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Abstract
We systematically study quasi-sections of morphisms ofsiigemes. As applica-
tions, we prove exact log flat descents. Our main tool is thacttre theorem of
Q-integral homomorphisms of monoids.
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Introduction

Though exact morphisms were already introduced in K. Kaia'glamental paper
[3], it is still not very clear what the exactness is in essgenkt is known that some
pathologies in log geometry disappear under the exactressrgption. For example,
the base change of a surjective map in the category of fs ledy@mn spaces is not
necessarily surjective. But any base change of an exact @ajectve map is surjec-
tive. We can list more, but still can not explain reasonabipugh why the exactness
prevents various pathologies.

In this article, we add one more in the list, that is, the exes$ allows us to have
guasi-section statements in log geometry, which generdlimse in usual geometry.
For example, consider the fact that a smooth and surjectiap of analytic spaces
admits a section locally over the base. A naive generatimatif this statement in log
geometry is not valid, that is, a log smooth and surjective miafs log analytic spaces
does not necessarily admit a section even ket (= kummer lalg)ébcally, because a
log blowing up clearly does not necessarily admit a sectimneket locally, though it
is log smooth and surjective. On the other hand, our 4.3 (3 #aat any log smooth,
exactand surjective map of fs log analytic spaces admits a se&i@briocally.

Our basic tool of studying exact morphisms is the structheotem ofQ-integral
homomorphisms. We explain briefly the notion @fintegrality introduced in [2]. Let
h: P — Q be a homomorphism of fs monoids. By definitidnis Q-integral if h ®y Qx>0
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is integral. For us, the point lies in thatis Q-integral if and only if (Spe€[h])an is
an exact morphism. In this sense t@eintegrality gives the right notion in the monoid
theory which is corresponding to the exactness in the logngéy. Note thath is
exact if h is local andQ-integral, but the converse does not necessarily hold. BAerat
detail analysis ofQ-integral homomorphisms reaches a kind of structure tmedtd
(A.3.2.2) of Q-integral homomorphisms, which we exploit in this article.

This article is organized as follows. After a review @fintegral homomorphisms
in Section 1, we prove quasi-section statements in monadrthas consequences of
the structure theorem in Section 2. In Section 3, we stath witme variants of quasi-
section statements by using the results in Section 2, anHeasdorollaries, we prove
generalizations of kummer log flat descents in [6], whichhis briginal motivation of
the present work. In Section 4, we prove quasi-section ree@és, as generalizations
of non-log cases, which can be applied to the existence oRAlbgnese map (4.4), for
example. Finally, in Section 5, we show that, under the agsiom of the verticality,
some stronger statements hold.

We hope that the results in this article would make prograssur understanding
on what the exactness is.

In Sections 3-5, the results are formulated algebraicalbept a few. Of course,
one can write down the analogous statements for fs log doadyptaces. The same
proofs work and sometimes the statements would be simp#er the algebraic ones
because the characteristic of the complex number field is. zer

NOTATION AND TERMINOLOGY. All monoids in this article are saturated. We
say that a monoid® is sharpif its group of the invertible element®* is trivial. For a
monoid P, the dimension din® of P is the maximal length of an increasing sequence
of prime ideals ofP ([4] (5.4)). For a monoidP, we denoteP/P* by P. For a log
structureM on a ringed toposX, Ox), we denoteM/O% by M.

We say that a homomorphism of monoidslégal if the inverse image by it of
the maximal ideal is the maximal ideal. We say that a homotiemph: P — Q of
integral monoids iexactif P = (h%)~1(Q) in P%. We say that a morphisni: X — Y
of fs log schemes or fs log analytic spacesstsct (resp.exac) if f*My — My is an
isomorphism (resp. is exact at stalks).

1. Review of Q-integral homomorphisms

In this section, we reviev@)-integral homomorphisms briefly. For details, see [2],
Appendix (A.3).

DEFINITION 1.1. Leth: P — Q be a homomorphism of fs monoids. We say that
h is Q-integral if one of the following equivalent conditions (1) and (2) iatisfied.
(1) h®n Q5o is integral.
(2) SpedC[h] is an exact morphism of fs log schemes.
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For the equivalence of (1) and (2), see [2] (A.3.2) and thear&nafter it.
An integral homomorphism i®-integral. A localQ-integral homomorphisnP —
Q is exact, and ifP is sharp, it is injective. See [2] (A.3.1).

DEerINITION 1.2 (cf. a remark after [2] (A.3.3) for the analytic versionA mor-
phism f: X — Y of fs log schemes is said to b@-integral if for anyx € X, the
homomorphismmY’W — My x is Q-integral.

An integral morphism of fs log schemes @-integral. A Q-integral morphism of
fs log schemes is exact.

Next, we explain that a log flat and exact morphism admits fppélly a Q-integral
chart, and that a log smooth and exact morphism admits éeddly aQ-integral chart.
For log flat morphisms, see [6] and [7].

Precise statements are:

Lemma 1.3. Let f: X — Y be an exact and log flat morphism of fs log schemes

Then there exists fppf locally on X and on Y a chaf¥,Oy) < P A Q — I'(X,0x)
of f by fs monoids such that P is sharp is local andQ-integral, and such that the

induced morphism x> Y X specz[p] SPeCZ[Q] is strict and flat

Lemma 1.4. Let f: X — Y be an exact and log smooth morphism of fs log

schemes Then there exists étale locally on X and on Y a chaf¥, Oy) < P A
Q — I'(X, Ox) of f by fs monoids such that P is sharp is local andQ-integral,
the order of the torsion part of the cokernel ofPhis invertible on X and such that

the induced morphism NS X specziP] SPeCZ[Q] is strict and smooth
Note that [2] (A.3.3) is an analytic version of 1.4.

1.5. Since the proof of 1.4 is similar to that of 1.3, we only expl#hat for 1.3.
The following is parallel to that for [2] (A.3.3).
Let f be as in 1.3 and lek € X. Then, we can take a local charnt P — Q

aroundx and f(x) which induces the bijectior® 3 MW and which satisfies all the
desired conditions except th@-integrality, and only satisfies the injectivity &f Lo-

calizing X if necessary, we may assume that the chart induces theibﬁe@ti My.
Under this assumption, we prove thatis Q-integral, which completes the proof. For
this, by [2] (A.3.2) (v)= (ii) and [2] (A.3.2.1), it is enough to show that, for any
point q in the special fiberS of Spech, the induced homomorphis® — Q, is ex-
act. Here the special fibe of Spedh: SpecQ — SpecP means the inverse image of
the closed point (= the singleton consisting of the maxirdehl) of Sped. Then, by
the original assumption of the exactness faf we see that it is enough to show that
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the image ofX in SpecQ containsS. Sincei: X — Xg =Y Xxgpeezip] SPECZ[Q] is
flat, Spedx,x — SpedDy i is surjective. Hence the image of Sgg x in SpecQ
containsS. Thus the image oX in SpecQ containsS.

2. Quasi-sections of homomorphisms of monoids

Proposition 2.1. Let h: P — Q be a local homomorphism of integral and sharp
Qso-monoids that are finitely generated &%.,-monoids Assume that h is integral
Then the following hold
(1) There is a face G of Q such that%Gn P9 = {1} and dimG =dim Q — dim P.
Here and hereafter we identify P with its imagéM) in Q. (Note that h is injective
(2) For any face G of Q satisfying the conditions (ih), the induced homomorphism
P — Q/G is an isomorphism

Proof. (1) By [2] (A.3.2), h is weak GD ([2] (A.3.1) (4)), i.e., for any €
SpecQ which lies over the maximal ideal of Spé; the map Spe€},) — SpecP is
surjective. Then, by [2] (A.3.2.2) (2b), the monof@ is the union of its submonoids
G P, where G ranges over all faces o such thatG% N P9 = {1}. Further, by [2]
(A.3.2.2) (2c), eachlG P as above is isomorphic to the product mon@dx P, which
has the dimension di@+dimP. Hence there is & such that dinQ =dimG+dimP.

(2) SinceP — Q/G is local and integral, it is exact. On the other haifP —
(Q/G)% = QI/G is bijective becaus&® N P9 = {1} and dimP% = dim(Q9°/G9).
HenceP — Q/G is an isomorphism. O

Recall that a homomorphisr® — Q of fs monoids is said to b&ummerif it is
injective and for any elemerg of Q, its some power" (n > 1) is the image of some
element of P.

Proposition 2.2. Let h: P — Q be a local andQ-integral homomorphism of fs
monoids Assume that P is sharprhen the following hold
(1) There is a face G of Q such that GP = {1} (or equivalently G° N P% = {1})
and dimG = dimQ — dim P. Here and hereafter we identify P with its imagéP)
in Q.
(2) For any face G of Q satisfying the conditions (ih), the induced homomorphism
P — Q/G is kummer

Proof. (1) By [2] (A.3.1.1), the local homomorphisiy_, — 6@20 induced by
h is integral, where (9., denotes ( ®y Q-0. Hence we can apply 2.1 to this homo-
morphism, and can find a fad®; of Qq_, satisfyingG$* N P". = {1} and dimG; =
dim Qg_, — dim Pg_,. On the other hand, since there are the compatible natural bi
jections Spe®g_, — SpecQ — SpecQ and Spedy., — SpecP, there is a natu-
ral bijection between the set of all fac&; of 6@30 satisfying G; N Py, = {1} and
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dimG; = dimﬁ@ZO —dim Py_, and the set of all face& of Q satisfyingG N P = {1}
and dimG = dimQ — dim P. Hence there is a fac& of Q as in (1). Note that
G9% N P% = {1} becauseP — Q/G is exact by (1)= (2) in 1.1.

(2) Let the notation be as in the proof of (1) above. In palicuG; denotes
the face of6Q>0 that corresponds t@&. Then, sinceG® N P9 = {1}, we see that
P — Q/G is injective. SincePy_, — Qqg_,/GY" is bijective by 2.1 (2), we conclude
that P — Q/G is kummer. O

Corollary 2.3. Let h: P — Q be a local andQ-integral homomorphism of sharp
fs monoids Then the following hold
(1) The homomorphism ® Q-0 has a section

(2) For some n> 1, the n-th power map P> P factors as P Q— P.

Proof. In2.2(2), the induced homomorphify_, — (Q/G)q., iS an isomorphism,
which implies (1). (Or (1) is directly deduced from 2.1 (ZyQrther, for (2), take an such
that for anya € Q/G, the powera" belongs to the image d®. Then, the image of by
the homomorphisn® — (Q/G)q., Z Py., is contained irPY/" := {a'/" € Py, |a € P},
which implies that then-th power map factors throug® as desired. 0

The following variants of the above results are not usedl B#ttion 5.

Proposition 2.4. Let the notation and the assumption be aif. Let G' be the
intersection of all faces G of Q satisfying the conditions2i@ (1). Then the follow-
ing hold
(1) The intersection of Gand the minimal face of Q that contains P is*Q
(2) The homomorphism ® Qo has a section whose kernel isyG.

(2Y For some n> 1, the n-th power map P-> P factors as pL Q > P, where
Ker(s) = G'.

Proof. (1) Leta be an element o’. Assume that is in the minimal face of
Q that containsP. Then, for someb € Q, the productab is in P. It is enough to
show thata is invertible in Q. By applying [2] (A.3.2.2) (2b) to the homomorphism
Po., & Qg.,» We see that the image € Qg_, of b belongs toGq.,Pg., for some
face G of Q satisfying the conditions in 2.2 (1). Hence, for some 1, the power
b" is in GP. Together withab € P, we see thak"g € P9 for someg € G. But,
sincea e G' ¢ G and G N P% = {1}, the last impliesa"g = 1, that is,a is invertible.

(2) By 2.2 (2), for each fac& of Q satisfying the conditions in 2.2 (1), there
is a sectionsg: Qg., — Pg., t0 hg., whose kernelfa € Qq_, | ss(a) = 1} coincides
with Gg_,. Lets =[[ss¢": Qo., — Po.,, WhereN is the number of all sucl.
Then, s’ is another section thig., and its kernel is the intersection of &g ,, that
is, G(’@m.



1168 C. NAKAYAMA

(2 In (2), take ann such that for anya € Q, the powers'(a)" belongs toP.
Then, the image ofQ by the homomorphisng’ is contained inPY", and the kernel
of the induced homomorphisf® — P¥" coincides withG’. Thus we have (2) [

3. Exact log flat descents

Proposition 3.1. Let f: X — Y be an exact and log flat morphism of fs log
schemes Let y be a point in the image (K) of X. Then there exists an open set
U of X such that the composite & X — Y is kummer and its image contains y

Proof. Letx be a point of X such thatf(x) =y. By 1.3, we may assume that
there exists a charf' (Y, Oy) < P LY Q — I'(X, Ox) by fs monoids such thaP

is sharp, h is local andQ-integral, the induced morphisnX AN Xo ==Y Xspez[p]
Specz[Q] is strict and flat, My y = P and M, 55 = Q. Apply 2.2 toh. Then there
is a faceG of Q such that the induced homomorphisth— Q/G is kummer. Let
Uo := Y Xspezip] SpecZ[G™1Q] C Xo and U = Ug xXx, X C X. SinceU — Y is
kummer, it is enough to show that the imagelfcontainsy. For this, we may as-
sume thatY is Sped[P] for some fieldk, andy is the origin of Spe&[P]. Then
Up is Sped[G'Q] C Speck[Q] = Xo. On the other hand, sincM, 5 = Q, the
point i(x) is in the locus Spek[Q]/(Q — Q) of Xo. Hencei(X) contains a point
i(u) (ue X) of the locusU/ := Speck[G1Q]/(G1Q — G*), because is flat so that
i (X) is stable under generization. Since this paifut) belongs toUy, the pointu be-
longs toU. Since the locud)) is lying overy, we havef(u) =y. Hence we conclude
that the image ot containsy. O

Corollary 3.2. Let f: X — Y be an exagctlog flat and surjective morphism of
fs log schemesThen the following hold
(1) There exists an open set U of X such that the composite ™M — Y is kummer
and surjective
(2) Further, if the cokernel of f*My)% — M is torsion free then for any U in(1),
the composite U- X — Y is strict

Proof. (1) is by 3.1. (2) is by the fact that any kummer morphi$: X — Y
such that the cokernel off (My)% — M’ is torsion free is strict. O

The above results enable us to generalize some propositimter the kummerness
assumption to those under the exactness assumption. Fmpkxawe apply the above
results to descents whose kummer cases are in [6] Section 7.

Theorem 3.3. Let f: X - Y be a morphism of fs log schemesd let g Y' —
Y be an exagctlog flat and surjective morphism locally of finite preserdatiof fs log
schemesLet X' = X xy Y and let f: X’ — Y’ be a morphism induced by. f
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Then f is log étalg(resp log smooth resp log flat, resp kummey if and only if
so is f.

Proof. It is enough to show the if part. For this, by 3.2 (1), may assume that
g is kummer. That is, the problem is reduced to the kummer cgjs&Heorem 7.1. (It
is known that the Noetherian assumption and the local finiesgntation assumption
put in [6] 7.1 (2) are not necessary.) O

The next gives an affirmative answer to a question of L. ldusi

Theorem 3.4. Let X > X Ly be morphisms of fs log schemesd assume
that g is surjective and exact

If g and fog is log étale(resp log smooth resp log flat), then f is log étale
(resp log smooth resp log flaf).

Proof. The case wherg is kummer is [6] Theorem 7.2. (It is known that the
Noetherian assumption and the local finite presentationnagon put in [6] 7.2 (2)
are not necessary.) The log étale case of the theorem isdedtlin it because a mor-
phism of fs log schemes is kummer and log étale if and only iiexact and log
étale. The other cases are reduced to [6] 7.2 by applying 13.20(g. ]

4. Quasi-sections of log flat or log smooth morphisms

The following are generalizations of some results in [1]1867.

Proposition 4.1. Let f: X — Y be a log flat exact and surjective morphism
locally of finite presentation of fs log schemd&@hen the following hold
(1) There exists a log flakummeyr surjective and locally quasi-finite morphism locally
of finite presentation Y— Y such that there exists a Y -morphisrh-¥ X.
(2) Further, if the cokernel of(f*My)% — M is torsion free then Y — Y in (1)
can be taken to be a strict flasurjective and locally quasi-finite morphism locally of
finite presentation

Proof. To show (1) (resp. (2)), by 3.2 (1) (resp. (2)), we maguae thatf is
kummer (resp. strict). Then, we see that (2) is nothing butLf116.2 by forgetting log
structures. Further, (1) is also reduced to [1] 17.16.2 llyntaa kummer chart étale
locally on'Y because, for a kummer homomorphigmof fs monoids, the morphism
SpecZ[h] is log flat, kummer, surjective, finite, and is of finite prataion. ]

Proposition 4.2. Let f: X — Y be a log smoothexact and surjective morphism
of fs log schemesAssume that the cokernel 6f*My)%® — Mgp is torsion free Then
there exists a strict étale and surjective morphisth—¥ Y such that there exists a
Y -morphism Y— X.
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Proof. Similarly as 4.1 (2), we may assume tHats strict by 3.2 (2), and use
[1] 17.16.3. O

Note that an analogue of 4.1 (1) in the log smooth case fdilat is, even if f
is log smooth, exact and surjective in 4.1, there may not bection ket (= kummer
log étale) locally. A counter example is as follows. Dethe a standard log point over
the spectrum of a fielk of characteristicp > 0. Assume that we are given a chart
N — My. Let P =N? = (x, y), wherex, y is the canonical basis. Lét: N - P be
the homomorphism sending 1 i@y € P. Let Xo =Y xgpecziyy Spe&[ P], which is log
smooth and exact ovef. Let X be the open fs log subscheme X%§ defined byy # 0.
Then f: X — Y has no section even after ket localization of the base bectusany
x € X, the order of the cokernel of the homomorphi&n¥ Mg ™~ W(py =Zis p.

But, if we work over the base of characteristic zero, such relcgue exists. For
example, we have the following.

Proposition 4.3. Let f: X — Y be a log smoothexact and surjective morphism
of fs log analytic spacesThen the following hold
(1) There exists a kummer log étale and surjective morphism>YY such that there
exists a Y -morphism"¥— X.
(2) Further, if the cokernel of( f*My)% — M3’ is torsion free then f has a section
locally on Y.

Proof. The proof is similar to that for 4.1. To show (1) (re€p)), by an an-
alytic version of 3.2 for log smooth morphisms, we may assuha f is kummer
(resp. strict). Then, (2) is a non-log statement. Furthgr,[4} (5.3), (1) is also re-
duced to the strict case. O

As an application, we have

Corollary 4.4. Let f: P - S be a projectivelog smooth vertical and exact
morphism with connected fibers of log smooth fs log analyiEces Assume that the
cokernel of( f*Mg)9 — Mgp is torsion free Then locally on Sthere is a log Albanese
map for f.

Proof. By [5] 10.5, there is a log Albanese map for suchfamwheneverf has
a section. By 4.3 (2),f has a section locally ors. Hence there is a log Albanese
map locally onS. O

5. \Vertical case

In the non-log situation, there can often exist a quasii@esthose image contains
a prescribed point (cf. [1] 17.16.1, 17.16.3). In this s@ttiwe prove some variants
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of this type. For this, we impose the verticality assumpt{oh 5.2). This is because,
without the verticality, we cannot expect that this type e$ults hold in general. For
example, let us consider the non-vertical morphism Sfé&§ — SpecC, where the
log structure on the base is trivial. Then, clearly, therengssection whose image is
the origin of Spec[N].

Recall that a homomorphist® — Q of fs monoids is said to belominatingif
any element ofQ divides the image of some element Bf

Proposition 5.1. Let h: P - Q be a loca] dominating andQ-integral homo-
morphism of fs monoidsAssume that P is shargrhen there is a local homomorphism

s: Q — P such that the composite B Q > P is the n-th power map P> P for
some n> 1.

Proof. Apply 2.4. Sinceh is dominating, the minimal face of) generated by
P is Q itself. HenceG’ in 2.4 is nothing butQ* by 2.4 (1), ands in 2.4 (2} is
local. O

Recall that a morphismf: X — Y of fs log schemes is said to beertical at
x € X if the induced homomorphierY’W — My x is dominating. We say that is
vertical if f is vertical at anyx € X.

The following three propositions are proved in 5.5.

Proposition 5.2. Let f: X — Y be alog flat and exact morphism of fs log schemes
Let x be a point of XThen the following hold

(1) Assume that f is vertical at.xThen there exist morphisms & V L X of fs
log schemeswhere a is log étale and b is stricflat and locally of finite presentation
such that the image of U in X contains x and such that the corgpbs— X — Y

is kummer

(2) Assume that f is verticalThen there exists a log flat and surjective morphism
X" — X locally of finite presentation of fs log schemes such thatdbmposite X—

X —Y is kummer

Proposition 5.3. Let f: X — Y be a log smooth and exact morphism of fs log
schemesLet x be a point of X Then the following hold
(1) Assume that f is vertical at.xThen there exists a log étale morphism & X
of fs log schemes whose image contains x such that the cdmpdsk X — Y is
kummer
(2) Assume that f is verticalThen there exists a log étale and surjective morphism
X" — X of fs log schemes such that the composite-XX — Y is kummer

EXAMPLE. Let h be the diagonal mapl — N? = (e[, &); a+> (a, a). Let f be
the morphism Spe€[h]. Let x be the origin of Spe€[N?]. Then we can takdJ in
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5.3 (1) as the log product SPEEN] x o, .- 1 SPdC[N] = SpecCley, e, (e1/€2)*!] in
the sense of [7].

Proposition 5.4. Let f: X — Y be a log smooth and exact morphism of fs log
analytic spaceslLet x be a point of X Assume that f is vertical at.XThen there is
a kummer log étale morphism’ ¥> Y such that there exists a Y-morphisrh-¥ X
whose image contains. X

5.5. We prove 5.2-5.4. First we prove 5.2 (resp. 5.3) (1). Thisliesp(2). By
1.3 (resp. 1.4), we may assume that there is a local(@mategral chartP — Q with

P sharp which induces a bijectio® = Myx. By the verticality, P — Q is domi-
nating. Under this assumption, we prove the existence ofgaélmleU — X sat-
isfying the conditions, that is, we can také = X in 5.2. Apply 5.1, and letQ’
be the inverse image oP by s%: Q% — P9 (notation is the same as there). Let
U = X Qspecziq) SPeCZ[Q’], and we show that thi¥) satisfies the desired conditions.
First, U — X is clearly log étale. Next we show th&t — X — Y is kummer. For
this, since the face Kes{P) of Q' is the minimal face, the induced homomorphism
Q — P is injective. HenceP — Q' is kummer andU — X — Y is kummer. The
rest is to show that the image &f containsx. To see this, we may assume that
X = Spe[Q] so thatU = Spe[Q’]. It is enough to show that the image bf con-
tains the locus Spef[ Q]/(Q — Q*) C X. But, sinces is local, Q — Q' is also local,
and the locus Speg[Q']/(Q" — (Q')*) c U is mapped onto Spe&t Q]/(Q — Q).

We prove 5.4. By the analytic version of 5.3 (1), we may asstima¢ f is kum-
mer. By [2] (5.3), the problem is reduced to the case whérés strict, which is
essentially a non-log statement.

As an application, for example, we have

Proposition 5.6. A log flat vertical and exact morphism locally of finite presen-
tation of fs log schemes is an open map

Proof. By 5.2 (2), we may assume that the morphism is kummleenT it is an
open map by [6] Proposition 2.5. L]

REMARK 5.7. In fact, in 5.6, the verticality is not necessary. A grémr it goes
as follows (we do not use 5.2). By 1.3, we may assume that ikead)-integral chart.
Then, by [2] (A.3.4), the morphism is integral after the babange by a kummer flat
covering. Hence, by [6] 2.5, we may further assume that thephism is integral.
Since the underlying morphism of schemes of a log flat andyiatemorphism is flat
(cf. [3] (4.5)), the problem is reduced to the non-log case.
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