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Abstract
We determine the location of all of the zeros of certain Paiécseries associated
with the Fricke groupd™§(2) andI'§(3) in their fundamental domains by applying
and extending the method of F.K.C. Rankin and H.P.F. SwinneDyer ([9]).

1. Introduction

F.K.C. Rankin and H.P.F. Swinnerton-Dyer considered ttablem of locating the
zeros of the Eisenstein seri&(z) in the standard fundamental domdin[9]. They
proved that all of the zeros dEx(z) in F are on the unit circle. They also stated to-
wards the end of their study that “This method can equallyl ielapplied to Eisenstein
series associated with subgroup of the modular group.” Meweét seems unclear how
generally this claim holds.

Furthermore, R.A. Rankin considered the same problem fdicePoincaré se-
ries associated with S(Z) [8]. He also applied the method of F.K.C. Rankin and
H.P.F. Swinnerton-Dyer, and proved that all of the zeros etain Poincaré series in
F also lie on the unit circle. Also, there are some families afdular forms and func-
tions which have similar location of the zeros [4].

Subsequently, T. Miezaki, H. Nozaki, and the present autboisidered the same
problem for Fricke groupd’;(2) andT'§(3) (See [5], [7]), which are commensurable
with SL(Z). For a fixed primep, we definel';(p) := I'o(p) U T'o(p)W,, whereIo(p)

0 -1//p "
JP 0O ) Let Ek’p(z) be the

Eisenstein series associated with(p), and the region

is a congruence subgroup of fZ) and W, := (

F*(p):=1l7] = __]-SRdZ)$O]U[|Z|>%’ 0< Re(z)<}}

1

VP2 2
be a fundamental domain fdrj(p) for p = 2, 3. The authors applied the method
of F.K.C. Rankin and H.P.F. Swinnerton-Dyer to the Eisensgeries associated with
I'5(2) andI'5(3). We proved that all of the zeros & ,(z) in F*(p) lie on the arc

Ay =F*(p)N{lzl = 1//p} for p=2, 3 [6].
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Let
. R(QZmyZ) R(eZHiV(*l/(PZ)))
1 iR =
1) k,p(z ) (%1 (cz+ d)k 2 (cdz):l (dy/pz— c/\/_p)k
pic pic

be a Poincaré series associated witf(p) where R(t) is a suitably chosen rational
function of t. Here, y is an element off'g(p) which satisfiesy = (2 g) for the
integersc, d and some integerg, b, and is such that

_az+b
T cz+d’

In the present paper, we consider the same problem for ceP@incaré series for
I'§(2) andr'§(3). We apply both the method of F.K.C. Rankin and H.P.F. $aiton-Dyer,
and also the method of R.A. Rankin. The dimension of cusp $dionl";(p) of weightk
is denoted by. We prove the following theorems:

Theorem 1.1. Let k= 4 be an even integetand m be a non-negative integer.
Then all of the zerogi.e. K(p + 1)/24)+ m zero$ of Gg ,(zt™™) in F*(p) lie on the
arc Ay for p=2,3

Theorem 1.2. Let k=4 be an even integeand let m< | be a positive integer.
Then G ,(z:t™) has at least Kp + 1)/24)—m zeros on the arc Aand at least one
zero atoo for p=2, 3

Note thatGj (z:t™%) = Ef ,(2).
Furthermore, if a modular form for(p) of weightk has N zeros andP poles
in F*(p), then

k(p+1)
24

2) N—P= (See [9]).

In Theorem 1.1Gg ,(zt™™) hasm poles atoo. On the other hand, in Theorem 1.2,
G;p(z;tm) has no poles and hag(p+ 1)/24) zeros in total, thus the location of—1
zeros is unclear.

2. Distribution of the zeros of modular functions

As is well known, there are two interesting series of modélactions for Slx(Z),
for which all of the zeros are on the lower arcs of the fundamletomainF, and with
different distributions for the zeros of the two series. Ylage the Eisenstein serids
and the Hecke type Faber polynomidts,.
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For the former, in the paper of F.K.C. Rankin and H.P.F. Sefton-Dyer [9], it
was shown that

(3) eki2E () = 2 cos(k79> + R

which is real for all6 € [r/2, 27 /3] and also thatR;| < 2 for all k > 12. If coské/2)
is +1 or —1, thendk/2E,(€?) is positive or negative, respectively. Thus, the distribu
tion of the zeros of the Eisenstein series resembles a wmiftistribution with argu-
mento on the lower arc off.

On the other hand, for the latter, T. Asai, M. Kaneko, and H.axiiya proved that

4 Fn(€?) = 262"™SI" cos(2rm cosh) + Ry

which is real for all§ € [z/2, 27/3] and they showed also thaR,| < 2e?"™sn? for
all m>= 0 [1]. Thus, the distribution of the zeros resembles a unifalistribution with
real part sinf on the lower arc off.

Now, we consider the Poincaré series (cf. Eq. (1)):
1 Z R(e?*"17?)

®) Gz t™) = 3

In the paper of R.A. Rankin [8], it was shown that
iko/2 0. +—m 2rmsiné ko
(6) e e Gy(e’;t™) = 2¢ co 5~ 2rmcost ) + Rs

which is real for allo € [r/2, 27/3] and also thatRs| < 2e**™s"? for all k > 4 and
m = 0. Then, Rankin proved that all of the zeros®f(z; t—™) are on the lower arc df.

Note thatGy(z;t° = Ex(z) and Go(z;t™™) = Fmn(2). Furthermore, ifk is large
enough compared witim, then the distribution of zeros dBy(z;t™™) resembles that
of Ex(z). On the other hand, ifm is large enough compared with then the distri-
bution resembles that df,(z). Thus, the Poincaré seri€s,(z;t~™) “fill the space of
two modular functions discretely”. For example, we consitte following sequence
of modular forms:

(7) G12(z:1%), Giz—1)(Z t ™), Gizg—2)(Z: t2), ..., Go(z: t7).

The number of zeros of each function is equall tcand all of the zeros are on the
lower arc ofF.
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For the Fricke groupd'j(2) andI';(3), the distributions of zeros are similar. In
fact, we have the following relations:

. i6
e'ke/ZE,jp(%) =2 cos(k;) + Ry,

e’ i 2
Fn, (_) = 2el2/yPmmsing cos(—nm COSG) + Ry,
mP\ /P VP
. g : ko 2
gko2Gx <_; t—m) = 2e@&/VPrmsint o 7= om cos@) + Rs,
k,p ﬁ 2 ﬁ

and it has been shown that all the zeros of the functions athefower arcs off *(p)
for the Eisenstein seriegy , (cf. [6]), the Hecke type Faber polynomial . (cf. [2]),
and the Poincaré serigsy , (cf. the present paper).

REMARK 2.1. W. Duke and P. Jenkins considered certain weakly halphio
modular forms fy , for SLy(Z). If we assume thak = 4 andm > 0 then fy ,, is a
modular function of weighk and withm poles atco. They proved that all the zeros
of the function are on the lower arc @f. Note that we have the following relation:

: ) , ko
k2 £ (7)) = 2e?Tmsin® cos<7 —27m cos@) +R.

Thus, the distribution of the zeros is similar to that of thairlearé seriesGy(z;t™™).

However, unfortunately, fol';(2) andI'j(3), not all of the zeros of the function
fkum are on the lower arc of*(p). H. Tokitsu observed it by numerical calculation
[10], and he proved that ifn is large enough then all of the zeros &, are on the
lower arc.

3. General theory

Let 6 := 3m/4, 6p3 := 57/6, and by, := /2 for p = 2, 3, and letp, :=
ejeovp/\/_p. We denote byvy(f) the order of a modular functiorf at a pointg. We
have the following propositions: (See [6])

Proposition 3.1. Let k> 4 be an even integer. For every function f which is a
modular form forI'(p), we have

vi/op(f) = s (s =0, 1such that2s, = k (mod 4)),

8
®) v (F) =t (0 <t < 12/(p + 1) such that—2t = k (mod 24(p + 1))).

Furthermore, let be the dimension of cusp forms fo¥;(p) of weightk; then we
havel = |k((p + 1)/24)—t/4], wheret = 0 or 2, such that = k (mod 4).
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Following the methods in [9] and [8], we define

. gt
* . . ko2~ .
) Fep(0: R := & Gk,p(ﬁ’ R)'

Then, we have

1 R(e2iv(€’/P) 1 R(e27iv(~E€"/ /)
Fk*,p(e; R) = 2 2 ((c ()ei6/2 de—)iH/Z)k + 2 Z ((c ( ei6/2 deie)/z)k'
(C,dl):l /ﬁ + (C,d‘):]. /'\/ﬁ) -
pic plc

which is real for everyd € [61,p, 0o,p]-
Furthermore, we can write

(10) Fep0: R)=2Re g ,(0: R) + F; ,(6: R),

where F;, consists of all of the terms of the seri€ , which satisfyc? + d® > 2,
and where

O p(6: R) = /2R /YD),

Let y, be the locus of?€*/vP as@ increases from @& , — 6o, p t0 6o p, and let
Fi.p:=|€2"€1°/VP)]| for j =0, 1. Then, the curve, begins at—ro ,, passes through
ri,p, and returns to-ro,, following a clockwise rotation. Assume that the functiéh
has no zero or pole opp, and that it hasN,, zeros andP,, poles in the regioD, ,
the interior ofy,. Then, by the Argument Principle, we have

(11) No—Ng = Yo Nypy

wherengy and n; are integers such that

k k6
arggy p(01,p; R) = n(nl + Z)’ arggy p(6o,p; R) = n(no + f)

Suppose that the Poincaré sei@s,(z: R) hasNg zeros andPg poles inF*(p). Then

_kp+1)

(12) Nr — Pr o

DerINITION 3.1 (PropertyP ). We shall say that the functiolr has Prop-
erty P p if
(i) R is a real rational function,
(ii) all of the poles ofR lie in D, ,
(i) I = N,, — P, and
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(iv)

(13) |Fep®: R < 2/RE™E/VP))
for every 0 € [61,p, 60,p]-

Here, condition (iv) is equivalent to condition (iv)the inequality(13) holds for
every pointé € [61,p, 6o p] Which satisfies

(14) argg p(0; R) =0 (mod).

We call such a point amteger point of ¢ .
We then have the following theorem: (See Theorem 1 and 2 of [8]

Proposition 3.2. Suppose that the function R has Property,PThen the Poincaré
series § ,(z R) has at least N — N,,, zeros on the arc f\for p = 2, 3 In particular,
if R does not vanish i,,, then all of the zeros of 5,(z; R) lie on A

Note that we can prove the above theorem with condition (eplacing condi-
tion (iv).

We would like to put condition (13) of Property, , into another form. We define
the following bounds:

(15) Mg, p := SUR{|REZ 7 /VP)|: 6, , <6 < 6p.p, ¥ € To(P) \ oo}

c2 2 —k/2
(16)  akp:=Sup z (— +d?+ —cd cose) 101p <0 <6op
ca=1\P VP
ple,c#0

Then the condition
(17) MR patk,p < 2| R(E? /D))

is sufficient to imply condition (13). Then, we have only tmye the above inequality
instead of condition (13).

This idea is due to R.A. Rankin [8].

However, it is difficult to apply this method to the cases Igf(2) and I'j(3).
For example, ifR(t) = t™™ for a positive integem, then we haveMg = roj’g‘ and
|R(e /Py > ro.p- Moreover, we havex, > 2 andayxz > 4. Thus, we are un-
able to prove Theorem 1.1 in this way, nor Theorem 1.2. We rnassider a certain
extension of this method, observing some terms of the sarieketail.
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4. Applications

The point in the previous section is that there exist somesp@i d) such that
c?/p + d? + (2//P)cd cosy, = 1. For the casep = 2, the pair satisfyingc?/2 +
42 + (2//2)cd cosbo, = 1 is (¢, d) = £(2, 1), theny = +S, = :i:(% (1’) which is
shown in the term of the Poincaré series. For the other gase3, such pairs are
given by €, d) = £(3, 1) [in which casey = +% = j:(% 2)] and @, d) = £(3, 2)
[in which casey = £S;'T = i( 31 *21)]. Note that ‘t%/p+d?+ (2/,/p)cdcosd <
1 & 6 < 6 for the above pairsc( d).”

Now, we can write
(18) Fia0: R) = 2Re ¢ ,(0: R) + 2Re If ,(6: R) + F{5(0: R),
(19) Fis0: R) =2Re g 4(0; R) + 2Re lf 4(0; R) + 2Re [ 3(0: R) + F5(6: R)

where R, consists of all terms of the serigg;, which satisfyc? + d? > 2 and are
not equal to the above pairs, and where

R(e21S€"/VP) . 5 R(e271 (-S'TE"/3))
(\/—pée/z_kefm/z)k' k13(9’ ) = (@é9/2+2e—i9/2)k'

It,p(e: R) =

Instead ofMg ,, we define

(20) Mgy :=sug|RE7E"/YD): 01, <0 <62 ¥ € To(2)\ (Too U T )},
(1)
Mg 3 := suf] R(e2niy(ei"/«/§))|; 013<60 <003 ¥ €To(3)\ (Moo UTuS U S*T)).

Moreover, since

e’ 1 sing
my(—)=— ,
JP J/Pc?p+d? 42, /pedcosod

2c2 + d2 4 2v/2cd cosf = v/2sing, and % + d? + 24/3cd cost = 2sing, we have
|e2717@"/VP)| > 1y 5. Then, we have

Mr2' = sup|R(t)|; e V2% < Jt| < 1},

Mgr3 = sup|R(t)]; €/ < |t| < 1.
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On the other hand, fow p, since €2/p + d? + (2/,/P)cd cos®)~™ /2 + (c/p +
d? — (2//p)cd cos®)¥/2 is monotonically increasing i, we have

2 —k/2
Wwp= D, (C—+d2+cd) = > (Pp+cdp+d)H?

(c,d)=1 (c,d)=1
plc,c#0 ptd,c#0

< > (Pp+cdpt+d) -2
©d)=1

In addition, since we havec? + 2cd + d? = ¢ + (¢ + d)? and 3? + 3cd + d? =

c® 4+ c(c + d) + (c + d)?, we can regard these series as the Epstein zeta-function. We

therefore have the following bounds:

< X k2Za2) 6;(k/2)Za(k/2)

’ ¢(k) z(k)

where¢ is the Riemann zeta-function ari€s and Z, are the DirichletL-series
Z3(8):=1-2°5+4°5-5%54+7°5-85+...,
Z4(8):=1-33+5°%5-7°54+9°5-11°5+...,

2, ax3< 2,

Furthermore, if 22+ 2cd+d? = 2, then ¢,d) = £(1, 0),£(1, —2). These pairs satisfy
(c, d) = 1, but they do not satisfy 2 d. In addition, by using the bounds

1-x

5
g“(x)s1+2‘X+3‘X+4‘X+5‘X+X 1

Zyx) <1-3*+5% {r(2)) T <s1-27%,

we have
1
a2 —2—4x27K2 < 5—k/2(5 + k_oz) for k= 4.
Then, we define
10
22 Sk2 =5 2?54+ —).
22 i Gy
Similarly, we define
14
7K/2 (14+ k_Z) for k>4
(23) S,z 1= 1 )
7—k/2(13+ k_Z) for k=12

Finally, we have
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Now, we define the following condition instead of “Propefy ,":

DEFINITION 4.1 (PropertyP ). We shall say that the functioiR has Prop-
erty P if
(i) R is a real rational function,
(i) all of the poles ofR lie in D, ,
(i) I = N,, - P,,, and
(iv-i) we have

1 i 0
(24) IRe i 5(0: R)| + EMR,2/8k,2 < |R(E¥€/Vy|,
! 1 i(alf
(25)  IReMq0: R)| + [Re H0: R)| + 5Mrgbis < [REC/Y)

for every integer poin® € [0y, 6o,p) for p = 2, 3, respectively, and
(iv-ii) we have

(26) Sign(Fy ,(60,p: R)) = Sign(Re g ;(6o,p: R))
if 6o.p is an integer point.

To prove Theorem 1.1 and 1.2, we consider the following theoinstead of Prop-
osition 3.2, where the point is to use PropeRy,’.

Theorem 4.1. Suppose that the function R has Property,P Then the Poincaré
series G (z R) has at least N—N,,, zeros on the arc f\for p=2,3 In particular,
if R does not vanish i,,, then all of the zeros of [5,(z R) lie on A,

5. Proof of Theorem 1.1

5.1. Preliminaries. Let k>4 andm > 0 be integers, and leR(t) =t™™. Then,
it is clear thatR satisfies the conditions (i), (ii), and (iii) of Properfy ,". Further-
more, we haveP, =m, N,, =0, andNg — N, = Kk((p + 1)/24) + m.

To prove thatR satisfies condition (iv-i) of Propertf ', it is sufficient to prove
the inequalities (24) and (25) for eveéye [01 , 6p,, —X] for certainx such that every
integer point is included in the interval. The first step isdonsider how smalix
should be.

When p = 2, and wherk = 4 (mod 8), therk = 8l + 4 and

3 1
argg 2(fo.: R) = (§k+ m)n = (3| +m+1+ 5)7{.
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Thus, the last integer point is the poif,, — X such that

1
arggy »(fo,2—x; R) = (SI +m+1+ E)n — %
In addition, we have
arggy »(6o,2 — x; R) > arggy »(fo,2; R) — ( 5 )x.

Thus, x < 7 /(k + 8m) is sufficient. Similarly, wherk = 6, 0, and 2 (mod 8), we have
X < /(2(k + 8m)), 27 /(k + 8m), and 3r/(2(k + 8m)), respectively. So for this case,
the boundx < 7/(2(k + 8m)) is sufficient.

Similarly, when p = 3, and whenk = 4, 6, 8, 10, 0, and 2 (mod 12), we have
x <t /(k + 6m), wheret = 4/3, 1, 2/3, 1/3, 2, and 33, respectively. In conclusion,
the boundx < 7 /(3(k + 6m)) is sufficient. Note thak < 27/(3(k + 6m)) is sufficient
if k= 10 (mod 12).

Furthermore, we havgR(e?"!€"/VP)| = /vPrmsiné. \ye define

G = e VZmsn? | (6 R)),
Gy := ef(Z/\/é)nmSin9|hlﬂz13(9; R)|, G, = ef(Z/«/é)erSin0|h:”3(9; R)|

Then, we will show the following lemma in the following semtis:

Lemma 5.1. (i) We have

1 T
27 G+ -Mpo6™ <1 forevery 0 € |01 0po————|,
(27) + 5 VIR2 0,2 < Yy |: 1,2, 00,2 2(k+8m)}
1
(28) G+ Gy + EMR,g/Sk,ge‘”m <1 for every 6 € [613, 60,3 X,

where ¥ = 7/(3(k + 6m)) when k= 10 (mod 12)and % = 27/(3(k + 6m)) when
k £ 10 (mod 12)

(i) We have

(29) Sign(Fy o(6o,p; R)) = Sign(Re ¢ ,(60,p: R))

if k =0 (mod 8)for the case of p= 2, and if k=0 (mod 12)for the case of p= 3.

When we have proved the lemma above, then we can show thautiotidn R
satisfies PropertyP ,'. Thus, we can prove Theorem 1.1.
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5.2. The casep = 2. We have Mgy = V23" and (Y2)Mg 2826 ™™ <
0.038003.. for k=4 andm > 1.
Furthermore,

_ Exp[-27msin 0(v/2 + 2 cos9) /(3 + 2+/2 cosh)]

G
(3 4 2+/2 cosy)k/2

For 6 € [601 2, 6p 2— m/(2(k + 8m))], we have

Ex [—an sinf(v/2 + 2 cos@)}
P 3+ 242 cosh
—(99/130)r2

< Exp[—@nm sin(L)} < Exp[—},
13 2(k + 8m) (k/m) + 8

which is monotonically increasing ik/m. We also have

T 1 1
3+2v2codbor— ) 2l4m— .
+2v2 5(0'2 2(k+8m)) T em/kk
Puts:=k/m. For 0< s < 100, we have
—(99/130)r2
G< Exp[u] <0.93277...
s+8

On the other hand, if 10& s, we have 1+ 7(1/(1 + 8m/k))(1/k) = 22 and

1
< =

_ 2

2 s+ 8

Then, (i) of Lemma 5.1 follows.
On the other hand, whek = 0 (mod 8), we can writk = 8|, and we have

Re g 5(60,2 R) = €™ cos((3 + m)x),
Re I ,(00,22 R) = €™ cos({ —m)x).

Note that the signs of the two terms above are in agreememthdtmore, we have
|Fg (60,2 R)| < |Re g 5(60,2: R)|.

Thus, we can show Lemma 5.1.
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5.3. The casep=3. We haveMg 3 =eW/@V3)™M | et D:=(1/2)Mg g8
Firstly, we have

_ Exp[-27msin6(v/3 + 2 cosp)/(4 + 2+/3 cosp)]
B (4 + 24/3 cosy)k/2 ’
_ Exp[~47rmsinf(v/3 + 2 cos) /(7 + 4+/3 cost)]
- (7 + 4+/3 cosp)k/2 '

G:

G2

For k = 4, we haveD = 0.061157...
Whenk = 4, we have

- 5 A _= L —
Gi1+6G, < Exp[ 67rm S|n(3(4+ 6m))} + Exp[ - m S|n(3(4+ 6m))}’

where the right-hand side is monotonically decreasiniand is less than-1D when

m=1.
When 6< k < 32 andk # 10 (mod 12) (i.ek # 10, 22), we have

G+ Gy
5 . 2r 2r
<ol -grmsn(ios - gicam ) (V3 2o s am))|

n Exp[_z_;)nm sin(@o,g — ﬁ) (*/‘3’ t2 C0<9°’3 - ﬁ))}
=: fi(k, m),

where f1(k, m) is monotonically decreasing im. Moreover, we havé&s; +G,+D <1
for m< 6 and fi(k, 7)+ D < 1 by numerical calculation.

For k = 10, we haveD = 0.000078006. . .

Whenk = 10, we haveG; + G, + D <1 form< 12 and

Gi1+ G,

1000 b1 2
< Exp| ———nmsi S — 2 LA
xp[ ST sm(@o,g 30+ 6m)) (\/:_3 + 005(90,3 AT 6m)))}

1000 71 o
Exp| — 0 msin( 60— ———— 2 L
+ Xp[ 261" S'”(0°'3 3(10+ 6m)) (‘/§ + COS(9°'3 3(10+ 6m)))}’

where the right-hand side is monotonically decreasingiiand is less than4D when
m = 13.
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Whenk = 22, we haveG; + G, + D < 1 for m < 26 and

Gi1+ Gy

200 . b4 2r
<eol v (oo sz am) (200 3 o)) |

200 : b4 2r
e e ) (R )

where the right-hand side is monotonically decreasinthiand is less than-1D when
m = 27.

For k > 34, we haveD = 3.8242 .. x 10715,

Whenk > 34, for 0 € [6; 3, 0p,3— 7/(3(k + 6m))], we have

EXp[—an sinf(v/3 + 2 cos@)}
4 + 2./3 cosd

125 w —(333/1048)r27] [k
<ee - (agrem) | <2 “wm e ] 4 (n)

Exp[—47rm sing(+/3+ 2 cos@)]
7 + 4/3 cost

250 [ nt (33354827 (K
< EXp|:——7Tm Sln(k n Gm):| < Exp[m] = Az(a)

We also have

T T 1 1 k
s+ 2v3eo{ios g5 am) > 1+ Ja(remw)k = B

b4 2 1 1 k
7+ 4\/§ CO{eovg— m) =1+ ﬁ,(l—l——Gm/k)E =: BZ(E)

Puts := k/m. Then we haveG; + G, < Ay(S)By(S)™/? + A(S)Ba(s)¥/2. Here,
A1, Ay, By, and B, are monotonically increasing is Then, fors; < s <'s;, we have
G1+ Gy < A(s2)Ba(s1)¥2 + Ax(s) Bo(s1)™¥/2. The algorithm is as follows, similar to
that for the casep = 2:

Fors; <s < s, we determiney anda, so thatBy(s;) = a/* and By(s;) >
, respectively. Then, we have only to show that

2/k

&

1 1
—Ag(s2) + —Az(s2) <1-D.
a ap
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We have the following result:

St S a Q (I/a1) Ai(s2) + (1/a82) Ax(s2)
0 7/20 1 1 0.99914 ..
720 550 | 21/20 109100 0.99968. .

51/50 24Y100| 57/50 3125 0.99940. .
241/100 55100 | 129/100 2920 0.99989. .
551/100 765 | 153/100 173100 0.99932. .

76/5 451 | 189100 5225 0.99998 ..

451 00 239/200 62/25 0.82163..

Finally, whenk = 0 (mod 12), we can writ&k = 12’, and we have

Re Q. 5(00,3 R) = e¥/Y3™™ cos((8" + m)r),
Re Hy, 5(60.3 R) = e/ Y37M cos((3' — m)x),
Re Hy 5(0.3 R) = eW/V3ITM cos(Cl + m)n).

Here, the signs of above three terms are in agreement. Fudhe, we have

|Fiy (00,3 R)| < IRe dy. 5(60,3 R)I.

In conclusion, we can show Lemma 5.1.

6. Proof of Theorem 1.2

6.1. Preliminaries. Letk >4 andm > 0 be integers, and IeR(t) =t™. Then, it
is clear thatR satisfies the conditions (i), (i), and (iii) of Propers ,'. Furthermore,
we haveP, =0, N,, =m, andNgr—N,, = k((p + 1)/24)—m. We may assume that
k((p+1)/24)=1 >m=1.

Similarly to the previous section, we consider a certain beinx for the interval
[01,p, 60.p — X] in which every integer point is included. We have

k
arggy p(o,p — X; R) > arggy ,(6o,p; R) — EX'

Thus, whenp = 2, the boundx < 7/(2K) is sufficient. Whenp = 3 andk # 10
(mod 12), the bound < 27/(3Kk) is sufficient.

On the other hand, ik # 10 (mod 12), we need to consider a stricter number
for calculation. We may assume that< 7/33 andk = 22, in which case we have

k  9m
arggy 3(fo,3— X; R) > arggy 3(f0,3; R) — (E - ?)x,
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and so we may assume= 71/(3(k — (18/5)m)).
Furthermore, we haveR(e?" (€’/vP)| = e~/ vPrmsin? g5 we define

(30) G 1= VM s (6: R)|,
(31) Gy = e®VITMSNG by (9: R)|,  Gg 1= /AT (g: R)|.

Then, we will show the following lemma in order to prove Thewr 1.2:

Lemma 6.1. (i) We have

1 b4
32) G4 =Mpodce¥¥™m <1 f 0|01 00— —— |,
(32) + 5> MR2 k,2€ < or every ¢ e [ 1,2, 00,2 2K+ 8m)}

1
(33 Gi+Gy+ EMR,g’Sk,g,e(z/‘/é)”m <1 for every 6 € [613 63— Xol,
where ¥ = 27 /(3k) when ks 10 (mod 12)and % = 7/(3(k — (18/5)m)) when k=
10 (mod 12)
(i) We have
(34) Sigr(F,(6o,p; R)) = Sign(Re ¢ (6o, p: R))
if K =0 (mod 8)for the case of p=2, and if k=0 (mod 12)for the case of p= 3.

6.2. The casep = 2. We haveMg, =1 and

1 1 1 k/2 10
(35) zb‘k,ze‘ﬁ”m < Ee—fzﬂ (geﬁ”/“) (5+ m) < 0.00062185. .

for k = 16 because (B)eY?/4 < 1 andk = 8(m + 1).
Furthermore,

_ Exp[2rmsin 0(+/2 + 2 cos9) /(3 + 2+/2 cosd)]

G
(3 + 2+/2 cosh)k/2

For 6 € [61 2, 602 — 7/(2K)], we have
1 - 1

3+ 2v2cosfoo—m/(2k) 1+ m/K'

V2 sin(@o,z— 1) <1+ i.

2k 2k

V2 +2cosfo2—7/(2K) _ (11/20)
V2 Tk
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We also have

T T
3+2v2codbp— — ) =1+ = = 4%¥
+ \/_CO% b,2 2k) +k

and so

G < Semowm < Laaveont _ g 97119,
4

4

Finally, whenk = 0 (mod 8), we can writ&k = 8| to yield

Re g »(f0,2: R) = €™ cos((3 — m)x),
Re F »(00,22 R) = e "™ cos({ + m)x).

Here, the signs of above two terms are in agreement. Furtitermve have
|Fg 5(60,2: R)| < |Re g 5(60,2: R
Hence, Lemma 6.1 follows.
6.3. The casep = 3.

6.3.1. Preliminaries. We haveMgr3 =1 and

1 1 1 k/2 84
=5, a0 @VATM < Z o2/ [ Zg27/(3V3) 134 ——
2%%3 2 7 tko2

<0.0034216.. =: D

for k > 12 because we have (@)e?/3v3) < 1 andk = 6(m + 1).

We have
G Exp[2rm sind(v/3 + 2 cos8)/(4 + 2+/3 cosh)]
T (4 + 2+/3 cosp)k/2 ’
G Exp[4rm sinf(v/3 + 2 cos8)/(7 + 4+/3 cosh)]
2= .

(7 + 4/3 cosg)k/2

6.3.2. The case& % 10 (mod 12). We may assume that= 27 /(3k) andk > 12.
For 12< k < 40, we have

G1 + G2 < ((G1 + G2)lo=t65-(2/37/k) Im=Kk/6:

and we can show the right-hand side is less thanl by numerical calculation.
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For k = 42, we have

- Exp[(29/40)r?m/K]
Y@+ 2v3Er/ @K
- Exp[(29/20)72m/K]
25 @+ 43/ @K

1+ 2/37/(3k) = (28/5)%%, and 1+ 4/37/(3k) = 27K, Thus, we have

5 o 1 e
<= /240 = A2974/120 =0. 74 . ..
Gi+ Gz < e + o€ 0.99074

6.3.3. The cas&k = 10 (mod 12). Whenk = 22, 34, 46, and 58, we hava <
(k — 10)/6, and we can calculateGl + G2)|g—p,,=/3Kk-(185m) < 1 — D for each
k andm.

Whenk = 70, for 0 € [6; 3, 65,3 — 7/(3(k — (18/5)m))], we have

Exp[znm sinf(v/3+ 2 cos@)} - Exp[ (28/75)72 ] _. A1(£>,

~

4 + 24/3 cosh (k/m) — 18/5
4rmsind(v/3 + 2 coso) (56/75m2 | k
Exp[ 7+ 4v/3 cosf } s Exp[(k/m) - 18/5] = AZ(E)'

We also have

7 i 1 1 k
w2 /seodios 55 imem) >+ Ve — ()

14 2r 1 1 k
T aseod o s igmm) > 1 Gar ek~ ()

Following the procedure in the previous section, we put k/m. A, Az, By,
and B, are monotonically decreasing s Then, fors; < s <'s;, we haveG; + G, <
A1(51)B1(s2) /2 4+ Ax(s1)Bo(s2) K2, The algorithm is as follows:

Fors; <s<s, we determineay anda, so thatB,(s;) > af/k and By(sy) =

2k respectively. Then, we have only to show that

&

1 1
—A(s) + —Ao(s1) <1-D.
a1 ap
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We have the following result:

S1 S a & | (/ag)Ad(s1) + (1/a2) Ax(s1)
6 254 | 79/10 55 0.97955. .

25/4 20/3 | 67/10 41 0.99298. .

20/3 2273 | 28/5 29 0.97504. .

22/3 354 | 92 19 0.97512..

34 13 | 175 11 0.98174. .
13 o0 12/5 29/5 0.99424 ..

6.3.4. The cas&k =0 (mod 12) andf =6y 3. We can writek = 12’, and then
we have

Re g 5(60,3 R) = e/ Y™™ cos((3' — m)x),
Re Iy, (00,3 R) = € /Y3 cos((3' + m)r),
Re Hy, 5(60,3 R) = e /Y3 cos((I’ — m)x).

Here, the signs of above three terms are in agreement. Futhe, we have

|Fiy 5(00,3 R)| < |Re da 3(60,3 R)I.

In conclusion, we have been able to show Lemma 6.1.

REMARK 6.1. Note that the location aih — 1 zeros is unclear (cf. the end of
Section 1).

Whenl <1, i.e. "whenp = 2, and 4< k < 14, k = 18", and “whenp = 3, and
4 <k <10,k = 14", then we havan— 1 < 0, thus we can prove that all of the zeros
of G;p(z;tm) in F*(p) are on the arcAj for p =2, 3 andm <.

When p =2, k=16 andm = 2, we can prove that one more zero lies Ah by
numerical calculation. Thus we can prove that all of the 2esbGig ,(z;t™) in F*(2)
lie on A for m < 2. Similarly, whenp =3 andk = 12, we can also prove that all of
the zeros ofG}, (z;t™) in F*(3) lie on Aj for m < 2 by numerical calculation.
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