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Abstract: We show that each equation in the first Painlevé hierarchy is equivalent to a
system of nonlinear equations determined by a kind of generating function, and that it admits the
Painlevé property. Our results are derived from the fact that the first Painlevé hierarchy follows
from isomonodromic deformation of certain linear systems with an irregular singular point.
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1. Introduction. Let dn[y] (n = 0, 1, 2, . . .)
be differential polynomials in y determined by the
recursive relation

d0[y] = 1,

Ddn+1[y] = (D3 − 8yD − 4y′)dn[y],(1)

n ∈ N ∪ {0}
( ′ = D = d/dt). In what follows, we suppose that
all the integration constants contained in dn[y] are
zero. For example,

d1[y]/4 = −y,
d2[y]/4 = −y′′ + 6y2,

d3[y]/4 = −y(4) + 20yy′′ + 10(y′)2 − 40y3,

d4[y]/4 = −y(6) + 28yy(4) + 56y′y(3) + 42(y′′)2

− 280(y2y′′ + y(y′)2 − y4).

The first Painlevé hierarchy is a sequence of 2n-th
order differential equations of the form

(PI2n) dn+1[y] + 4t = 0, n ∈ N

(cf. e.g. [2], [3], [4]), which contains the first Painlevé
equation (PI2).

In this paper, we show that (PI2n) is equiva-
lent to a 2n-dimensional system of nonlinear equa-
tions determined by a kind of generating function,
and that it admits the Painlevé property. These re-
sults are derived from the fact that (PI2n) follows
from isomonodromic deformation of a certain linear
system with an irregular singular point. The special
case n = 2 was treated in [6], and see also [7].
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2. Main results. Consider the formal power
series in ξ:

Q(ξ) =
∑
ν≥1

Zνξ
ν , R(ξ) =

∑
ν≥1

Uνξ
ν ,

F (ξ) = 2ξ−1Q(ξ)(1 + Z1ξ)

+
ξ−1Q(ξ)2 −R(ξ)2

1 −Q(ξ)
− u2

0,

where u0, Zν , Uν (ν ∈ N) are variables depending
on t. Then, F (ξ) is written in the form

F (ξ) =
∑
ν≥0

Fνξ
ν

with

F0 = 2Z1 − u2
0,

Fν = 2Zν+1 +Gν(Zj , Uk; 1≤j≤ν, 1≤k≤ν−1) (ν ∈ N).

Here Gν is a polynomial in Zj and Uk (1 ≤ j ≤ ν,
1 ≤ k ≤ ν − 1). For each n ∈ N, the relations

d

dt
(u0+R(ξ)) ≡ F (ξ) + 2(t− Zn+1)ξn (mod ξn+1),

d

dt
Q(ξ) ≡ 2R(ξ) (mod ξn+1)

define the following system:

(Sn)

Z ′
ν = 2Uν ,

U ′
ν = 2Zν+1 +Gν(Zj , Uk; 1≤j≤ν, 1≤k≤ν−1)

(1 ≤ ν ≤ n− 1),
Z ′

n = 2Un,

U ′
n = 2t+Gn(Zj , Uk; 1≤j≤n, 1≤k≤n−1)

(if n = 1, skip the first two equations). For example,

(S1)
Z ′

1 = 2U1,

U ′
1 = 2t+ 3Z2

1
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and

(S2)

Z ′
1 = 2U1,

U ′
1 = 2Z2 + 3Z2

1 ,

Z ′
2 = 2U2,

U ′
2 = 2t+ 4Z1Z2 + Z3

1 − U2
1 .

Theorem 2.1. For each n ∈ N, system (Sn)
is essentially equivalent to (PI2n). Namely,

(1) for every solution (Zν(t), Uν(t)) (1 ≤ ν ≤
n) of (Sn), the function y = Z1(t) satisfies

(PI∗2n) dn+1[y] + 4n+1t = 0;

(2) for every solution y = Y (t) of (PI∗2n), there
exists a solution (Zν(t), Uν(t)) (1 ≤ ν ≤ n) of (Sn)
such that Z1(t) ≡ Y (t).

Remark 2.1. For the differential monomial
yι0(y′)ι1 · · · (y(p))ιp , we define the weight by∑p

κ=0(κ + 2)ικ. Since all terms of dn+1[y] have the
same weight 2 + 2n (cf. the proof of [8, Lemma 2.6]),
by the change of variables y = λ2η, t = λ−1τ

(λ2n+3 = 4n), equation (PI∗2n) is reduced to (PI2n).
Furthermore, we have
Theorem 2.2. Every solution (Zν(t), Uν(t))

(1 ≤ ν ≤ n) of (Sn) is meromorphic in C.
3. Linear systems and a Schlesinger

transformation. Consider the matrix differential
equation

(E)
dΞ
dx

= A(x)Ξ, A(x) = −
2n+2∑
j=0

A−jx
j −A1x

−1.

Here Ξ is a 2 by 2 unknown matrix and

A−2n−2 = J, A−2n−1 = −u0L,

A−2n−2+2i = viK − wiJ,

A−2n−1+2i = −uiL (1 ≤ i ≤ n),

A0 = s(J +K), A1 = (I − L)/2

with

I =
(

1 0
0 1

)
, J =

(
1 0
0 −1

)
,

K =
(

0 1
−1 0

)
, L =

(
0 1
1 0

)
.

Proposition 3.1. Suppose that t and the en-
tries u0, ui, vi (1 ≤ i ≤ n) are arbitrary parameters,
and write wn+1 := t−s. System (E) admits a formal
matrix solution of the form

Ξ = Ξ(x) = Y (x) expT (x),(2)

T (x) = − J

2n+ 3
x2n+3 − tJx− I

2
log x,

Y (x) =
∑
j≥0

Yjx
−j ,

if and only if the relations

(3) wν =
1
2

ν−1∑
j=1

(wjwν−j−vjvν−j)+
1
2

ν∑
j=1

uj−1uν−j

(in particular w1 = u2
0/2) hold for 1 ≤ ν ≤ n+ 1.

Proof. Suppose that (E) admits formal solu-
tion (2). As was shown in [1, Proposition 2.2 and its
proof], the series Y (x) is decomposed into

Y (x) = F (x)D(x), F (x) =
∑
j≥0

Fjx
−j ,

D(x) =
∑
j≥0

Djx
−j , F0 = D0 = I,

Fj = fjL+ gjK, Dj = diag(d1
j , d

2
j) (j ≥ 1);

and hence F ′(x) + F (x)(D′(x)D(x)−1 + T ′(x)) =
A(x)F (x). Comparing the coefficients of xk (−1 ≤
k ≤ 2n+ 1) on both sides, we have

(4) A−2n−2+j = [Fj , J ] −
j−1∑
m=1

A−2n−2+mFj−m

for 1 ≤ j ≤ 2n+ 1, and

A0 = [F2n+2, J ]

−
2n+1∑
m=1

A−2n−2+mF2n+2−m + tJ,

A1 = [F2n+3, J ]

−
2n+2∑
m=1

A−2n−2+mF2n+3−m + tF1J +
I

2
.

(5)

Note the relations J2 = −K2 = L2 = I, JK =
−KJ = L, KL = −LK = J, LJ = −JL = −K.
Using (4) and (5), we can verify, by induction on i,

f2i−1 = 0 (1 ≤ i ≤ n+ 2),

g2i = 0 (1 ≤ i ≤ n+ 1).

Then, by (4) with j = 2i (1 ≤ i ≤ n),

viK − wiJ =
(
−2f2i +

i−1∑
l=1

wlf2i−2l

)
K

−
(
u0g2i−1 +

i−1∑
l=1

(ulg2i−1−2l + vlf2i−2l)
)
J,

which yields
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f2i =
1
2

(
−vi +

i−1∑
l=1

wlf2i−2l

)
,(6)

wi = u0g2i−1 +
i−1∑
l=1

(ulg2i−1−2l + vlf2i−2l)(7)

(1 ≤ i ≤ n), in particular f2 = −v1/2, w1 = u0g1.
Moreover, by (4) with j = 2i− 1 (1 ≤ i ≤ n+ 1),

−ui−1L =
(
−2g2i−1 +

i−1∑
l=1

wlg2i−1−2l

)
L+ (· · · )I,

and hence

(8) g2i−1 =
1
2

(
ui−1 +

i−1∑
l=1

wlg2i−1−2l

)
(1 ≤ i ≤ n+1), in particular g1 = u0/2. Analogously,
from (5), we have

f2n+2 =
1
2

(
−s+

n∑
l=1

wlf2n+2−2l

)
,

s = t− u0g2n+1 −
n∑

l=1

(ulg2n+1−2l + vlf2n+2−2l)

(9)

and

(10) g2n+3 =
1
2

(
1
2
− (s+ t)g1 +

n∑
l=1

wlg2n+3−2l

)
.

Using (6) through (10), we can check (3). Conversely
suppose that wν are given by (3). By (6), (8), (9)
and (10), we can recursively determine fj , gj (1 ≤
j ≤ 2n + 3) and s. Then, tracing the computation
above, we see that

F∗(x) =
2n+3∑
j=0

Fjx
−j , F0 = I

satisfies

F∗(x)T ′(x)

=
(
A(x) +

( 2n+1∑
j=−1

δjx
j

)
I

)
F∗(x) +

∑
j≥2

Ejx
−j .

Observing that tr(F∗(x)T ′(x)F∗(x)−1) = trT ′(x) =
−x−1I, and that trA(x) = − tr(A1x

−1) = −x−1I,

we have δj = 0 for −1 ≤ j ≤ 2n + 1. This fact
implies the existence of formal solution (2).

System (E) possesses an apparent singularity at
x = 0. To remove it, we employ the Schlesinger
transformation

(11) W = Ψ(x)Ξ, Ψ(x) =
(

1 1
u0/2 u0/2 + x

)
.

Then (E) is changed into

(E0)
dW

dx
= B(x)W, B(x) = −

2n+2∑
j=0

B−jx
j .

Here

B−2n−2 = J,

B−2i−1 =
( −Un−i 2Zn−i

−Vn−i − vn−i+1 Un−i

)
,

B−2i =
(−Zn−i+1 0
−Un−i+1 Zn−i+1

)
(1 ≤ i ≤ n),

B−1 =
( −Un 2Zn

−Vn − s Un

)
, B0 =

(
0 0

1/2 0

)
with

(12)
Zν = vν + wν , Uν = uν + u0Zν ,

Vν = u0uν + u2
0Zν/2

(0 ≤ ν ≤ n), v0 = w0 = 0.
4. Isomonodromic deformation of (E)

and (E0). Suppose that uν , vν , wν are functions
of t. The isomonodromic deformation of (E) with
respect to the deformation parameter t is governed
by the completely integrable system

(13)
dA(x) =

∂

∂x
Ω(x, t) + [Ω(x, t), A(x)],

Ω(x, t) = Φ−1(t)x+ Φ0(t),

where Φ−1(t) and Φ0(t) are one-forms with respect
to t defined by

1∑
k=−∞

Φ−k(t)xk = Y (x)(−xdt)JY (x)−1

(cf. [1, Theorem 1 or 3.3]). It is easy to see that

(14)
Φ−1(t) = −Jdt,
Φ0(t) = −(Y1J − JY1)dt = −A−2n−1dt;

the latter equality follows from the relation A(x) =
Y (x)T ′(x)Y (x)−1 +Y ′(x)Y (x)−1. By (14), equation
(13) is written in the form

−dA−2n−2+j

= ([J,A−2n−1+j ] + [A−2n−1, A−2n−2+j ])dt

(1 ≤ j ≤ 2n+ 1),

−dA0 = (−J + [J,A1] + [A−2n−1, A0])dt,

−dA1 = −[A−2n−1, A1]dt.
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These relations imply the following:
Proposition 4.1. The isomonodromic defor-

mation of (E) is governed by the system of equations
(with respect to u0, uν , vν)

(15)
u′ν−1 = 2vν , v′ν = 2uν + 2u0wν ,

w′
ν = 2u0vν (1 ≤ ν ≤ n),

u′n = 2s, s′ = 1 − 2u0s,

where wν and s = t − wn+1 are variables defined by
(3).

Remark 4.1. The equations w′
i = 2u0vi (1 ≤

i ≤ n) and s′ = 1−2u0s are obtained from the others.
Indeed, by (3), w′

1 = u0u
′
0 = 2u0v1; and supposing

them for i ≤ ν − 1, we have

w′
ν =

ν−1∑
j=1

(w′
jwν−j−v′jvν−j)+

ν∑
j=1

u′j−1uν−j = 2u0vν .

Note that the isomonodromic property remains
invariant under the Schlesinger transformation (11).
Using (12), from Proposition 4.1 and Remark 4.1, we
derive the following:

Proposition 4.2. The isomonodromic defor-
mation of (E0) is governed by the system of equations
(with respect to u0, Zν , Uν)

(16)

u′0 = 2Z1 − u2
0,

Z ′
ν = 2Uν ,

U ′
ν = 2(Zν+1 − wν+1)

+ (2Z1 − u2
0)Zν + 2u0Uν

(1 ≤ ν ≤ n− 1),
Z ′

n = 2Un,

U ′
n = 2(t− wn+1) + (2Z1 − u2

0)Zn + 2u0Un.

5. Proof of Theorem 2.2. By Miwa’s the-
orem [5], every solution (u0, Zν , Uν) of (16) is mero-
morphic in C. It is sufficient to show that system
(Sn) coincides with a series of equations for Zν , Uν

in (16). In addition to Q(ξ), R(ξ), F (ξ) in Section 2,
set

p(ξ) =
∑
ν≥1

wνξ
ν , q(ξ) =

∑
ν≥1

vνξ
ν ,

r(ξ) =
∑
ν≥0

uνξ
ν .

For convenience, suppose that, by (12) and (3), the
variables Zν , Uν and wν are defined for all ν ∈ N.
Then,

p(ξ) =
1
2
(
p(ξ)2 − q(ξ)2 + ξr(ξ)2

)

=
1
2

(
2Q(ξ)p(ξ) −Q(ξ)2 + ξ(u0(1 −Q(ξ)) +R(ξ))2

)
and hence

p(ξ) = −Q(ξ)2 − ξ(u0(1 −Q(ξ)) +R(ξ))2

2(1 −Q(ξ))
,

which expresses wν in terms of Zi, Ui, u0. The gen-
erating function for the right-hand side of the third
equation in (16) is given by

2ξ−1(Q(ξ) − p(ξ)) + (2Z1 − u2
0)Q(ξ) + 2u0R(ξ).

Substituting p(ξ) into this, we obtain F (ξ), which
yields system (Sn).

6. Proof of Theorem 2.1. By the defini-
tion of (Sn), the pairs (Zν , Uν) are recursively deter-
mined by

(17)
Zν+1 =

1
2
(
U ′

ν −Gν(Zj , Uk; 1≤j≤ν, 1≤k≤ν−1)
)
,

Uν = Z ′
ν/2

(ν = 1, . . . , n), with Zn+1 = t. By this fact, it is
sufficient to show the following:

Lemma 6.1. For 0 ≤ ν ≤ n,

(18) dν+1[Z1] = −4ν+1Zν+1.

Proof. We show (18) by induction on ν. Since
d1[y] = −4y, (18) is valid for ν = 0. Suppose that
(18) is valid for 0 ≤ ν ≤ k. Then

Ddk+2[Z1] = (D3 − 8Z1D − 4Z ′
1)dk+1[Z1](19)

= −4k+1(Z(3)
k+1 − 8Z1Z

′
k+1 − 4Z ′

1Zk+1).

By (15) and the first equation of (16),

v′′k+1 = 2u′k+1 + 2u′0wk+1 + 2u0w
′
k+1

= 4vk+2 + 4Z1wk+1 − 2u2
0wk+1 + 4u2

0vk+1,

w′′
k+1 = 2u′0vk+1 + 2u0v

′
k+1

= 4Z1vk+1 − 2u2
0vk+1 + 4u2

0wk+1 + 4u0uk+1;

and hence

Z ′′
k+1 = 4Z1Zk+1 + 2u2

0Zk+1 + 4vk+2 + 4u0uk+1.

Substituting this into (19) and using (15), we have

Ddk+2[Z1] = −4k+2Z ′
k+2.

By (17) together with the definition of Gν , we have
dk+2[Z1] = −4k+2Zk+2, which implies that (18) is
valid for ν = k + 1. This completes the proof.
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equations of higher order and some relations be-
tween them. Phys. Lett. A, 224, 353–360 (1997).

[ 4 ] Kudryashov, N. A., and Soukharev, M. B.: Uni-
formization and transcendence of solutions for
the first and second Painlevé hierarchies. Phys.
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ate Garnier system of (9/2)-type and of a certain
fourth order non-linear ordinary differential equa-
tion. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4),
29, 1–17 (2000).

[ 7 ] Shimomura, S.: On the Painlevé I hierarchy. RIMS
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