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Abstract: We discover a general optimal inequality for graph hypersurfaces in affine (n+1)-
space Rn+1 involving the Tchebychev vector field. We also completely classify the hypersurfaces
which verify the equality case of the inequality.
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1. Introduction. A hypersurface f : M →
Rn+1, n ≥ 2, in an affine (n + 1)-space is called a
graph hypersurface if its affine normal vector field is
some constant transversal vector field ξ. A result
of Nomizu and Pinkall [4] states that locally M is
affine equivalent to the graph immersion of a certain
function F .

For any vector fields X, Y tangent to a graph
hypersurface M , one can decompose DXf∗(Y ) into
its tangential and transverse components:

(1.1) DXf∗(Y ) = f∗(∇XY ) + h(X, Y )ξ,

where D is the canonical flat connection on Rn+1,
h is a symmetric tensor of type (0, 2) and ∇ is the
induced affine connection.

If h is non-degenerate, h defines a semi-
Riemannian metric on M which is called the affine
metric of M .

Let ∇̂ be the Levi-Civita connection of (M,h)
and K the difference tensor ∇ − ∇̂ on M . By tak-
ing the trace of K, one obtains a so-called Tcheby-
chev form T (X) := (1/n) trace{Y → K(X, Y )}. The
Tchebychev vector field T# can then be defined by
h(T#, X) = T (X).

As usual we assume that h is definite. In case
that h is negative definite, we shall replace ξ by −ξ
for the affine normal. In this way, the symmetric
(0, 2)-tensor h is always positive definite and thus
always defines a Riemannian metric on M .

In this article we prove a general inequality for
graph hypersurfaces in Rn+1. We also classify the
extremal class of graph hypersurfaces which satisfy
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the equality case of the optimal inequality identically.
2. Preliminaries. We recall some basic

facts about graph hypersurfaces (for details see
Nomizu and Sasaki’s book [5]).

Let f : M → Rn+1 be a graph hypersurface.
Then the equations of Gauss and Codazzi are given
respectively by

R(X, Y )Z = 0,(2.1)

(∇Xh)(Y, Z) = (∇Y h)(X,Z).(2.2)

Denote by ∇̂ the Levi-Civita connection of h
and by K̂ and R̂ the sectional curvature and the
curvature tensor of ∇̃, respectively.

The difference tensor K is defined by

KXY = K(X, Y ) = ∇XY − ∇̂XY,(2.3)

which is a symmetric (1, 2)-tensor field.
For each X, KX is self-adjoint. The Tcheby-

chev form T and the Tchebychev vector field T# are
defined by

T (X) =
1
n

traceKX ,(2.4)

h(T#, X) = T (X).(2.5)

It is well-known that for graph hypersurfaces we
have

h(KXY, Z) = h(Y,KXZ),(2.6)

R̂(X, Y )Z = KYKXZ −KXKY Z,(2.7)

(∇̂XK)(Y, Z) = (∇̂YK)(Z,X)(2.8)

= (∇̂ZK)(X, Y ).

3. A general optimal inequality. For any
2-plane section π at p ∈M , let K̂(π) denote the sec-
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tional curvature of (M,h) associated with π. The
scalar curvature τ̂ of (M,h) at p is defined to be
τ̂ (p) =

∑
i<j K̂(ei ∧ ej), where e1, . . . , en is a h-

orthonormal basis of TpM .
For graph hypersurfaces we have the following

general inequality.
Theorem 1. If M is a definite graph hyper-

surface in Rn+1, n ≥ 2, then the Tchebychev vector
field satisfies

τ̂ ≥ n2(1 − n)
2(n+ 2)

h(T#, T#).(3.1)

The equality case of inequality (3.1) holds at a
point p ∈M if and only if we have

K(e1, e1) = 3λe1, K(e1, ej) = λej ,(3.2)

K(ei, ej) = 0, K(ej , ej) = λe1,

2 ≤ i �= j ≤ n

with respect to some suitable h-orthonormal basis
e1, . . . , en of TpM .

Proof. Let M be a definite graph hypersurface
in Rn+1 and let e1, . . . , en be a h-orthonormal basis.
We put Ki

jk = h(K(ej , ek), ei). From (2.6) we have

Ki
jk = Kj

ik = Kk
ij , i, j, k = 1, . . . , n.(3.3)

From the definition of Tchebychev vector we
find

n2h(T#, T#)(3.4)

=
∑
i

(∑
j

(Ki
jj)

2 + 2
∑
j<k

Ki
jjK

i
kk

)
.

By applying equation (2.7) we have

(3.5) 2τ̂ = h(K,K) − n2h(T#, T#).

Thus, by (3.3), (3.4) and (3.5), we obtain

2τ̂ = 2
∑
i �=j

(Ki
jj)

2 + 6
∑
i<j<k

(Ki
jk)

2(3.6)

−
∑
i

∑
j �=k

Ki
jjK

i
kk.

From (3.4) and (3.6) we find

n2h(T#, T#) +
2(n+ 2)
n − 1

τ̂

=
∑
i

(Ki
ii)

2 +
3n+ 5
n− 1

∑
i �=j

(Ki
jj)

2

+
6(n+ 2)
n− 1

∑
i<j<k

(Ki
jk)

2 − 3
n− 1

∑
i

∑
j �=k

Ki
jjK

i
kk

=
∑
i

(Ki
ii)

2 +
6(n+ 2)
n− 1

∑
i<j<k

(Ki
jk)

2

− 6
n − 1

∑
j �=i

Ki
iiK

i
jj +

9
n− 1

∑
j �=i

(Ki
jj)

2

+
3

n − 1

∑
i �=j,k

∑
j<k

(Ki
jj −Ki

kk)
2

=
6(n+ 2)
n − 1

∑
i<j<k

(Ki
jk)

2

+
1

n − 1

∑
j �=i

(
Ki
ii − 3Ki

jj

)2
+

3
n − 1

∑
i �=j,k

∑
j<k

(Ki
jj −Ki

kk)
2

≥ 0

which implies (3.1).
It is easy to see that the equality sign of (3.1)

holds if and only if Ki
ii = 3Ki

jj and Ki
jk = 0 for

distinct i, j, k. Thus, if we choose e1, . . . , en in such
way that e1 is parallel to the Tchebychev vector field
T#, we obtain (3.2).

The converse is easy to verify.
4. The equality case.
Theorem 2. If f : M → Rn+1, n ≥ 2, is

a definite graph hypersurface satisfying the equality
case of (3.1) identically, then M is affinely equivalent
to an open part of one of the following hypersurfaces:

(I) The paraboloid defined by(
u1, u2, . . . , un,

1
2

n∑
j=1

u2
j

)
.

(II) The hypersurface defined by(
u2, . . . , un,

s4

4
+

n∑
j=2

u2
j ,−

s2

4

)
.

(III) A hypersurface defined by{
(ns(2as, k)−ds(2as, k))(ds(2as, k)−cs(2as, k))

} 3
2

ns(2as, k) + cs(2as, k) − 2ds(2as, k)

×
(

sinu2, . . . , sinun
n−1∏
j=2

cos uj,
n∏
j=2

cosuj, 0

)

−
(

0, . . . , 0,
1 + dn(2as, k)

a2(1 + cn(2as, k) + 2dn(2as, k))

)
,

where k = 1/
√

2 is the modulus of Jacobi’s elliptic
functions and a is an arbitrary positive number.
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(IV) A hypersurface defined by

ds(as, k)
(
cs(as, k) − ns(as, k)

)
×
(

sinu2, sinu3 cos u2, . . . ,

sinun
n−1∏
j=2

cosuj ,
n∏
j=2

cosuj, nd(as, k) − cd(as, k)
)
,

where k = 1/
√

2 is the modulus of Jacobi’s elliptic
functions and a is an arbitrary positive number.

Proof. Let M be a definite graph hypersurface
satisfying the equality case of (3.1) identically. Then
we have (3.2) with respect to some h-orthonormal
frame {e1, . . . , en}. Let ω1, . . . , ωn be the dual 1-
forms of e1, . . . , en with respect to h and

(
ωji
)

the
connection form on (M,h), so we have ∇̂Xei =∑n

j=1 ω
j
i (X)ej .

Case (i): λ = 0 identically. In this case, we
have K = 0, ∇ = ∇̂. Hence, M is affinely equivalent
to an open portion of the paraboloid given in (I).

Case (ii): λ �= 0. Let U = {p ∈ M : T#(p) �=
0}. Then U is a nonempty open subset. From The-
orem 1 we have U = {p ∈ M : K �= 0 at p}. By
applying (2.8) and (3.2) we find

e1λ = λωj1(ej), ejλ = 0, j = 2, . . . , n,(4.1)

ωj1(ek) = ωj1(e1) = 0, 1 < j �= k ≤ n.(4.2)

From (4.1) and (4.2) we obtain

ωj1 = e1(lnλ)ωj , j = 2, . . . , n.(4.3)

Let D denote the distribution on U spanned by
e1 and D⊥ the h-orthogonal complementary distri-
bution of D which is spanned by {e2, . . . , en}.

Lemma 1. On U we have:
(a) The integral curves of e1 are geodesics of (M,h).
(b) Distributions D and D⊥ are both integrable.
(c) There exist a local coordinate system
{x1, . . . , xn} such that

(c.1) D is spanned by {∂/∂x1} and D⊥ is
spanned by {∂/∂x2, . . . , ∂/∂xn};

(c.2) e1 = ∂/∂x1, ω
1 = dx1 and h takes the

form: h = dx2
1 +
∑n
j,k=2 hjkdxjdxk.

(d) λ is a function of s := x1 satisfying

d2λ

ds2
= 2λ3.(4.4)

Proof of Lemma 1. From (4.2) and (4.3), we
find ∇̂e1e1 = dω1 = 0, which implies that the in-
tegral curves of e1 are h-geodesic.

By using (4.2) we get h([ej, ek], e1) = 0 which
implies that D⊥ is integrable. Also, since D is of
rank one, D is trivially integrable.

Because D is of rank one, there exists a local co-
ordinate system {y1, . . . , yn} such that e1 = ∂/∂y1.
Since D⊥ is integrable too, there also exists a lo-
cal coordinate system {z1, . . . , zn} such that D⊥ is
spanned by ∂/∂z2 , . . . , ∂/∂zn. Hence, if we put x1 =
y1, x2 = z2, . . . , xn = zn, then {x1, . . . , xn} is a lo-
cal coordinate system which satisfies conditions (c.1)
and (c.2).

Statement (c) and (4.1) imply that λ depends
only on s. Using (2.7) and (3.2) we get

h(R̂(e1, e2)e2, e1) = −2λ2.(4.5)

On the other hand, (4.1), (4.2) and (4.3) imply
that

h(R̂(e1 , e2)e2, e1) = −(lnλ)′′ − (lnλ)′2.(4.6)

Combining these two equations yields (4.4).
Lemma 2. Up to sign and translation on s,

the non-trivial solutions of differential equation (4.4)
are the following functions:
(a) λ = s−1,

(b) λ = a ns
(
2as, 1/

√
2
)

+ a cs
(
2as, 1/

√
2
)
, a > 0,

(c) λ = a ds
(
as, 1/

√
2
)
, a > 0.

Proof of Lemma 2. Clearly, differential equa-
tion (4.4) admits no non-trivial constant solution.
So, we may assume λ is non-constant. Hence (4.4)
yields λ′dλ′ = 2λ3dλ which implies that

±(s+ b) =
∫ λ dt√

t4 + c
,(4.7)

for some constants b, c.
Case (1): c = 0. In this case, (4.7) yields

±(s+ c2) = 1/λ which gives solution (a).
Case (2): c > 0. If we put c = a4 for a positive

number a, we obtain solution (b) from (4.7).
Case (3): c < 0. If we put c = −a4/4, then

we obtain solution (c).
Lemma 3. The distribution D is auto-parallel

and its h-orthogonal complementary distribution D⊥

is spherical on U . Moreover, when n ≥ 3, each leave
of D⊥ in (M,h) is of constant curvature λ′2/λ2−λ2.

Proof of Lemma 3. First, it is easy to see that
Lemma 1 implies that D is auto-parallel.

Let X, Y be any two vector fields in D⊥ and e1
a h-unit vector field in D. Then (2.8), (3.2) and the
auto-parallelism of D imply that
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− 3λh(∇̂XY, e1) = −h(∇̂XY,K(e1, e1))

= h(Y, (∇̂K)(X, e1, e1)) + 2h(Y,K(e1, ∇̂Xe1))

= h(Y, (∇̂K)(e1, e1, X)) + 2λh(Y, ∇̂Xe1)

= h(Y,∇e1K(e1, X)) − h(Y,K(e1, ∇̂e1X))

+ 2λh(Y, ∇̂Xe1)

= h(Y, ∇̂e1(λX)) − h(Y,K(e1, ∇̂e1X))

+ 2λh(Y, ∇̂Xe1)

= (e1λ)h(X, Y ) + 2λh(Y, ∇̂Xe1)

= (e1λ)h(X, Y ) − 2λh(∇̂XY, e1).

Thus we obtain

h(∇̂XY, e1) = −(e1 lnλ)h(X, Y ),(4.8)

which shows that the leaves of D⊥ are totally um-
bilical hypersurfaces with constant mean curvature.
Since the codimension of leaves is one, the distribu-
tion D⊥ is a spherical distribution.

When n ≥ 3, it follows from (2.7), (3.2) and
(4.8) that each leave of D⊥ is of constant curvature
λ′2/λ2 − λ2 with respect to the metric induced from
(M,h). This proves Lemma 3.

Now, let us assume that n ≥ 3. It follows from
Lemma 3 and a result of [3] that (U, h) is locally the
warped product I ×ϕ(s) N(c̄) of an open interval I
and a Riemannian (n−1)-manifold N(c̄) of constant
curvature c̄ with a suitable warping function ϕ. So,
the metric h on I ×ϕ N is given by

h = ds2 + ϕ2h̃,(4.9)

where h̃ is the constant curvature metric on N(c̄).
Without loss of generality, we may choose c̄ = 1, 0,
or −1 according to c > 0, c = 0, or c < 0. Obviously,
vectors tangent to first factor I are in D and vectors
tangent to the second factor N(c̄) are in D⊥.

By applying Theorem 1, equation (2.8) of Co-
dazzi and (4.9), we find (lnλ)s = (lnϕ)s. Hence, we
have

ϕ = αλ(4.10)

for some nonzero real number α.
It is well-known that the curvature tensors R̂

and RF of M and N for the warped product M :=
I ×ϕ N are related by

R̂(X, Y )Z = RF (X, Y )Z(4.11)

−
(
ϕ′

ϕ

)2

(h(Y, Z)X − h(X,Z)Y )

for vector fields X, Y , Z tangent to N . From (4.10)
and (4.11) we have

K̂

(
∂

∂x2
∧ ∂

∂x3

)
=
c̄− ϕ′2

ϕ2
=
c− λ′2

λ2
,(4.12)

c =
c̄

α2
.

On the other hand, Theorem 1 and (2.7) give

K

(
∂

∂x2
∧ ∂

∂x3

)
= −λ2.(4.13)

Combining (4.12) and (4.13) shows that λ satisfies

λ′2 − λ4 = c.(4.14)

Since the constant c is equal to zero, a positive num-
ber, or a negative number, according to λ is given by
cases (a), (b), or (c) of Lemma 2, the open subset
U is the whole hypersurface M in cases (b) and (c);
and U is dense in M if λ is given by case (a).

Now, we divide the proof into three cases.
Case (a): λ = s−1. In this case, we have

c = 0. Thus (M,h) is locally the warped product
R ×ϕ(s) En−1 with a suitable warping function ϕ.
So, with respect to a natural Euclidean coordinate
system {u2, . . . , un}, the warped product metric is

h = ds2 + ϕ2(s)h0,(4.15)

h0 = du2
2 + du2

3 + · · ·+ du2
n.

It follows from (4.15) that the sectional curva-
ture of R ×ϕ(s) En−1 satisfies

K̂

(
∂

∂s
∧ ∂

∂uk

)
= −ϕ

′′(s)
ϕ(s)

.(4.16)

On the other hand, (2.7), (3.2) and λ = s−1 give

K̂

(
∂

∂s
∧ ∂

∂uk

)
= − 2

s2
.(4.17)

Hence, by combining (4.16) and (4.17), we obtain

s2ϕ′′(s) = 2ϕ(s),(4.18)

which gives ϕ = k1s
2+k2s

−1 for some constant k1, k2

not both zero. So, (4.15) becomes

h = ds2 +
(
k1s

2 +
k2

s

)2

h0(4.19)

which yields

∇̂ ∂
∂s

∂

∂s
= ∇̂ ∂

∂ui

∂

∂uj
= 0,(4.20)

∇̂ ∂
∂s

∂

∂ui
=

2k1s
3 − k2

s(k1s3 + k2)
∂

∂ui
,
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∇̂ ∂
∂ui

∂

∂ui
=

(k1s
3 + k2)(k2 − 2k1s

3)
s3

∂

∂s
,

for 2 ≤ i �= j ≤ n. By combining (1.1), (2.3), (3.2),
(4.19) and (4.20) we know that the immersion f :
M → Rn+1 satisfies

fss =
3
s
fs + ξ,(4.21)

fsuj =
3k1s

2

k1s3 + k2
fuj ,

fujuj =
(k1s

3 + k2)(2k2 − k1s
3)

s3
fs

+
(
k1s

2 +
k2

s

)2

ξ,

fuiuj = 0, 2 ≤ i �= j ≤ n.

From the condition (fss)uj = (fsuj )s we find k1 = 0.
For simplicity, we may assume k2 = 1; thus ϕ = s−1.
After solving the partial differential system (4.21)
with k1 = 0, k2 = 1, we obtain

f(s, u1, . . . , un) =
n∑
j=2

cjuj + b
n∑
j=2

u2
j +

b

4
s4 − s2

4
ξ

for some basis b, c2, . . . , cn. Therefore, we conclude
that M is affinely equivalent to the hypersurface de-
fined by (II).

Case (b): λ = a ns(2as, k) + a cs(2as, k) with
a > 0, k = 1/

√
2. In this case, we have c = a4 which

implies c̄ = 1 and α = 1/a2 by (4.12). Furthermore,
by (4.10), we know that (M,h) is locally the warped
product of an open interval and a unit (n−1)-sphere
with warped product metric:

h = ds2 +

{
ns (2as, k) + cs (2as, k)

}2

a2
h1,

h1 = dx2
2 + cos2 x2dx

2
3 + · · ·+

n−1∏
j=2

cos2 xjdx2
n.

Thus the Levi-Civita connection satisfies

∇̂ ∂
∂s

∂

∂s
= 0, ∇̂ ∂

∂s

∂

∂ui
= −2ads(2as, k)

∂

∂ui
,

∇̂ ∂
∂ui

∂

∂uj
= − tanui

∂

∂uj
,

∇̂ ∂
∂u2

∂

∂u2
=

2
a
ds(2as, k)(ns(2as, k) + cs(2as, k))2

∂

∂s
,

∇̂ ∂
∂ui

∂

∂ui
=

2
a
ds(2as, k)(ns(2as, k) + cs(2as, k))2

×
j−1∏
i=2

cos2 ui
∂

∂s
+
j−1∑
k=2

(
sin 2uk

2

j−1∏
l=k+1

cos2 ul

)
∂

∂uk

for 2 ≤ i �= j ≤ n.

Hence the immersion f satisfies the following
differential system

fss = 3a{ns (a2s, k) + cs (2as, k)}fs + ξ,

fsuk = a{ns(2as, k) + cs(2as, k) − 2 ds(2as, k)}fuk,

k = 2, . . . , n,

fuiuj = − tanxifuj , 2 ≤ i < j ≤ n,

fujuj =
(ns (2as, k) + cs (2as, k))2

a
×

(ns (2as, k) + cs (2as, k) + 2 ds(2as, k))
j−1∏
i=2

cos2 uifs

+
j−1∑
k=2

(
sin 2uk

2

j−1∏
l=k+1

cos2 ul

)
fuk

+
(ns (2as, k) + cs (2as, k))2

a2

(
j−1∏
i=2

cos2 ui

)
ξ,

j = 2, . . . , n.

Solving the first equation of this system gives

f = A − 1 + dn(2as, k)
a2(1 + cn(2as, k) + 2dn(2as, k))

ξ

(4.22)

+
�
(ns(2as, k) − ds(2as, k))(ds(2as, k) − cs(2as, k))

� 3
2 B

a(ns(2as, k) + cs(2as, k) − 2ds(2as, k))

for A = A(u2, . . . , un) and B = B(u2, . . . , un). By
substituting (4.22) into the second equation of the
system we obtain Auk = 0 which implies that A is
a constant vector, say c0. Finally, by substituting
(4.22) with A = c0 into the remaining equations of
the system, we find

B = c1 sinu2 + c2 sinu3 cosu2 + · · ·

+ cn−1 sinun
n−1∏
j=2

cosuj + cn

n∏
j=2

cos uj.

Consequently, the hypersurface is affinely equivalent
to a hypersurface given by (III).

Case (c): λ = a ds (as, k) with a > 0, k =
1/

√
2. In this case, we obtain 4c = −a4 < 0 which

yields c̄ = −1, α = 2/a2. Thus (M,h) is locally the
warped product of the real line and a unit hyperbolic
(n−1)-space Hn−1(−1) with warped product metric:

(4.23) h = ds2 +
4
a2

ds2 (as, k)h−1

with
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h−1 = dx2
2 + cosh2 x2dx

2
3 + · · ·+

n−1∏
j=2

cosh2 xjdx
2
n.

Thus we have

∇̂ ∂
∂s

∂

∂s
= 0, ∇̂ ∂

∂s

∂

∂ui
= −a cd(as, k)ns(as, k)

∂

∂ui
,

∇̂ ∂
∂ui

∂

∂uj
= tanhui

∂

∂uj
, 2 ≤ i < j ≤ n,

∇̂ ∂
∂u2

∂

∂u2
=

4
a
cs(as, k)ds(as, k)ns(as, k)

∂

∂s
,

∇̂ ∂
∂ui

∂

∂ui
=

4
a
cs(as, k)ds(as, k)ns(as, k)

×
j−1∏
i=2

cosh2 ui
∂

∂s
−
j−1∑
k=2

(
sinh 2uk

2

j−1∏
l=k+1

cosh2 ul

)
∂

∂uk
,

2 ≤ i �= j ≤ n.

From these we know that the immersion f satisfies
the following differential system:

fss = 3a ds(as, k)fs + ξ,

fsuj = a
(
ds(as, k) − cd(as, k) ns(as, k)

)
fuj ,

j = 2, . . . , n,

fu2u2 =
4
a2

ds2(as, k)ξ

+
4
a
ds(as, k)

{
ds2(as, k) + cs(as, k) ns(as, k)

}
fs,

fujuj =
4
a2

ds2(as, k)
j−1∏
i=2

cosh2 uiξ

+
4
a
ds(as, k)

{
ds2(as, k) + cs(as, k) ns(as, k)

}
×
j−1∏
i=2

cosh2 uifs −
j−1∑
�=2

(
sinh 2u�

2

j−1∏
i=�+1

cosh2 ui

)
fu�

fuiu� = tanhuifu� , 2 ≤ i < 	 ≤ n; j > 2.

Solving the first equation of the last differential
system gives

f = A+ ds(as, k)
(
cs(as, k) − ns(as, k)

)
B(4.24)

−
(
ns(as, k) − cs(as, k)

)2
a2

ξ

for some functions A = A(u2, . . . , un) and B =
B(u2, . . . , un). Substituting (4.24) into the second
equation of the system yields Auk = 0. Thus, A is a
constant vector. Finally, by substituting (4.24) into
the remaining equations of the system, we conclude
that the hypersurface is affinely equivalent to a hy-
persurface given by (IV).

When n = 2, Hiepko’s result implies that M is
locally the warped product of an open interval I and
the real line R with warped product metric g = dx2+
ϕ2dy2 . Using (2.8) we have ϕ = αλ for some nonzero
constant α. Because λ is given by one of the three
functions given in Lemma 2, the same arguments as
for n ≥ 3 yield the same results for n = 2 as well.

Remark 1. For the corresponding general op-
timal inequalities of affine hypersurfaces in cen-
troaffine geometry, see [2].
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