by 7i(r,1/(f — a)) and define

— 1
N (7“, T—a

The field of fractions of A(x) will is denoted by
M(k). An element f in the set M (x) will be called a
meromorphic function on k. Take f € M(k). Since
greatest common divisors of any two elements in
A(k) exist, then there are g, h € A(k) with f = g/h
such that g and h have not any common factors in
the ring A(k). We can uniquely extend p to mero-
morphic function f = g/h by defining

_ ur9)
/L(T.v f) - M(T, h)

Define the compensation function by

m(r, f) = max{ov log ;U’(r? f)}

As usual, we define the characteristic function:

T(r, f) =m(r,f) + N(r, [)

where

t

0

(0<r <0).

(po < 7 < ),

N(r,f)=N (r,l) .
h
Lemma 2.1 (cf. [1]). Let f € A.(k) have q ze-
ros in k[0;r] with ¢ > 1 (taking multiplicities into
account) and let b € f(k[0;7]). Then f —b also ad-
mits q zeros in k[0;r] (counting multiplicity).

) :/Tﬁ—(t’l/(f_a))dt (po <1 <p).
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Assume that f is a mon-
Then for any b € Kk, we

Corollary 2.1.
constant entire function.

have
1 1

Proof. Note that f and f — b all have at least
one zero since f — b also is a non-constant entire
function. Thus there is a 7/ € R™ such that f has at
least one zero in k[0; '] and such that b € f(k[0;7']).
By Lemma 2.1, one obtains

n (r, flb) =n (r, Jlt) (r>1").

Therefore, when r > 7/, we have

;1 ;1 1
w(rgg) - (g) v (ng):

and the corollary follows. ]

Let f be a non-constant entire function in k.
Then

N (T, ch) = log pu(r, f) — log u(po, ) — +0o0

as r — oo, and hence p(r, f) > 1 when r is suffi-
ciently large. Therefore

N ( }) = T(r, f) + O(1),

and hence Corollary 2.1 implies

) N <r, fl_a> — T(r. ) + O(1)

for all a € k.

Take f € M(k) again and write f = f1/fo,
where fo, f1 € A(x) have no common factors. Then

.}Z:(f()vfl):K:—}/i2

is called a reduced representation of f. Write

M(Tv f) = max{u(r’ f0)7 M(T’ fl)}
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Noting that

log u(r, f) = max{log u(r, fo), log pu(r, f1)}

= max o) uir fr) 0 r
= s Dlog SR} 4o

= max {0, log u(r, f)} + log u(r, fo)
=m(r, f) + log u(r, fo),

and by the Jensen formula

N(rf) = N ( ]30) — log (1 fo)  1og (pos fo),

we obtain

(5) T(r,f)

or equivalently

(6) T(r,f)=logu(r, f) —log u(po, f) + m(po, f)-

By (5) and the Jensen formula, the following formula

D)o

holds for a non-constant meromorphic function f in
k. Thus it is easy to prove that the following formula

(1) T(rf)

— max {N <7"7 fl_a) N (n fl_b>} o)

holds for any two distinct elements a,b € kU {o0}.
3. Proof of the main theorem. Write

a
fziy
C

Then f and ¢ all are not constants by our assump-
tions, and satisfy f + g = 1. By the second main
theorem (see [2]), and noting that

(o) 7 (:) 7 (),

= log u(r, f) — log u(po, fo),

T(r,f) = max{N(r,f),N <r

g=-.
C

we obtain
T(r, f)
< N(r, f) +N(r, J{) +N<r7 fi > —logr+O(1)
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Similarly, we have

T(r,g) <N (r, aic) —logr + O(1).
By (7) and (4),

T(r, f) :max{N(r,f) N( 1)}—1—0( )

o (-2} o

=max{T(r,c),T(r,a)} + O(1),
similarly,
T(r,g) T(r,b)} +0(1),

and hence the main theorem follows from these esti-
mates above. L]

= max {T(r,c),
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