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Abstract

In this paper we give a characterization of the Gromov hyperbolicity of trains
(a large class of Denjoy domains which contains the flute surfaces) in terms of the
behavior of a real function. This function describes somehow the distances between
some remarkable geodesics in the train. This theorem has several consequences; in
particular, it allows to deduce a result about stability of hyperbolicity, even though
the original surface and the modified one are not quasi-isometric. In order to ob-
tain these results we also prove some trigonometric lemmas that are interesting by
themselves, since they provide very simple estimates on some hyperbolic distances.

1. Introduction

The theory of Gromov hyperbolic spaces is a useful tool in order to understand
the connections between graphs and potential theory (see e.g. [4], [10], [13], [25], [26],
[27], [28], [35], [36], [40]). Besides, the concept of Gromov hyperbolicity grasps the
essence of negatively curved spaces, and has been successfully used in the theory of
groups (see e.g. [15], [17], [18] and the references therein).

A geodesic metric space is called hyperbolic (in the Gromov sense) if there exists
an upper bound of the distance of every point in a side of any geodesic triangle to
the union of the two other sides (see Definition 2.2). The latter condition is known as
Rips condition.

But, it is not easy to determine whether a given space is Gromov hyperbolic or
not. Recently, there has been some research aimed to show that metrics used in geo-
metric function theory are Gromov hyperbolic. Some specificexamples are showing
that the Klein–Hilbert metric ([8], [29]) is Gromov hyperbolic (under particular condi-
tions on the domain of definition), that the Gehring–Osgood metric ([20]) is Gromov
hyperbolic, and that the Vuorinen metric ([20]) is not Gromov hyperbolic (except for
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a particular case). Recently, some interesting results by Balogh and Buckley [5] about
the hyperbolicity of Euclidean bounded domains with their quasihyperbolic metric have
made significant progress in this direction (see also [9], [41] and the references therein).
Another interesting instance is that of a Riemann surface endowed with the Poincaré
metric. With such metric structure a Riemann surface is always negatively curved, but
not every Riemann surface is Gromov hyperbolic, since topological obstacles may im-
pede it: for instance, the two-dimensional jungle-gym (aZ2-covering of a torus with
genus two) is not hyperbolic.

We are interested in studying when Riemann surfaces equipped with their Poincaré
metric are Gromov hyperbolic (see e.g. [3], [21], [22], [23], [24], [30], [31], [32], [33],
[34], [37], [38], [39]). To be more precise, in the current paper our main aim is to
study the hyperbolicity of Denjoy domains, that is to say, plane domains� with �� �R. This kind of surfaces are becoming more and more important in geometric theory
of functions, since, on the one hand, they are a very general type of Riemann surfaces,
and, on the other hand, they are more manageable due to its symmetry. For instance,
Garnett and Jones have proved the Corona theorem for Denjoy domains ([14]), and in
[2] the authors have got the characterization of Denjoy domains which satisfy a linear
isoperimetric inequiality.

Denjoy domains are such a wide class of Riemann surfaces thatcharacterization
criteria are not straightforward to apply. That is the main reason that led us to focus
on a particular type of Denjoy domain, which we have calledtrain. A train can be de-
fined as the complement of a sequence of ordered closed intervals (see Definition 2.3).
Trains do include a especially important case of surfaces which are the flute surfaces
(see, e.g. [6], [7]). These ones are the simplest examples ofinfinite ends, and besides,
in a flute surface it is possible to give a fairly precise description of the ending geom-
etry (see, e.g. [19]). In [3] there are some results on hyperbolicity of trains.

This paper is a natural continuation of [3]. Although some ofthe theorems in the
current work might seem alike to some of the results in the preceding paper, the truth
is that they are much more powerful and the proofs developed are completely new.
Without a doubt, the main contribution of this paper is Theorem 3.2, that provides a
characterization of the hyperbolicity of trains in terms ofthe behavior of a real func-
tion with two integer parameters. (In [3] we give either necessary or sufficient con-
ditions, and there is a characterization, but much more difficult to apply than the one
presented here). This function describes somehow the distances between some remark-
able geodesics (calledfundamental geodesics) in the train. At first sight, Theorem 3.2
might not seem very user-friendly. However, in practice, this tool let us deduce a re-
sult about stability of hyperbolicity, even for cases when the original surface and the
modified one are not quasi-isometric (see Theorem 3.8).

Theorem 3.2 also allows to deduce both sufficient and necessary conditions that ei-
ther guarantee or discard hyperbolicity (see Corollary 3.14, Theorems 3.16 and 3.17).
Besides, these three theorems give a much simpler characterization than Theorem 3.2 for
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an interesting case of trains: those for which the lengths oftheir fundamental geodesics
are a quasi-increasing sequence. We are talking about Theorem 3.18, another crucial re-
sult in this paper.

In order to obtain these results we also prove some trigonometric lemmas that are
interesting by themselves, since they provide very simple estimates on some hyperbolic
distances (see Propositions 4.8 and 4.9).

For the sake of clarity and readability, we have opted for moving all the technical
lemmas to the last section of the paper. This makes the proof of Theorem 3.2, our
main result, much more understandable.

NOTATIONS. We denote byX a geodesic metric space. BydX and L X we shall
denote, respectively, the distance and the length in the metric of X. From now on,
when there is no possible confusion, we will not write the subindex X.

We denote by� a train with its Poincaré metric.
Given a subsetF of the complex plane, we defineFC D F \ fz 2 C W =z � 0g,

where=z is the imaginary part ofz.
If E is either a function or a constant related to a domain�, we will denote by

E0 or E j the same function or constant related to a domain�0 or � j , respectively.
As usual, we denote byxC the positive part ofx: xC WD x if x � 0 and xC WD 0

if x < 0.
If “ a is comparableto b”, i.e. if there exists a constantc such thatc�1a � b� ca,

we will denote it bya � b.
Finally, we denote byc and ci , positive constants which can assume different val-

ues in different theorems.

2. Background in Gromov spaces and Riemann surfaces

In our study of hyperbolic Gromov spaces we use the notationsof [15]. We give
now the basic facts about these spaces. We refer to [15] for more background and
further results.

DEFINITION 2.1. If 
 W [a, b] ! X is a continuous curve in a metric space (X, d),
the length of 
 is

L(
 ) WD sup

(
nX

iD1

d(
 (ti�1), 
 (ti )) W a D t0 < t1 < � � � < tn D b

)
.

We say that
 is a geodesicif it is an isometry, i.e.L(
 j[t ,s]) D d(
 (t), 
 (s)) D jt � sj
for every s, t 2 [a, b]. We say thatX is a geodesic metric spaceif for every x, y 2 X
there exists a geodesic joiningx and y; we denote by [x, y] any of such geodesics
(since we do not require uniqueness of geodesics, this notation is ambiguous, but con-
venient as well).
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DEFINITION 2.2. Consider a geodesic metric spaceX. If x1, x2, x3 2 X, a geo-
desic triangle TD fx1, x2, x3g is the union of three geodesics [x1, x2], [x2, x3] and
[x3, x1]. We say thatT is Æ-thin if for every x 2 [xi , x j ] we have thatd(x, [x j , xk] [
[xk, xi ]) � Æ. The spaceX is Æ-hyperbolic if every geodesic triangle inX is Æ-thin.

We would like to point out that deciding whether or not a spaceis hyperbolic is
usually extraordinarily difficult: Notice that, first of all, we have to consider an arbi-
trary geodesic triangleT , and calculate the minimum distance from an arbitrary point
P of T to the union of the other two sides of the triangle to whichP does not be-
long to. And then we have to take supremum over all the possible choices forP and
then over all the possible choices forT . It means that if our space is, for instance,
an n-dimensional manifold and we select two pointsP and Q on different sides of a
triangle T , the functionF that measures the distance betweenP and Q is a (3nC 2)-
variable function. In order to prove that our space is hyperbolic we would have to take
the minimum ofF over the variable that describesQ, and then the supremum over the
remaining 3nC 1 variables, or at least prove that it is finite. Without disregarding the
difficulty of solving a (3nC 2)-variable minimax problem, notice that the main obsta-
cle is that we do not even know in an approximate way the location of geodesics in
the space.

EXAMPLES. (1) Every bounded metric spaceX is (diamX)-hyperbolic (see
e.g. [15, p. 29]).
(2) Every complete simply connected Riemannian manifold with sectional curvature
which is bounded from above by�k, with k > 0, is hyperbolic (see e.g. [15, p. 52]).
(3) Every tree with edges of arbitrary length is 0-hyperbolic (see e.g. [15, p. 29]).

A non-exceptionalRiemann surfaceS is a Riemann surface whose universal cover-
ing space is the unit diskD D fz2 CW jzj< 1g, endowed with its Poincaré metric, i.e. the
metric obtained by projecting the Poincaré metric of the unit disk dsD 2jdzj=(1� jzj2).
Therefore, any simply connected subset ofS is isometric to a subset ofD. With this
metric, S is a geodesically complete Riemannian manifold with constant curvature�1,
and thereforeS is a geodesic metric space. The only Riemann surfaces which are left
out are theexceptionalRiemann surfaces, that is to say, the sphere, the plane, the punc-
tured plane and the tori. It is easy to study the hyperbolicity of these particular cases.
The Poincaré metric is natural and useful in complex analysis: for instance, any holo-
morphic function between two domains is Lipschitz with constant 1, when we consider
the respective Poincaré metrics.

A Denjoy domainis a domain� in the Riemann sphere with�� � R[ f1g. As
we mentioned in the introduction of this paper, Denjoy domains are becoming more
and more interesting in geometric function theory (see e.g.[1], [2], [14], [16]).

It is obvious that as we focus on more particular kind of surfaces, we can obtain
more powerful results. For this reason we introduce now a newtype of space.



GROMOV HYPERBOLICITY OF FLUTE SURFACES 183

Fig. 1. Train seen as a subset of the complex plane.

Fig. 2. The same train seen with “Euclidean eyes”.

We have used the wordgeodesicin the sense of Definition 2.1, that is to say, as
a global geodesic or a minimizing geodesic; however, we neednow to deal with a
special type of local geodesics: simple closed geodesics, which obviously can not be
minimizing geodesics. We will continue using the word geodesic with the meaning of
Definition 2.1, unless we are dealing with closed geodesics.

DEFINITION 2.3. A train is a Denjoy domain�� C with �\RDS1
nD0(an,bn),

such that�1� a0 andbn � anC1 for everyn. A flute surfaceis a train withbn D anC1

for every n.
We say that a curve in a train� is a fundamental geodesicif it is a simple closed

geodesic which just intersectsR in (a0, b0) and (an, bn) for somen > 0; we denote
by 
n the fundamental geodesic corresponding ton and 2ln WD L�(
n). A curve in a
train � is a second fundamental geodesicif it is a simple closed geodesic which just
intersectsR in (an, bn) and (anC1, bnC1) for somen � 0; we denote by�n the second
fundamental geodesic corresponding ton and 2rn WD L�(�n) (see the figures above). If
bn D anC1, we define�n as the puncture at this point andrn D 0. Given z 2 �, we
define theheight of z as h(z) WD d�(z, (a0, b0)).

REMARK . Recall that in every free homotopy class there exists a single simple
closed geodesic, assuming that punctures are simple closedgeodesics with length equal
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to zero. That is why both the fundamental geodesic and the second fundamental geo-
desic are unique for everyn.

A train is a flute surface if and only if every second fundamental geodesic is
a puncture.

Flute surfaces are the simplest examples of infinite ends; furthermore, in a flute
surface it is possible to give a fairly precise description of the ending geometry (see,
e.g. [19]).

3. The main results

It is not difficult to see that the values offlng and frng determine a train, since
for everyn there exists a single fundamental geodesic and a single second fundamental
geodesic (see Remark to Definition 2.3). Then, there must exist a characterization of
hyperbolicity in terms of the lengths of the fundamental geodesics. It would be desir-
able to obtain such a characterization, since these lengthsdescribe the Denjoy domain
from a simple geometric viewpoint.

In order to obtain this characterization, we need to introduce the following functions.
(We refer to the next section for the details of the proofs of technical lemmas. We

think that this structure makes the paper more readable, because it shortens consider-
ably the proof of Theorem 3.2).

DEFINITION 3.1. Let us consider a sequence of positive numbersflng1nD1 and a
sequence of non-negative numbersfrng1nD1. Denote byxC the positive part ofx: xC WD
maxfx, 0g. Considern � 1 and 0� h � ln. We defineAn(h) WD maxfm < n W lm � hg
if this set is non-empty andAn(h) WD 1 in other case,Bn(h) WD minfm> nW lm � hg if
this set is non-empty andBn(h) WD 1 in other case,

1(k) WD e�lk C e�lkC1 C e�(1=2)(lkClkC1�rk)C C (rk � lk � lkC1)C,

and

0nm(h) WD

8������������������<
������������������:

(rm C h � lmC1)C C eh
n�1X

kDmC1

1(k), if m< n and lm � h,

lm � hC eh
n�1X
kDm

1(k), if m< n and lm > h,

minfh, ln � hg, if mD n,

lm � hC eh
m�1X
kDn

1(k), if m> n and lm > h,

(rm�1 C h � lm�1)C C eh
m�2X
kDn

1(k), if m> n and lm � h.
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The functions0nm(h) are naturally associated to trains by takingflng1nD1 and frng1nD1

as the half-lengths of their fundamental geodesics.

Theorem 3.2. A train � is hyperbolic if and only if

K WD sup
n�1

sup
h2[0,ln]

min
m2[ An(h),Bn(h)]

0nm(h) <1.

Furthermore, if � is Æ-hyperbolic, then K is bounded by a constant which only depends
on Æ; if K <1, then� is Æ-hyperbolic, with Æ a constant which only depends on K .

REMARKS. (1) Notice that this is a real variable characterization ofthe hyper-
bolicity.
(2) Theorem 3.2 clearly improves [3, Theorem 5.3]: we need toknow the lengths of
the fundamental geodesics instead of the precise location of these geodesics and the
distances toR from their points.
(3) The proof of Theorem 3.2 gives that its conclusion also holds if we replaceK by

K (l0) WD sup
n�1

sup
h2[l0,ln]

min
m2[ An(h),Bn(h)]

0nm(h) <1,

for any fixed l0 > 0. In this case, the constantÆ depends onK (l0) and l0.

Proof. By [3, Theorem 5.3],� is Æ-hyperbolic if and only if

K1 WD sup
n�1

sup
z2
n

inf
m�0

d�(z, (am, bm)) <1,

with the appropriate dependence of the constants (if� is Æ-hyperbolic, thenK1 is
bounded by a constant which only depends onÆ; if K1 <1, then� is Æ-hyperbolic,
with Æ a constant which only depends onK1).

Fix any constantl0 > 0. Notice that:
(1) d�(z, (a0, b0)) D h(z) and d�(z, (an, bn)) D ln � h(z). Since anyz with h(z) <
l0 verifies

inf
m�0

d�(z, (am, bm)) � d�(z, (a0, b0)) D h(z) < l0,

we only need to considerz with l0 � h(z) � ln.
From now on, let us fixn � 1 andz 2 
n with l0 � h(z) � ln.

(2) If k < m< n, with lm � h(z), let us consider the geodesic� which gives the mini-
mum distance betweenz and (ak, bk). Define the pointw WD � \ 
m; henced�(z,w) <
d�(z, (ak, bk)) and Lemma 4.3 give

d�(z, (am, bm)) � d2(z, (am, bm) \ 
m) � d2(z, w) � 3d�(z, w) < 3d�(z, (ak, bk)),
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whered2 is the function in Definition 4.2. In a similar way, ifk > m> n, with lm � h(z),
thend�(z, (am, bm)) < 3d�(z, (ak, bk)). Hence we only need to considerd�(z, (am, bm))
with m 2 f0g [ [ An(h(z)), Bn(h(z))], in order to study ifK1 is finite.
(3) If m 2 (An(h(z)), n), then l0 � h(z) < lm. By Lemma 4.4, we can replace
d�(z, (am, bm)) by d1(z, 
m\ (am, bm)), whered1 is the function in Definition 4.2. Ifzm

is the point in
m with h(zm) D h(z), thend1(z, 
m\ (am, bm)) WD d�(z, zm)C lm�h(z).
Standard hyperbolic trigonometry in quadrilaterals (see e.g. [12, p. 88]) gives that

d�(z, zm) D 2 Arcsinh

�
sinh

1

2
d�(
m, 
n) coshh(z)

�
.

Recall that (a0, b0) contains the shortest geodesic joining
m and 
n. By Corollary 4.7
we can replaced�(z, zm) by d�(
m, 
n)eh(z), and therefored1(z, 
m \ (am, bm)) by
d�(
m, 
n)eh(z) C lm� h(z). Standard hyperbolic trigonometry in right-angled hexagons
(see e.g. [12, p. 86]) gives that

d�(
k, 
kC1) D Arccosh
coshrk C coshlk coshlkC1

sinhlk sinhlkC1

for every k � 1. Proposition 4.8 gives

d�(
k, 
kC1) D f (lk, lkC1, rk)

� e�lk C e�lkC1 C e�(1=2)(lkClkC1�rk)C C (rk � lk � lkC1)C D 1(k),

for every k 2 (An(h(z)), n), since thenlk, lkC1 � h(z) � l0. Therefore we can replace
d�(z, (am, bm)) by

lm � h(z)C eh(z)
n�1X
kDm

1(k).

A symmetric argument gives that ifm 2 (n, Bn(h(z))), then we can replace
d�(z, (am, bm)) by

lm � h(z)C eh(z)
m�1X
kDn

1(k).

(4) If mD An(h(z)), thenh(z) � lm. If zmC1 is the point in
mC1 with h(zmC1) D h(z),
by Lemma 4.5, we can replaced�(z, (am, bm)) by d�(z, zmC1)Cd�(zmC1, (am, bm)). We
have seen in (3) that we can replaced�(z, zmC1) by

eh(z)
n�1X

kDmC1

1(k).
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Standard hyperbolic trigonometry in pentagons (see e.g. [12, p. 87]) gives that

sinhd�(zmC1, (am, bm)) D � coshlm sinhh(z)C sinhlm coshh(z) coshd�(
m, 
mC1).

Standard hyperbolic trigonometry in right-angled hexagons (see e.g. [12, p. 86]) gives that

coshd�(
m, 
mC1) D coshrm C coshlm coshlmC1

sinhlm sinhlmC1
,

and hence

sinhd�(zmC1, (am, bm))

D � coshlm sinhh(z)C coshh(z)
coshrm C coshlm coshlmC1

sinhlmC1

D coshlm(coshlmC1 coshh(z) � sinhlmC1 sinhh(z))C coshrm coshh(z)

sinhlmC1

D coshlm cosh(lmC1 � h(z))C coshrm coshh(z)

sinhlmC1
D sinhF(lm, lmC1, rm, h(z)),

where F is the function in Proposition 4.9. Therefore, Corollary 4.10 gives that we
can replaced�(zmC1, (am, bm)) by (rmCh(z)� lmC1)C. Consequently, we can substitute
d�(z, (am, bm)) by

(rm C h(z) � lmC1)C C eh(z)
n�1X

kDmC1

1(k).

A symmetric argument gives that ifm D Bn(h(z)), then we can replace
d�(z, (am, bm)) by

(rm�1 C h(z) � lm�1)C C eh(z)
m�2X
kDn

1(k).

Notice that each time that we replace a quantity by another inthis proof, the con-
stants are under control. Let us remark that (1), (2), (3) and(4) give the result, with
infm2[ An(h),Bn(h)] 0nm(h) instead of minm2[ An(h),Bn(h)] 0nm(h).

Let us see now that this infimum is attained. Seeking for a contradiction, suppose that
the latest statement is not true. Therefore,Bn(h) D1 andlm > h for everym> n. Then,
there exists an increasing sequence of integer numbersfm j g with lim j!1 0nmj (h) D
infm2[ An(h),1) 0nm(h). By choosing a subsequence if it is necessary, we can assumethatf0nmj (h)g j is a decreasing sequence. Hence,

0nmjC1(h) D lm jC1 � hC eh
m jC1�1X

kDn

1(k) < 0nmj (h) D lm j � hC eh
m j�1X
kDn

1(k).
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Consequently, we have thatlm jC1 < lm j < lm1 for every j , and

0nmj (h) D lm j � hC eh
m j�1X
kDn

1(k) � eh
m jX

kDn

e�lk � eh
jX

kD1

e�lmk � eh je�lm1 .

Hence, limj!10nmj (h)D lim j!1eh je�lm1 D1, which is a contradiction. This finishes
the proof.

Lemma 3.3. For every rk � 0 and 0< lk � h � lkC1, we have

(rk C h � lkC1)C < eh1(k).

Proof. Let us remark that it is sufficient to prove

rk C h � lkC1 < eh(e�(1=2)(lkClkC1�rk)C C (rk � lk � lkC1)C),

for every rk � 0 and 0< lk � h � lkC1.
Since the left hand side of the inequality does not depend onlk and the right hand

side is a decreasing function onlk, it is sufficient to prove

rk C h � lkC1 < eh(e�(1=2)(hClkC1�rk)C C (rk � h � lkC1)C),

for every rk � 0 and 0< h � lkC1.
If rk � hC lkC1, then the inequality is

rk C h � lkC1 < ehe�(1=2)(hClkC1�rk) D e(1=2)(rkCh�lkC1),

which trivially holds sincet < et=2 for every real numbert .
If rk � hC lkC1, then the inequality is

rk C h � lkC1 < eh(1C rk � h � lkC1).

Sinceeh � 1, it is clear that the function

U (rk) WD eh(1C rk � h� lkC1) � rk � hC lkC1

is increasing inrk 2 [hC lkC1, 1). ThenU (rk) � U (hC lkC1) D eh � 2h > 0, and the
inequality holds.

Proposition 3.4. In any train� we have

min
m2[ An(h),Bn(h)]

0nm(h) D min
m�1

0nm(h),

for every n� 1 and 0� h � ln.
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Proof. Fix n � 1 and 0� h � ln. If m< An(h), then Lemma 3.3 gives0nm(h) >0n An(h)(h):

0nm(h) � eh
n�1X

kDmC1

1(k) � eh
n�1X

kDAn(h)

1(k) D eh1(An(h))C eh
n�1X

kDAn(h)C1

1(k)

> (r An(h) C h� l An(h)C1)C C eh
n�1X

kDAn(h)C1

1(k) D 0n An(h)(h).

The casem> Bn(h) is similar.

Proposition 3.5. If for some n we have lm � ln for every m� n, then the conclu-
sion of Theorem 3.2also holds if we replace[ An(h), Bn(h)] by [ An(h), n] for this n.

Proof. It suffices to remark that for everyz2 
n andm> n, we haved�(z, (an,bn))D
ln � h(z) � lm � h(z) < d�(z, (am, bm)).

Although to compute the minimum and the supremum in Theorem 3.2 can be dif-
ficult in the general case, Theorem 3.2 is the main tool in order to obtain the remaining
results of this paper. We start with an elementary corollary.

Proposition 3.6. Let us consider a train� with ln � c for every n. Then� isÆ-hyperbolic, whereÆ is a constant which only depends on c.

Proof. For each positive integern, we have0nn(h) WD minfh, ln � hg � ln � c for
every h 2 [0, ln]. Hence,K � c and Theorem 3.2 finishes the proof.

One of the important problems in the study of any property is to obtain its stability
under appropriate deformations. Theorem 3.2 allows to prove a result which shows that
hyperbolicity is stable under bounded perturbations of thelengths of the fundamental
geodesics. Theorem 3.8 is particularly remarkable since there are very few results on
hyperbolic stability which do not involve quasi-isometries. We need a previous lemma;
it deals with some kind of reverse inequality to the one in Lemma 3.3.

Lemma 3.7. For every rk, lkC1 � 0 and 0� h � lk, we have

eh(e�(1=2)(lkClkC1�rk)C C (rk � lk � lkC1)C) � (1C (rk C h� lkC1)C)e(1=2)(rkCh�lkC1)C .

Proof. Since the right hand side of the inequality does not depend onlk and the
left hand side is a decreasing function onlk, it is sufficient to prove

eh(e�(1=2)(hClkC1�rk)C C (rk � h � lkC1)C) � (1C (rk C h � lkC1)C)e(1=2)(rkCh�lkC1)C ,

for every rk, lkC1, h � 0.
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If hC lkC1 � rk � 0, the inequality is direct since

eh(e�(1=2)(hClkC1�rk)C C (rk � h � lkC1)C) D ehe�(1=2)(hClkC1�rk) D e(1=2)(rkCh�lkC1).

If hC lkC1 � rk < 0, thenrk � lkC1 > h and (rk C h� lkC1)C > 2h; consequently,

eh(e�(1=2)(hClkC1�rk)C C (rk � h � lkC1)C)

D eh(1C rk � h � lkC1)

< (1C (rk C h� lkC1)C)e(1=2)(rkCh�lkC1)C .

Next, the result about stability that we have talked about before Lemma 3.7. The-
orem 3.8 is both a qualitative and a quantitative result.

Theorem 3.8. Let us consider two trains�, �0 and a constant c such thatjr 0n � rnj � c, and jl 0n � lnj � c for every n� 1. Then� is hyperbolic if and only
if �0 is hyperbolic. Furthermore, if � is Æ-hyperbolic, then�0 is Æ0-hyperbolic, with Æ0
a constant which only depends onÆ and c.

This result is a significant improvement with respect to [3, Theorem 5.33], since,
in that paper, the lengthsrn and r 0n were required to be bounded, whereas Theorem 3.8
only requiresrn � r 0n to be bounded. Notice that this is a much weaker condition. Fur-
thermore, the argument in the proof is completely new.

REMARKS. (1) Notice that in many cases� and�0 are not quasi-isometric (for
example, if there exists a subsequencefnkgk with limk!1 lnk D 0 and l 0nk

� c0 > 0).
(2) We have examples which show that Theorem 3.8 is sharp: if we change the con-
stants in Theorem 3.8 by any function growing slowly to infinity, then the conclusion
of Theorem 3.8 does not hold. For instance, iffrng is bounded andfr 0ng is not bounded,
then there existsflng D fl 0ng with � hyperbolic and�0 not hyperbolic.

Proof. By symmetry, it is sufficient to prove that if� is Æ-hyperbolic, then�0
is Æ0-hyperbolic, withÆ0 a constant which only depends onÆ and c. Therefore, let us
assume that� is Æ-hyperbolic.

Notice thate�lk C e�lkC1 � ec(e�l 0k C e�l 0kC1).
If lk C lkC1 � rk, thene�(1=2)(lkClkC1�rk)C C (rk � lk � lkC1)C D 1C rk � lk � lkC1 and

e�(1=2)(l 0kCl 0kC1�r 0k)C C (r 0k � l 0k � l 0kC1)C
� 1C 3cC rk � lk � lkC1

� (1C 3c)(e�(1=2)(lkClkC1�rk)C C (rk � lk � lkC1)C).
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If l 0k C l 0kC1 � r 0k, then

e�(1=2)(l 0kCl 0kC1�r 0k)C C (r 0k � l 0k � l 0kC1)C D e�(1=2)(l 0kCl 0kC1�r 0k)C
� e3c=2(e�(1=2)(lkClkC1�rk)C C (rk � lk � lkC1)C).

If lk C lkC1 > rk and l 0k C l 0kC1 < r 0k, then

lk C lkC1 � rk � l 0k C l 0kC1 � r 0k C 3c < 3c,

r 0k � l 0k � l 0kC1 � rk � lk � lkC1 C 3c < 3c,

and consequently

e�(1=2)(l 0kCl 0kC1�r 0k)C C (r 0k � l 0k � l 0kC1)C
D 1C r 0k � l 0k � l 0kC1 < (1C 3c)e3c=2e�3c=2
< (1C 3c)e3c=2(e�(1=2)(lkClkC1�rk)C C (rk � lk � lkC1)C).

Therefore

e�l 0k C e�l 0kC1 C e�(1=2)(l 0kCl 0kC1�r 0k)C C (r 0k � l 0k � l 0kC1)C
� (1C 3c)e3c=2(e�lk C e�lkC1 C e�(1=2)(lkClkC1�rk)C C (rk � lk � lkC1)C),

i.e.10(k) � (1C 3c)e3c=21(k). We also have

(r 0m C h � l 0mC1)C � 2cC (rm C h � lmC1)C,

l 0m � h � cC lm � h,

minfh, l 0n � hg � cCminfh, ln � hg.
Hence, we conclude

(0nm)0(h) � (1C 3c)e3c=20nm(h)C 2c,

for every n, m� 1 andh � 0 with eithermD n or lm, l 0m � h or lm, l 0m > h.
We deal now with the other cases. Let us assume thatm 2 [ A0

n(h), n). The case
m 2 (n, B0

n(h)] is similar.
If l 0m � h< lm, thenmD A0

n(h) and l 0m � h< l 0mC1. Applying Lemma 3.3 we obtain

(0nm)0(h) D (r 0m C h� l 0mC1)C C eh
n�1X

kDmC1

10(k) < eh
n�1X
kDm

10(k)

� lm � hC (1C 3c)e3c=2eh
n�1X
kDm

1(k) � (1C 3c)e3c=20nm(h).
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If lm � h < l 0m, thenm> A0
n(h) and h < l 0mC1. We also havel 0m� h � l 0m� lm � c.

Applying Lemma 3.7 we obtain

(0nm)0(h)

D l 0m� hCeh�l 0m Ceh�l 0mC1 Ceh(e�(1=2)(l 0mCl 0mC1�r 0m)C C (r 0m� l 0m� l 0mC1)C)Ceh
n�1X

kDmC1

10(k)

� cC2C (1C (r 0mC h� l 0mC1)C)e(1=2)(r 0mCh�l 0mC1)C C (1C3c)e3c=2eh
n�1X

kDmC1

1(k)

� cC2C (1C2cC (rmC h� lmC1)C)ece(1=2)(rmCh�lmC1)C C (1C3c)e3c=2eh
n�1X

kDmC1

1(k)

� cC2C (1C2cC0nm(h))ece(1=2)0nm(h) C (1C3c)e3c=20nm(h).

We can conclude in any case

sup
h2[0,minfln,l 0ng] min

m2[ A0n(h),B0n(h)]
(0nm)0(h)

D sup
h2[0,minfln,l 0ng] min

m�1
(0nm)0(h)

� sup
h2[0,ln]

min
m�1

(cC 2C (1C 2cC 0nm(h))ece(1=2)0nm(h) C (1C 3c)e3c=20nm(h))

� cC 2C (1C 2cC K )ece(1=2)K C (1C 3c)e3c=2K ,

for every n � 1, whereK only depends onÆ, by Theorem 3.2 and Proposition 3.4.
If for somen we haveln < l 0n andh 2 [ln, l 0n], then (0nn)0(h) � l 0n�h � l 0n� ln � c and

sup
h2[ln,l 0n]

min
m2[ A0n(h),B0n(h)]

(0nm)0(h) � c.

Therefore,K 0 � cC 2C (1C 2cC K )ece(1=2)K C (1C 3c)e3c=2K , and the conclusion
holds by Theorem 3.2.

Theorem 3.8 has the following direct consequence.

Corollary 3.9. Let us consider two trains�, �0 such that r0n D rn, and l0n D ln
for every n� N. Then� is hyperbolic if and only if�0 is hyperbolic.

Theorems 3.11 and 3.12 are simpler versions of Theorem 3.2, which can be ap-
plied in many occasions, and are obtained by replacing0nm(h) for 0�nm(h) and00

nm(h),
respectively. We define now these functions.
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DEFINITION 3.10. Let us consider a sequence of positive numbersflng1nD1 and a
sequence of non-negative numbersfrng1nD1. Considern � 1 and 0� h � ln. We define

0�nm(h) WD

8�����������������<
�����������������:

(rm C h � lmC1)C C eh
nX

kDmC1

e�lk , if m< n and lm � h,

lm � hC eh
nX

kDm

e�lk , if m< n and lm > h,

minfh, ln � hg, if mD n,

lm � hC eh
mX

kDn

e�lk , if m> n and lm > h,

(rm�1 C h� lm�1)C C eh
m�1X
kDn

e�lk , if m> n and lm � h,

and

00
nm(h) WD

8������<
������:

eh
nX

kDmC1

e�lk , if m< n and lm � h,

eh
m�1X
kDn

e�lk , if m> n and lm � h,

0�nm(h), in other case.

The functions0�nm(h) and 00
nm(h) are naturally associated to trains by takingflng1nD1

and frng1nD1 as the half-lengths of their fundamental geodesics.

Theorem 3.11. Let us consider a train� such that there exists a constant c> 0
with rn � 2cC jln � lnC1j for every n� 1. Then� is hyperbolic if and only if

K � WD sup
n�1

sup
h2[0,ln]

min
m2[ An(h),Bn(h)]

0�nm(h) <1.

Furthermore, if � is Æ-hyperbolic, then K� is bounded by a constant which only de-
pends onÆ and c; if K � <1, then� is Æ-hyperbolic, with Æ a constant which only
depends on K� and c.

Proof. First, let us consider the integer numbersk with lkClkC1 � rk. The inequality
rk � lk � lkC1 � 2c� 2 minflk, lkC1g (which is equivalent tork � 2cC jlk � lkC1j) gives

e�(1=2)(lkClkC1�rk)C C (rk � lk � lkC1)C D e(1=2)(rk�lk�lkC1)

� ec�minflk,lkC1g � ec(e�lk C e�lkC1).
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And now, consider the integer numbersk with lk C lkC1 � rk. The inequality 0�
rk � lk � lkC1 � 2c� 2 minflk, lkC1g gives minflk, lkC1g � c, and consequently

e�c � e�minflk,lkC1g, 1� ec(e�lk C e�lkC1).

Hence

e�(1=2)(lkClkC1�rk)C C (rk � lk � lkC1)C D 1C rk � lk � lkC1

� 1C 2c � (1C 2c)ec(e�lk C e�lkC1).

Then

e�(1=2)(lkClkC1�rk)C C (rk � lk � lkC1)C � (1C 2c)ec(e�lk C e�lkC1),

e�lk C e�lkC1 � 1(k) � (1C (1C 2c)ec)(e�lk C e�lkC1),

for every k � 1. Hence, if we apply Theorem 3.2 we obtain the conclusion, with
infm2[ An(h),Bn(h)] 0�nm(h) instead of minm2[ An(h),Bn(h)] 0�nm(h). In order to see that the infi-
mum is attained we can follow an argument similar to the one atthe end of the proof
of Theorem 3.2.

Theorem 3.12. Let us consider a train� such that there exists a constant c> 0
with rn � c for every n� 1. Then� is hyperbolic if and only if

K 0 WD sup
n�1

sup
h2[0,ln]

min
m2[ An(h),Bn(h)]

00
nm(h) <1.

Furthermore, if � is Æ-hyperbolic, then K0 is bounded by a constant which only de-
pends onÆ and c; if K 0 < 1, then� is Æ-hyperbolic, with Æ a constant which only
depends on K0 and c.

REMARK . Notice that00
nm is much simpler than0nm:

Firstly, the four terms in the definition of1(k) are replaced by its first term.
Furthermore, in the first and fifth cases in the definition of00

nm we remove the
first term in the corresponding definition of0nm.

In order to obtain these simplifications, we must pay with thehypothesisrn � c,
but this is a usual hypothesis: for instance, every flute surface satisfies it.

Proof. Notice that (rmC h� lmC1)C � rm � c if mD An(h) (since lmC1 > h) and
(rm�1 C h � lm�1)C � rm�1 � c if mD Bn(h).

Hence, if we apply Theorem 3.11 we obtain the conclusion, with infm2[ An(h),Bn(h)]00
nm(h)

instead of minm2[ An(h),Bn(h)] 00
nm(h).

In order to see that the infimum is attained we can follow an argument similar to
the one at the end of the proof of Theorem 3.2.
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Proposition 3.13. In any train� we have

min
m2[ An(h),Bn(h)]

00
nm(h) D min

m�1
00

nm(h),

for every n� 1 and 0� h � ln.

Proof. Fix n � 1 and 0� h � ln. If m< An(h), then00
nm(h) > 00

n An(h)(h):

00
nm(h) � eh

nX
kDmC1

e�lk > eh
nX

kDAn(h)C1

e�lk D 00
n An(h)(h).

The casem> Bn(h) is similar.

Theorem 3.12 let us obtain an alternative proof of a result that appears in [3], but using
now a completely new argument. It is a simple sufficient condition for the hyperbolicity.

Corollary 3.14. Let us consider a train� with l1 � l 0, rn � c1 for every n and

(3.1)
1X

kDn

e�lk � c2e�ln , for every n> 1.

Then� is Æ-hyperbolic, whereÆ is a constant which only depends on c1, c2 and l0.

EXAMPLES. Let us consider an increasingC1 function f with limx!1 f (x)D1,
and defineln WD f (n) for every n. A direct computation gives thatflng satisfies (3.1)
if and only if there exist constantsc, M with f 0(x) � c > 0 for every x � M.

Consequently, fora, b> 0 andc 2 R, the sequenceln WD anb C c satisfies (3.1) if
and only if b � 1.

Proof. Let us considern � 1 and h 2 [l 0, ln]. Since l1 � l 0 � h, we have that
mD An(h) satisfieslm � h < lmC1 and

00
nm(h) D eh

nX
kDmC1

e�lk � ehc2e�lmC1 < c2.

If h 2 [0, l 0], then00
nn(h) � h � l 0. Hence,K 0 � maxfc2, l 0g, and Theorem 3.12 gives

the result.

Lemma 3.15. (1) Let us consider a sequenceflng such that lm � lnCc for every
positive integer number m� n. Then there exists a non-decreasing sequencefl 0ng, such
that jln � l 0nj � c for every n.
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(2) Let us consider a non-decreasing sequencefl 0ng. If flng is a sequence withjln� l 0nj �
c for every n, then lm � ln C 2c for every positive integer number m� n.

Proof. We prove now the first part of the lemma. We define a sequence fl 0ng in
the following way: l 0n WD maxfl1, l2, : : : , lng. It is clear thatfl 0ng is a non-decreasing
sequence. Sincelm � ln C c for every m D 1, 2,: : : , n, we haveln � l 0n � ln C c.
Consequently,jln � l 0nj � c for every n.

In order to prove the second part, notice that ifm� n, then lm � l 0mCc� l 0nCc�
ln C 2c.

The two following theorems provide necessary conditions for hyperbolicity.

Theorem 3.16. Let us consider a hyperbolic train� with lm � ln C c1 for every
positive integer number m� n. If K is the constant defined inTheorem 3.2,then

rn � 2 maxfK , 1g C 2 log maxfK , 1g C 3c1, for every n with lnC1 > 4(K C c1).

Proof. Let us defineM WD maxfK , 1g and fix n with lnC1 > 4(K C c1).
Let us assume thatrn � lnC1. Consider" 2 (0, 1=2) andhnC1 WD lnC1 � "rn. Then

0nC1,nC1(hnC1) D minflnC1 � "rn, "rng D "rn,

0nC1,m(hnC1) � lm � hnC1 � lnC1 � c1 � hnC1 D "rn � c1, if m> nC 1,

0nC1,n(hnC1) � (rn C hnC1 � lnC1)C D (1� ")rn, if ln � hnC1,

0nC1,m(hnC1) � ehnC11(n) � elnC1�"rne�(1=2)(lnClnC1�rn) � elnC1�"rne�(1=2)(lnC1ClnC1Cc1�rn)

D e�(1=2)c1C((1=2)�")rn , if either m< n or mD n and ln > hnC1.

Since" 2 (0, 1=2)

M � minf"rn, "rn � c1, (1� ")rn, e�(1=2)c1C((1=2)�")rng
D minf"rn � c1, e�(1=2)c1C((1=2)�")rng,

and we deduce

rn � max

�
M C c1" ,

log M C c1=2
1=2� "

�
.

Taking " D (M C c1)=(2M C 2 logM C 3c1) (notice that" 2 (0, 1=2), since logM � 0),
we obtain the equality of the two terms inside the maximum, and thereforern � 2MC
2 log M C 3c1.

We prove now thatrn � lnC1. Seeking for a contradiction, assume thatrn > lnC1,
and considerhnC1 WD (3=4)lnC1. A similar argument, withhnC1 instead ofhnC1, gives:
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If ln C lnC1 < rn, since lnC1 > 4(K C c1),

K � min

�
1

4
lnC1,

1

4
lnC1 � c1,

3

4
lnC1, e(3=4)lnC1

� D 1

4
lnC1 � c1 > K ,

since lnC1 > 4(K C c1), and this is a contradiction. Ifln C lnC1 � rn, we obtain with a
similar argument

K � min

�
1

4
lnC1,

1

4
lnC1 � c1,

3

4
lnC1, e(1=4)lnC1�(1=2)c1

�

D min

�
1

4
lnC1 � c1, e(1=4)lnC1�(1=2)c1

� > K ,

and this is the contradiction we are looking for.

Condition lm � ln C c1 for every positive integer numberm � n in Theorem 3.16
can seem superfluous, but we have examples which prove that, in fact, if it is removed,
then the conclusion of the theorem is not true.

The following theorem obtains a similar inequality to (3.1)but with an explicit
control of the constants involved.

Theorem 3.17. Let us consider a hyperbolic train� with lm � ln C c1 for every
positive integer number m� n. If K is the constant defined inTheorem 3.2,then

1X
kDn

e�lk � KeKCc1e�ln , for every n with ln > 2K C c1.

Proof. Theorem 3.2 and Proposition 3.4 give that

min
m�1

0nm(h) � K , for every n � 1 and h 2 [0, ln].

Let us fix n with ln > 2K C c1 and n0 � n. Consider" > 0 with ln � 2K C c1 C ".
If we define h WD ln � K � c1 � "=2 � K C "=2 > K , then for anym � n we have
lm � h � ln � h � c1 D K C "=2> K and

0n0m(h) � 00
n0m(h) � K C "

2
> K .

If m< n, we obtain

0n0m(h) � 00
n0m(h) � eh

n0X
kDn

e�lk .
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Consequently,

K � min
m�1

0n0m(h) D min
1�m<n

0n0m(h) � eln�K�c1�"=2 n0X
kDn

e�lk ,

for every n0 � n and " small enough. Therefore

K � eln�K�c1

1X
kDn

e�lk ,

which finishes the proof.

Corollary 3.14, Theorems 3.16, 3.17, 3.2 and Proposition 3.6 give the following
powerful and simple characterization. In particular, thisresult characterizes hyperbolicity
of trains for whichln is a non-decreasing sequence.

Theorem 3.18. Let us consider a train� with lm � ln C c1 for every positive
integer number m� n.
(1) If flng is a bounded sequence, then� is hyperbolic.
(2) If limn!1 ln D1, then� is hyperbolic if and only iffrng is a bounded sequence
and (3.1) holds for some constant c2.

REMARK . Note that Theorem 3.18 deals with every case under the hypothesis
“ lm � lnCc1 for m� n”: flng is either a bounded sequence or a sequence with limit1.

4. Trigonometric lemmas

In this section some technical lemmas are collected. All of them have been used
in Section 3 in order to simplify the proof of Theorem 3.2.

DEFINITION 4.1. Given a surfaceM, a geodesic
 in M, and a continuous unit
vector field � along 
 , orthogonal to
 , we define theFermi coordinatesbased on

as the mapE(u, v) WD exp
 (u) v� (u).

It is well known that the Riemannian metric can be expressed in Fermi coordi-
nates asds2 D dv2 C �2(u, v) du2, where�(u, v) is the solution of the scalar equa-
tion �2�=�v2 C K� D 0, �(u, 0) D 1, ��=�v(u, 0) D 0, and K is the curvature of
M (see e.g. [11, p. 247]). Consequently, ifM is a non-exceptional Riemann surface,
the Poincaré metric in Fermi coordinates (based on any geodesic 
 ) is ds2 D dv2 C
cosh2 v du2, since K D �1 in the Poincaré metric. We always consider in a train the
Fermi coordinates based on (a0, b0).
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DEFINITION 4.2. Let us consider Fermi coordinates (u, v) in D. We define the
distancesd1((u1, v1), (u2, v2)), d2((u1, v1), (u2, v2)) as follows: without loss of generality
we can assume thatv1 � v2; then

d1((u1, v1), (u2, v2)) WD d((u1, v1), (u1, v2))C d((u1, v2), (u2, v2))

D v1 � v2 C d((u1, v2), (u2, v2)),

d2((u1, v1), (u2, v2)) WD d((u1, v1), (u2, v1))C d((u2, v1), (u2, v2))

D d((u1, v1), (u2, v1))C v1 � v2.

The following lemma shows that the “cartesian distances”d1 and d2 are compara-
ble to d.

Lemma 4.3. Let us consider Fermi coordinates(u, v) in D and the distances d1

and d2. Then

1

2
d1 � d � d1,

1

3
d2 � d � d2.

Proof. Triangle inequality gives directlyd � d1 and d � d2. Let us considerv1 �v2. It is easy to check that

d((u1, v1), (u1, v2)) � d((u1, v1), (u2, v2)), d((u1, v2), (u2, v2)) � d((u1, v1), (u2, v2))

and this impliesd1 � 2d.
We also haved((u2, v1), (u2, v2)) � d((u1, v1), (u2, v2)), and then

d((u1, v1), (u2, v1)) � d((u1, v1), (u2, v2))C d((u2, v1), (u2, v2))

� 2d((u1, v1), (u2, v2)),

d2((u1, v1), (u2, v2)) D d((u1, v1), (u2, v1))C d((u2, v1), (u2, v2))

� 3d((u1, v1), (u2, v2)).

Lemma 4.4. Let � be a train and l0 any positive constant. We have

d1(z, 
n \ (an, bn)) � 2d�(z, (an, bn))C 2 Arcsinh
1p

2 tanhl0
,

for every n> 0 and z2 � with l0 � h(z) � ln.

Proof. Letw be the nearest point in (an, bn) to z, and definev WD 
n \ (an, bn),
let v0 be the nearest point in (a0, b0) to v andw0 the nearest point in (a0, b0) to w.
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Consider the geodesic quadrilateral in�C with vertices v, w, w0 and v0. Standard
hyperbolic trigonometry gives that

tanhd�(w, w0) D tanhd�(v, v0) coshd�(v0, w0) D tanhln coshd�(v0, w0).

Denote byv0 (respectivelyw0) the point in
Cn D [v,v0] ��C (respectively in [w,w0] ��C) with h(v0) D h(z) (respectivelyh(w0) D h(z)). Consider the geodesic quadrilateral
in � with verticesv0, w0, w0 and v0. Standard hyperbolic trigonometry (see e.g. [12,
p. 88]) gives that

sinh
d�(v0, w0)

2
D sinh

d�(v0, w0)

2
coshh(z) D coshh(z)

r
coshd�(v0, w0) � 1

2

D 1p
2

coshh(z)

s
tanhd�(w, w0)

tanhln
� 1� 1p

2
coshh(z)

s
1

tanhh(z)
� 1

D 1p
2

coshh(z)

s
1� tanh2 h(z)

tanhh(z)
D 1p

2 tanhh(z)
� 1p

2 tanhl0
.

This fact and Lemma 4.3 imply

d1(z, v) D d�(z, v0)C d�(v0, v) � d�(v0, w0)C d�(z, w0)C d�(w0, w)

� 2 Arcsinh
1p

2 tanhl0
C d1(z, w) � 2d�(z, w)C 2 Arcsinh

1p
2 tanhl0

.

Lemma 4.5. Let us consider Fermi coordinates(u, v) in D. Fix u1 < u4, g1 WDf(u, v)W uD u1, 0� v � xg, g4 WD f(u, v)W u D u4, v � 0g, and g2 the (infinite) geodesic
orthogonal to g1 in (u1, x). We assume that g2 does not intersect g4. Consider(u4, h) 2
g4, with h� x, and (u2, v2) 2 g2, with d((u2, v2), (u4, h)) D d(g2, (u4, h)). Then

d(g2, (u4, h)) � d(g2, (u3, h))C d((u3, h), (u4, h)) � 6d(g2, (u4, h)),

for every u2 � u3 � u4.

Proof. We only need to prove the second inequality. Fixu3 2 [u2, u4].
Let us assume thatv2 � h. Then Lemma 4.3 implies

d(g2, (u3, h))C d((u3, h), (u4, h))

� d((u2, v2), (u2, h))C d((u2, h), (u3, h))C d((u3, h), (u4, h))

� d((u2, v2), (u2, h))C 2d((u2, h), (u4, h))

� 2d2((u2, v2), (u4, h)) � 6d((u2, v2), (u4, h)) D 6d(g2, (u4, h)).
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Let us assume now thatv2 � h. Lemma 4.3 also implies

d(g2, (u3, h))C d((u3, h), (u4, h))

� d((u2, v2), (u2, h))C d((u2, h), (u3, h))C d((u3, h), (u4, h))

� d((u2, v2), (u2, h))C 2d((u2, h), (u4, h))

� 2d1((u2, v2), (u4, h)) � 4d((u2, v2), (u4, h)) D 4d(g2, (u4, h)).

Lemma 4.6. Let us define F as

F(a, x) WD
8<
:

1

sinh 1
sinha coshx, if 0� a � 1,

log(sinha coshx), if a � 1.

Then

F(a, x) � aex � 2 sinha coshx,

for every a, x � 0.

Proof. The last inequality is a direct consequence ofa � sinha andex � 2coshx.
If a � 1, the functionh(x) WD aex � a � x satisfiesh0(x) D aex � 1 � a � 1 � 0

for every x � 0. Hence,h(x) � h(0)D 0 for every x � 0, and we conclude

aex � aC x D log(eaex) � log(sinha coshx),

for a � 1 and x � 0.
Since the functionH (a) WD sinha� a sinh 1 is convex in [0, 1], it satisfiesH (a) �

maxfH (0), H (1)g D 0 for every 0� a � 1. Hence,

aex � 1

sinh 1
sinhaex � 1

sinh 1
sinha coshx,

for 0� a � 1 and x � 0.

This result has the following direct corollary.

Corollary 4.7. For a set E� f(a, x)W a, x � 0g, we haveArcsinh(sinhacoshx) �
c1, for every(a, x) 2 E and some constant c1, if and only if aex � c2, for every(a, x) 2
E and some constant c2.

Furthermore, if one of the inequalities holds, the constant in the other inequality
only depends on the first constant.



202 A. PORTILLA , J.M. RODRÍGUEZ AND E. TOURÍS

Proposition 4.8. (1) There exists a universal constant c1 such that

f (x, y, t) WD Arccosh
cosht C coshx coshy

sinhx sinhy

� c1(e�x C e�y C e�(1=2)(xCy�t)C C (t � x � y)C),

for every x, y, t � 0.
(2) For each l0 > 0, there exists a constant c2, which only depends on l0, such that

Arccosh
cosht C coshx coshy

sinhx sinhy
� c2(e�x C e�y C e�(1=2)(xCy�t)C C (t � x � y)C),

for every t� 0 and x, y � l0.

REMARK . This result is interesting by itself: ifH is a right-angled hexagon in
the unit disk for which three pairwise non-adjacent sidesX, Y, T are given (with re-
spective lengthsx, y, t), then the opposite side ofT in H has length f (x, y, t) (see
e.g. [12, p. 86], or the proof of Theorem 3.2).

Proof. First, we remark that ifx � l0, then e�2l0e2x � 1 and e2x � 1 � (1 �
e�2l0)e2x. Therefore, if we definec�1

3 WD (1� e�2l0)=2, we have for everyx � l0,

e2x � 1� 2c�1
3 e2x, sinhx � c�1

3 ex, cothx D 1C 2

e2x � 1
� 1C c3e�2x.

We also have

cothx D 1C 2

e2x � 1
� 1C 2e�2x, for every x > 0.

Let us start with the proof of item (1).
If f � 3, then f � e�x C e�y C e�(1=2)(xCy�t)C . If f � 3, then 1C (2=3)c�2

4 f 2 �
cosh f , for some universal constantc4 � 1, and

1C 2

3
c�2

4 f 2 � cosh f � 2et�x�y C cothx cothy

� 2e�(xCy�t) C (1C 2e�2x)(1C 2e�2y),

1C 2

3
c�2

4 f 2 � 1C 2(e�2x C e�2y C e�(xCy�t)C),

c�1
4 f � p

3
p

e�2x C e�2y C e�(xCy�t)C � e�x C e�y C e�(1=2)(xCy�t)C ,

f � c4(e�x C e�y C e�(1=2)(xCy�t)C),

where we have used the inequality
p

3
p

aC bC c�paCpbCpc, for everya,b,c� 0.
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This inequality is (1) ift � x C y. If t � x C y, then

cosh f > cosht

sinhx sinhy
C 1� 2et�x�y C 1

> 4

2
et�x�y C 1

4 � 2e�(t�x�y) D cosh(t � x � yC log 4)

and f > t � x � yC log 4> (t � x � y)C C e�(1=2)(xCy�t)C .
Consequently we have

f � c1(e�x C e�y C e�(1=2)(xCy�t)C C (t � x � y)C),

for every x, y, t � 0, with c1 WD c4=2, sincec4 � 1.
Next, let us prove item (2). Fixl0 > 0. We have seen that sinhx � c�1

3 ex and
cothx � 1C c3e�2x, for every x � l0.

Let us assumet � x C y. If x, y � l0, then

1

2
e f � cosh f D cosht C coshx coshy

sinhx sinhy
� c2

3et�x�y C coth2 l0.

Consequently,

e f � 2c2
3et�x�y C 2 coth2 l0 � et�x�yCc5,

with c5 WD log
�
2c2

3 C 2 coth2 l0
�
, since t � x � y � 0. Hence, f � t � x � y C c5 D

(t � x � y)C C c5e�(1=2)(xCy�t)C , for every t � 0 and x, y � l0 with t � x C y.
Let us assumet � x C y. If x, y � l0, then

1C 1

2
f 2 � cosh f � c2

3et�x�y C cothx cothy � c2
3et�x�y C (1C c3e�2x)(1C c3e�2y),

1

2
f 2 � c2

3et�x�y C c3e�2x C c3e�2y C c2
3e�2x�2y,

1

2
f 2 � c2

3et�x�y C c3e�2x C c3e�2y C 1

2
c2

3(e�2x C e�2y),

f 2 � 2c2
3e�(xCy�t) C (2c3 C c2

3)e�2x C (2c3 C c2
3)e�2y,

f 2 � c2
6(e�2x C e�2y C e�(xCy�t)C),

f � c6(e�x C e�y C e�(xCy�t)C C (t � x � y)C),

where c2
6 WD maxf2c2

3, 2c3 C c2
3g, for every t � 0 and x, y � l0 with t � x C y. Then

we have (2) withc2 WD maxf1, c5, c6g.
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Proposition 4.9. For each l0 > 0, we have

F(x, y, t , h) WD Arcsinh
coshx cosh(y � h)C cosht coshh

sinhy

� e�hCx C e�(y�h�t)C C (t C h� y)C,

for every x, y, t , h � 0, verifying y� h � x and y� l0. Furthermore, the constants in
the inequalities only depend on l0.

REMARK . This result is interesting by itself: ifH is a right-angled hexagon in
the unit disk for which three pairwise non-adjacent sidesX, Y, T are given (with re-
spective lengthsx, y, t), P is the nearest point toX in Y, and Ph is the point inY
with d(Ph, P) D h, then F(x, y, t , h) is the distance betweenPh and the opposite side
of Y in H (see the proof of Theorem 3.2).

Proof. We have seen that ify � l0, and c�1
3 WD (1 � e�2l0)=2, we havec�1

3 ey �
sinhy � ey=2. We also haveez=2� coshz� ez, for every z� 0.

Then sinhF � e�hCx C e�yChCt , since y � l0 and y � h, and the constants in the
inequalities only depend onl0.

If hC t � y, then e�hCx C e�yChCt � 2, and

F � sinhF � e�hCx C e�(y�h�t) D e�hCx C e�(y�h�t)C C (t C h � y)C.

If hC t � y, then e�hCx C e�yChCt � 1, and

eF � sinhF � e�hCx C e�yChCt � etCh�y D e�1e1C(tCh�y)C .

Since

F � Arcsinh
(exey�h C eteh)=4

ey=2 � Arcsinh
1

2
(e�hCx C e�yChCt ) � Arcsinh

1

2
> 0,

and 1C (t C h� y)C � 1> 0 for every x, y, t , h � 0, andeF � e1C(tCh�y)C for every
x, y, t , h � 0, verifying h C t � y � h � x and y � l0, we obtain thatF � 1C (t C
h � y)C. Since 1� e�hCx C 1 D e�hCx C e�(y�h�t)C � 2, we also conclude thatF �
e�hCx C e�(y�h�t)C C (t C h � y)C, if hC t � y.

The following corollary can be directly deduced from this result.

Corollary 4.10. For each l0 > 0, let us consider a set E� f(x, y, t , h)W x, y, t , h �
0, y � h � x, y � l0g. We have F(x, y, t , h) � c1, for every (x, y, t , h) 2 E and
some constant c1, if and only if (t C h� y)C � c2, for every (x, y, t , h) 2 E and some
constant c2.

Furthermore, if one of the inequalities holds, the constant in the other inequality
only depends on the first constant and l0.
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Obviously, we can replace condition (tCh� y)C � c2 by tCh� y � c2. We prefer
the first one sinceF will be a distance and (t C h � y)C � 0.
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