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Abstract:

We discover a general optimal inequality for graph hypersurfaces in affine (n+1)-

space R"*! involving the Tchebychev vector field. We also completely classify the hypersurfaces

which verify the equality case of the inequality.
Key words:

1. Introduction. A hypersurface f: M —
R" n > 2, in an affine (n + 1)-space is called a
graph hypersurface if its affine normal vector field is
some constant transversal vector field £. A result
of Nomizu and Pinkall [4] states that locally M is
affine equivalent to the graph immersion of a certain
function F.

For any vector fields X, Y tangent to a graph
hypersurface M, one can decompose Dx f.(Y) into
its tangential and transverse components:

(1.1) Dx f«(Y) = f(VxY) + h(X, Y)E,

where D is the canonical flat connection on R"™*1,
h is a symmetric tensor of type (0,2) and V is the
induced affine connection.

If h is non-degenerate, h defines a semi-
Riemannian metric on M which is called the affine
metric of M.

Let V be the Levi-Civita connection of (M, h)
and K the difference tensor V — V on M. By tak-
ing the trace of K, one obtains a so-called Tcheby-
chev form T'(X) := (1/n) trace{Y — K(X,Y)}. The
Tchebychev vector field T# can then be defined by
h(T#,X) = T(X).

As usual we assume that h is definite. In case
that h is negative definite, we shall replace £ by —¢
for the affine normal. In this way, the symmetric
(0,2)-tensor h is always positive definite and thus
always defines a Riemannian metric on M.

In this article we prove a general inequality for
graph hypersurfaces in R"*!. We also classify the
extremal class of graph hypersurfaces which satisfy
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the equality case of the optimal inequality identically.
recall some basic
facts about graph hypersurfaces (for details see
Nomizu and Sasaki’s book [5]).

Let f : M — R™! be a graph hypersurface.
Then the equations of Gauss and Codazzi are given
respectively by

(2.1) R(X,Y)Z =0,
(Vxh)(Y,Z) = (Vyh)(X, Z).

2. Preliminaries. We

(2.2)

Denote by V the Levi-Civita connection of h
and by K and R the sectional curvature and the
curvature tensor of @, respectively.

The difference tensor K is defined by

(2.3) KxY =K(X,Y)=VxY —VxY,

which is a symmetric (1, 2)-tensor field.
For each X, Kx is self-adjoint. The Tcheby-
chev form T and the Tchebychev vector field T# are

defined by
1

(2.4) T(X) = - trace Kx,

(2.5) T#, X) =T(X).

It is well-known that for graph hypersurfaces we
have

(2.6) MExY, Z) = WY, Kx Z),
(2.7) R(X,Y)Z = KyKxZ — KxKyZ,
(2.8) (VxK)(Y,Z) = (VyK)(Z, X)

= (VzK)(X,Y).

3. A general optimal inequality. For any
2-plane section 7w at p € M, let K(m) denote the sec-
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tional curvature of (M, h) associated with w. The
scalar curvature 7 of (M, h) at p is defined to be
7(p) = Zi<jIA((ei A e;), where e1,...,e, is a h-
orthonormal basis of T, M.

For graph hypersurfaces we have the following
general inequality.

Theorem 1. If M is a definite graph hyper-
surface in R**1, n > 2, then the Tchebychev vector
field satisfies

(3.1) Sl

#
Z Sz T

The equality case of inequality (3.1) holds at a
point p € M if and only if we have

(3.2) K(el, 61) = 3)\61, K(el, ej) =
K(ei,ej) = 0, K(ej,ej) = )\61,
2<i#Fj<n

)\ej,

with respect to some suitable h-orthonormal basis
€ls...,en of Ty M.

Proof. Let M be a definite graph hypersurface
in R™*! and let ey, ..., e, be a h-orthonormal basis.
We put K7, = h(K(ej, ex), ¢;). From (2.6) we have

(33) K, =K} =K,

; i,j,k=1,...,n

From the definition of Tchebychev vector we

find
(3.4)  n’h(T# T%)
= (DK + 2 Y K K.
i 7 i<k
By applying equation (2.7) we have
(3.5) 27 = h(K, K) — n?h(T#,T#).

Thus, by (3.3), (3.4) and (3.5), we obtain

(3.6)  27=2) (Ki,)’+6 > (
i#j i<j<k
SN
i Ak
From (3.4) and (3.6) we find
2 2
th(T#,T#) + M%
n—1
3n+5
=D (KW + T D (KG,)?
i i#]
6(n + 2) L
nt2) g K
i<j<k i Ak
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—Z

z;é] k]<k
>0

which implies (3.1).

It is easy to see that the equality sign of (3.1)
holds if and only if K}, = 3K;j and K;k = 0 for
distinct ¢, j, k. Thus, if we choose e, ..., e, in such
way that e; is parallel to the Tchebychev vector field
T#, we obtain (3.2).

The converse is easy to verify. U

4. The equality case.

Theorem 2. If f : M — R, n > 2, is
a definite graph hypersurface satisfying the equality
case of (3.1) identically, then M is affinely equivalent
to an open part of one of the following hypersurfaces:

(I) The paraboloid defined by

n
1§: 2
ul,uQ,...,un,§ uj .
Jj=1

(IT) The hypersurface defined by
4 2
s 9 S
(ug, ey Up, T —|—Zuj, _I>
j=2
(IIT) A hypersurface defined by
{(ns(2as, k) —ds(2as, k))(ds(2as, k) —cs(2as, k;))}%
ns(2as, k) + cs(2as, k) — 2ds(2as, k)

n—1 n
X | sinusg,...,sinuy, H cos Uy, H cosu;, 0
j=2 j=2

(o 0 1+ dn(2as, k)
7 a2(1 + en(2as, k) + 2dn(2as, k))

where k = 1/\/5 is the modulus of Jacobi’s elliptic
functions and a is an arbitrary positive number.
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(IV) A hypersurface defined by
ds(as, k)(cs(as, k) —ns(as, k)

X (sinug,sinug COS U, - - -,

n—1 n
sin u, H COS U, H cosu;,nd(as, k) — cd(as, k;)> ,
=2 =2
where k = 1/+/2 is the modulus of Jacobi’s elliptic
functions and a is an arbitrary positive number.
Proof. Let M be a definite graph hypersurface
satisfying the equality case of (3.1) identically. Then
we have (3.2) with respect to some h-orthonormal
frame {ey,...,en}. Let w! ... w" be the dual 1-
forms of ey,...,e, with respect to A and (wf ) the
connection form on (M, h), so we have Vxe; =

Z?=1 wi (X)e;.

Case (i): A = 0 identically. In this case, we
have K =0,V = V. Hence, M is affinely equivalent
to an open portion of the paraboloid given in (I).

Case (ii): AN#0. Let U ={pe M :T#(p) #
0}. Then U is a nonempty open subset. From The-
orem 1 we have U = {p € M : K # 0 at p}. By
applying (2.8) and (3.2) we find

(4.1) el)\z)\w{(ej), eA=0,7=2,...,n,
(4.2) wWilep) =wl(e1) =0, 1<j#k<n.
From (4.1) and (4.2) we obtain

(4.3) wl=e(In\w’, j=2,...,n.

Let D denote the distribution on U spanned by
e; and D+ the h-orthogonal complementary distri-
bution of D which is spanned by {ez,...,e,}.
Lemma 1. On U we have:
(a) The integral curves of e1 are geodesics of (M, h).
(b) Distributions D and D+ are both integrable.
(c) There emist a
{x1,..., 2} such that
(c.1) D is spanned by {0/0x1} and D+ is
spanned by {0/0xa,...,0/0x,};
(c.2) e; = 9/0z1, w' = dr1 and h takes the
form: h = da? + 377, hjrdajdry.
(d) X is a function of s := x1 satisfying
d?\
ds?
Proof of Lemma 1. From (4.2) and (4.3), we
find @6161 = dw! = 0, which implies that the in-
tegral curves of e; are h-geodesic.

local  coordinate  system

(4.4) =23
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By using (4.2) we get h([ej, ex],e1) = 0 which
implies that D+ is integrable. Also, since D is of
rank one, D is trivially integrable.

Because D is of rank one, there exists a local co-
ordinate system {y1,...,yn} such that e; = 9/0y;.
Since D+ is integrable too, there also exists a lo-
cal coordinate system {z1,...,z,} such that D+ is
spanned by 0/0zz, . ..,0/0z,. Hence, if we put x; =
Y1, T2 = 2Z2,...,Ln = Zn, then {z1,...,2,} is a lo-
cal coordinate system which satisfies conditions (c.1)
and (c.2).

Statement (c¢) and (4.1) imply that A depends
only on s. Using (2.7) and (3.2) we get

(45) h(R(el, 62)62, 61) = —2)\2.

On the other hand, (4.1), (4.2) and (4.3) imply
that

(4.6)  h(R(e1,es)ea, e1) = —(InN)" — (In \)"2.
Combining these two equations yields (4.4). Ol
Lemma 2. Up to sign and translation on s,

the non-trivial solutions of differential equation (4.4)
are the following functions:
(a) A=s"1,
(b) A= ans(2a5, 1/\/5) + acs(2a5, 1/\/5), a >0,
(c) A=ads(as,1/v2), a > 0.

Proof of Lemma 2. Clearly, differential equa-
tion (4.4) admits no non-trivial constant solution.

So, we may assume A is non-constant. Hence (4.4)
yields Nd) = 2X\3d\ which implies that

Adt

for some constants b, c.

Case (1): ¢ = 0. In this case, (4.7) yields
+(s 4 c2) = 1/ which gives solution (a).

Case (2): ¢ > 0. If we put ¢ = a* for a positive
number a, we obtain solution (b) from (4.7).

(4.7)

Case (3): ¢ < 0. If we put ¢ = —a'/4, then
we obtain solution (c). U
Lemma 3. The distribution D is auto-parallel

and its h-orthogonal complementary distribution D+
15 spherical on U. Moreover, when n > 3, each leave
of D+ in (M, h) is of constant curvature \'2/\2 —\2.

Proof of Lemma 3. First, it is easy to see that
Lemma 1 implies that D is auto-parallel.

Let X,Y be any two vector fields in D+ and e;
a h-unit vector field in D. Then (2.8), (3.2) and the
auto-parallelism of D imply that
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—3AR(VxY,e1) = —h(VxY, K(e1,e1))
=h(Y,(VK)(X,e1,e1)) + 2h(Y, K(e1, Vxer))
= (Y, (VK)(e1, e1, X)) + 2Ah(Y, Vxer)
= h(Y, Ve, K(e1, X)) — h(Y, K(e1,Ve, X))

+2\h(Y, Vxer)
= (Y, Ve, (AX)) — h(Y, K(e1, Ve, X))
+2X\h(Y, Vxer)
= (et NA(X,Y) + 2\ h(Y, Vxer)
= (e Nh(X,Y) = 2Xh(VxY, e1).
Thus we obtain

(4.8)  h(VxY,e1) = —(e1 InNh(X,Y),

which shows that the leaves of D+ are totally um-
bilical hypersurfaces with constant mean curvature.
Since the codimension of leaves is one, the distribu-
tion D+ is a spherical distribution.

When n > 3, it follows from (2.7), (3.2) and
(4.8) that each leave of D= is of constant curvature
N2/X\2 — A% with respect to the metric induced from
(M, h). This proves Lemma 3. |

Now, let us assume that n > 3. It follows from
Lemma 3 and a result of [3] that (U, h) is locally the
warped product I X5y N(¢) of an open interval I
and a Riemannian (n — 1)-manifold N(¢) of constant
curvature ¢ with a suitable warping function ¢. So,
the metric h on I x, N is given by

(4.9) h = ds® + ph,

where h is the constant curvature metric on N ().
Without loss of generality, we may choose ¢ = 1, 0,
or —1 according to ¢ > 0, ¢ = 0, or ¢ < 0. Obviously,
vectors tangent to first factor I are in D and vectors
tangent to the second factor N(¢) are in D+.

By applying Theorem 1, equation (2.8) of Co-
dazzi and (4.9), we find (InA\)s = (Inp)s. Hence, we
have

(4.10) Y =a

for some nonzero real number «.

It is well-known that the curvature tensors R
and RY of M and N for the warped product M :=
I x, N are related by

(4.11) R(X,Y)Z=RF(X,Y)Z

_ (%)2 (MY, Z)X — WX, 2)Y)
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for vector fields X, Y, Z tangent to N. From (4.10)
and (4.11) we have

(0 0 c—¢'?2  c—\?
(4.12) K( A >: — = ,

dxy " Oxs o A2
_c
Cc = ?
On the other hand, Theorem 1 and (2.7) give

0 0
K(=—A=—)=-)\.
<8$2 8$3>

Combining (4.12) and (4.13) shows that X satisfies
(4.14) N2\t =c

(4.13)

Since the constant c is equal to zero, a positive num-
ber, or a negative number, according to A is given by
cases (a), (b), or (¢) of Lemma 2, the open subset
U is the whole hypersurface M in cases (b) and (c);
and U is dense in M if X is given by case (a).

Now, we divide the proof into three cases.

Case (a): A = s 1. In this case, we have
¢ = 0. Thus (M,h) is locally the warped product
R X E"~! with a suitable warping function ¢.
So, with respect to a natural Euclidean coordinate
system {ug, ..., un}, the warped product metric is

(4.15) h = ds* + p*(s)ho,
ho = du3 + du3 + - - - + du?.

It follows from (4.15) that the sectional curva-
ture of R X ,(4) E™~! satisfies

(0 0 ©"(s)
Kl—N—)=- .

(55 5%) ()
On the other hand, (2.7), (3.2) and A = s~ give

. (0 0 2
K(ZA2)=—=,

(85 é?uk> 52
Hence, by combining (4.16) and (4.17), we obtain

(4.18) %" (s) = 2p(s),

which gives ¢ = k152 +kos™! for some constant ki, ko
not both zero. So, (4.15) becomes

(4.16)

(4.17)

k 2
(4.19) h=ds® + <k152 + f) ho

which yields

-~ 0 - 0
@ 0 - 2k153 — k/’g 0
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@ 0 - (k:153 + k’g)(kig — 2k153) ﬁ
5e; ou; s3 0s’
for 2 < i # j < n. By combining (1.1), (2.3), (3.2),
(4.19) and (4.20) we know that the immersion f :
M — R™! satisfies

3
(4'21) fss:;fs+§a
3k152
fsuJ = k153 —i—k’gfuj,
k183 4+ ko) (2ko — k153
fuju, = ( : 2)( 2 - )fs

g3

(kzs+ >§,

= (fsu;)s we find ky = 0.
-1

From the condition (fss)u,
For simplicity, we may assume ko = 1; thus ¢ = s
After solving the partial differential system (4.21)
with k1 = 0, ks = 1, we obtain

chuj—i—qu Z —ig

Therefore, we conclude

f(s,uny ... un

for some basis b, ca, ..., c,.
that M is affinely equivalent to the hypersurface de-
fined by (II).

Case (b): X = ans(2as, k) 4+ acs(2as, k) with
a>0,k= 1/\/5 In this case, we have ¢ = a* which
implies ¢ = 1 and a = 1/a? by (4.12). Furthermore,
by (4.10), we know that (M, h) is locally the warped
product of an open interval and a unit (n— 1)-sphere
with warped product metric:

{ns (2as, k) + cs (2as, k) }2

h=ds*+ 5 1,
a
n—1
hi = dx% + cos? xgdxg 4+ H cos> xjdx%.
j=2

Thus the Levi-Civita connection satisfies

-0 - 0 0

V%—S =0, Va 0u, —2ads(2as k;)a—uz

V.o i = —tanuii,
2ui Ouj ou;

v 9 _ 2ds(2as k)(ns(2as, k) + cs(2as, k))* =
7z Oz a ’ ’ ’ ds’

A 2

\Y 0 = Zds(2as, k)(ns(2as, k) + cs(2as, k))?

o
du; é?ui a

i, sm2uk 0
X Hcos uz——i—z H cos? Uy 8—
1=2 k=2

I=k+1
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for2 <i#j<n.
Hence the immersion f satisfies the following
differential system

fss = 3a{ns (a2s, k) + cs (2as, k) } fs + &,

fsur = a{ns(2as, k) + cs(2as, k) — 2ds(2as, k) } fu,,
k=2,...,n

—tanxifuj, 2<1 <) <n,

(ns (2as, k) + cs (2as, k))? "
a

fuq,uj =
ijUj =

j—1
(ns (2as, k) + cs (2as, k) + 2ds(2as, k)) H cos? u; fs

i=2
i, sin 2u i
k
+§ ( 5 H0052u5> Sun

k=2 I=k+1

ns (2as, k) + cs (2as, k))
+( ( )a2 (HCOS uz>§,

j=2,...,mn

Solving the first equation of this system gives

(4.22)

= 1+ dn(2as, k)
a?(1 + cn(2as, k) + 2dn(2as, k))

§

{ (ns(2as, k) — ds(2as, k))(ds(2as, k) — cs(2as, k)) } i
a(ns(2as, k) + cs(2as, k) — 2ds(2as, k))

for A = A(ua,...,u,) and B = B(ua,...,u,). By
substituting (4.22) into the second equation of the
system we obtain A,, = 0 which implies that A is

a constant vector, say cg. Finally, by substituting
(4.22) with A = ¢y into the remaining equations of
the system, we find

B = c¢ysinus + co sinug cosug + - - -

n—1
+ Cn— 1smuanoqu+ancoqu
Jj=2 Jj=2

Consequently, the hypersurface is affinely equivalent
to a hypersurface given by (III).

Case (c): A = ads(as, k) with a > 0,k =
1/4/2. In this case, we obtain 4c = —a* < 0 which
yields ¢ = —1, a = 2/a®. Thus (M, h) is locally the
warped product of the real line and a unit hyperbolic
(n—1)-space H"~*(—1) with warped product metric:

4
(4.23) h = ds* + o ds® (as, k) h_y

with
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n—1
h_1= dx% + cosh? xgdxg 4+ H cosh? xjdx%.
j=2

Thus we have

@%% =0, @% ;; = —acd(as,k:)ns(as,k;)aii,
@ai% % = tanhui%, 2<i1<j3<n,
. 4 0
V%a—w = acs(as,k:)ds(as,k;)ns(as,k;)a,
- 0 4
V% o, Ecs(as,k)ds(as,k;)ns(as,k:)

= 12 R sinh 2uy, = 12 0
xgcos Uig —ZZ: lellllcos w EIE

2<i#j<n

From these we know that the immersion f satisfies
the following differential system:

fss = 3ads(a5> k)fs +¢,
fou; = a(ds(as, k) — cd(as, k) ns(as, k;))fuj,
j=2,...,n,

4
fu2u2 = EdSQ(GS’ k)§

4
+ —ds(as, k:){dsQ(as, k) + cs(as, k) ns(as, k) } fs,
a
4 =
2 2
fuyu; = Eds (as, k) l_IQCOSh w; &
1=

+ %ds(as, k:){dsQ(as, k) + cs(as, k) ns(as, k) }

i1 it sinh 2u, i1
¢
X :l_[(:osh2 w; fs — Z (T H cosh? ui> Sue

=2 =2 i=0+1

fusu, =tanhu;fy,,, 2<i<l<n; j>2.

Solving the first equation of the last differential
system gives
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(4.24) f = A+ ds(as,k)(cs(as, k) —ns(as, k)) B
(ns(as, k) — cs(as, k;))2
_ - ¢
for some functions A = A(usg,...,u,) and B =
B(us,...,uy). Substituting (4.24) into the second

equation of the system yields A,, = 0. Thus, A is a
constant vector. Finally, by substituting (4.24) into
the remaining equations of the system, we conclude
that the hypersurface is affinely equivalent to a hy-
persurface given by (IV).

When n = 2, Hiepko’s result implies that M is
locally the warped product of an open interval I and
the real line R with warped product metric g = dz?+
2dy?. Using (2.8) we have ¢ = a\ for some nonzero
constant a. Because A is given by one of the three
functions given in Lemma 2, the same arguments as
for n > 3 yield the same results for n = 2 as well. [

Remark 1. For the corresponding general op-
timal inequalities of affine hypersurfaces in cen-
troaffine geometry, see [2].
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