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Abstract

In this paper we give a generalization of a result of Herzodgi,Hand Zheng
providing an upper bound for regularity of powers of an ideas the main result
of the paper, we give a simple criterion in terms of Rees akelf a given ideal
to show that high enough powers of this ideal have linearluésa. We apply the
criterion to two important ideald, J; for which we show thatl®, and Jlk have linear
resolution if and only ifk # 2. The procedures we include in this work is encoded
in computer algebra package CoCoA [3].

1. Introduction

Let S=K][xg,..., %] and let
F: .- --—>F —>F_1—> - -

be a graded complex of fre&-modules, withF = Zj S(—a,;). The Castelnuovo-
Mumford regularity, or simply regularity, df is the supremum of the numbeas; —i.
The regularity of a finitely generated grad&module M is the regularity of a mini-
mal graded free resolution dfl. We will write reg(M) for this number. The regular-
ity of an ideal is an important measure of how complicated itteal is. The above
definition of regularity shows how the regularity of a modgieverns the degrees ap-
pearing in a minimal resolution. As Eisenbud mentions in §f8Imford defined the
regularity of a coherent sheaf on projective space in ordegeneralize a classic argu-
ment of Castelnuovo. Mumford’s definition [12] is given inrtes of sheaf cohomology.
The definition for modules, which extends that for sheaves| the equivalence with
the condition on the resolution used above definition, comenfEisenbud and Goto
[9]. Alternate formulations in terms of Tor, Ext and localhomology are given in
the following. Letl be a graded idealm = (xy, ..., %) the maximal ideal ofS, and
n=dim(S/I). Let

ai(S/1)=maxt; HL(S/I) #0}, 0<i<n,
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where H! (S/1) is thei-th local cohomology module with the support im (with the
convention ma¥ = —oo). Then the regularity is the number

reg(S/1) = maxa (S/1)+i; 0<i <n}.

Note that reg() = reg(S/I) + 1. We may also compute rdg(in terms of Tor by the
formula

reg) = mat(1) — kI,

wheretp(l) := maxdegree of the minimap-th syzygies ofl}. Simply this definition
may be rewritten as

reg(l) = maxj —i; Tor(l, k); # 0}
]

:T?X{J —i; Bii(1) 7 0L

Anyway, from local duality one see that the two ways of exgires the regularity
are also connected termwise by the inequali) — k > a(S/1) + n — k. Regularity
is a kind of universal bound for important invariants of grddalgebras, such as the
maximum degree of the syzygies and the maximum non-vamjstiégree of the local
cohomology modules. One has often tried to find upper boundghie Castelnuovo-
Mumford regularity in terms of simpler invariants which reflehe complexity of a
graded algebra like dimension and multiplicity. Cleatgyl*) < kio(I) and one may
expect to have the same inequality for regularity, that ég(*) < kreg(l). Unfortu-
nately this is not true in general. However, in [6] Cutkoskerzog, and Trung and
in [11] Kodiyalam studied the asymptotic behavior of the ©bsiovo-Mumford regu-
larity and independently showed that the regularityl bfis a linear function for large
k, i.e.,

(1.1) reg( ) = a(l)k+b(1), Vk > c(l).

Now assume that is an equigenerated ideal, that is, generated by forms ofdhnee
degreed. Then one has(l) =d and hence, regt™?) —reg(*) = d for all k > ¢(l).
Hence we have

(1.2) reg(¥) = (k — c(1))d + reg "), vk > c(1).

One says that the regularity of the powersl gimps at placek if reg(1¥)—reg(l k1) >

d. In [4] the author gives several examples of ideals genératedegreed (d = 2, 3),
with linear resolution (i.e., re¢j = d), and such that the regularity of the powers of
| jumps at place 2, i.e., such that re§)( > 2d. As it is indicated in [4], the first
example of such an ideal was given by Terai. Throughout thjgepwe usel for this
ideal. Geometrically speaking, this is an example of Reisvigich corresponds to the
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Uy Uy

Fig. 1. The ideal of triangulation of the real projective niaP?.

(simplicial complex of a) triangulation of the real projwet planeP?; see Fig. 1 and
[2] for more details. LetR := K[Xg, . .., Xg] one has
J = (X1X2X3, X1X2X4, X1X3Xs5, X1X4X6, X1X5X6, X2X3Xe, X2XaX5, X2X5X6, X3X4Xs,

(1.3)
X3X4Xg).

It is known thatJ is a square-free monomial ideal whose Betti numbers, retula
and projective dimension depend on the characteristic ®fbidse field. Indeed when-
ever charK) # 2, R/J is Cohen-Macaulay (and otherwise not), moreover one has
reg(d) = 3 and reg?) = 7 (which is of course> 2 x 3). If char(K) = 2, thenJ itself

has no linear resolution. So the following natural questmises:

QUESTION A. How it goes on for the regularity of powers gf?

By the help of (1.1) we are able to write rekfj = 3k +b(J), Vk > ¢(J). But what
areb(J) andc(J)? In this paper we give an answer to this question and proaelth
has linear resolution (in cha€() = 0) vk # 2, that is,b(J) =0 andc(J) = 3. That is

reg@*) = 3k, Vk # 2.

To answer Question A we develop a general strategy and toetidswe need to
follow the literature a little bit. In [13] Rémer proved that

(1.4) reg(") < nd+reg (R(l)),

where R(1) is the Rees ring of , which is naturally bigraded, and rggefers to the
x-regularity of R(l), that is,

reg,(R(1)) = maxb — i ; Tor (R(1), K),a) = 0},

as defined by Aramova, Crona and De Negri [1]. In Section 2 wdysRees rings and
their bigraded structure in more details. It follows from4{lthat if reg(R(l1)) = O,
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Table 1. Count of elements of iR} with deg, > 1 for the ideal
of (1.3).

DegRevLex| (1,
Lex (1,

then each power of admits a linear resolution. Based on Rémer’s formula, in, [10
Theorem 1.1 and Corollary 1.2] Herzog, Hibi and Zheng shottwedfollowing:

Theorem 1.1. Let | € K[Xg,...,Xn] := S be an equigenerated graded idebet m
be the number of generators of | and letT Jty,...,ty], and let RI)=T/P be the
Rees algebra associated to If for some term orde< on T, P has a Grdbner basis
G whose elements are at most linear in the variablegs x., X,, that isdeg/(f) <1
for all f € G, then each power of | has a linear resolution

Throughout this paper we simply write= K[x] and T = §t]. One can easily see
that for J, (1.3), one has at least 3 elements inFpwith deg, > 1, no matter if we
take initial ideal w.r.t. term ordering % t or t > x in either Lex or DegRevLex order
as it is reported in Table 1. Note that for example if one stémt DegRevLex order
and x>t then there is 4 elements in R} which havex-degree> 1 (= 2 actually)
and among them 2 term hasdegree 1 and 2 term is idegree 2.

The main motivation for our work is to generalize Herzog, iHihd Zheng's tech-
nigues in order to apply them to a wider class. Furthermore will indicate the least
exponentky for which 1% has linear resolution for ak > ko. Indeed our generalization
works for all ideals which admit the following condition:

Theorem 1.2. Let QC S=K|[Xg,..., X] be a graded ideal which is generated
by m polynomials all of the same degree ahd let | = in(g(P)) for some linear bi-
transformation ge GL,(K) x GLnh(K). Write | = G + B where G is generated by
elements ofleg < 1 and B is generated by elementsagg, > 1. If I j) = G,y for
all k > kg and for all j € Z, then ¢ has linear resolution for all k> kg. In other
words reg(@Q¥) = kd for all k > ko.

Another motivation for our paper is an example that Concasictaned in [4].

ExamMPLE 1.3. LetJ; be the ideal of 3-minors of a # 4 symmetric matrix of
linear forms in 6 variables, that is, 3-minors of

0 X1 X X3
X1 0 Xa Xs
X2 X4 0 Xe
X3 Xs X O
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Table 2. Count of elements of iR() with deg, > 1 for J;, (1.5).

x>t t>x
DegRevlLex (1,2):6, (2,2):5, (1,3):1, (4,2):1(1,2):6, (2,2):3, (1,3):1
Lex 1,2):6, (2,2):3 1,2):6, (2,2):5
As an ideal of S=Q[Xy, ..., X¢] one has:

(15)
J 1= (2X1%oXa, 2X1X3Xs, 2XoXaXe, 2XaX5Xe, X1XaXa + X1X2X5 — X2 Xe,
X3XaXe + XoX5Xg — X1X5, —X2XaXg + X5X5 — X1X2Xe, —X5Xg + X2X3Xs5 + X1X3Xs,
2 2
—X3Xj + XoXaXs + X1XaXe, —X3XaXs + XoX5 — X1X5Xe).

As Conca mentioned in his paper [4, Remark 3.6] and as we Willvsin this paper,
the idealsJ, J; are very closely related. For instance, we prove that

reg(df) =3k, Vk #2.

Similar to the ideal of (1.3), one can easily check thaPin( where P; is the associ-
ated ideal to Rees ring aJ;, has at least 9 elements with deg 1, no matter if we
take initial ideal w.r.t. term ordering % t or t > x in Lex or DegRevLex order; see
Table 2 for more details.

We also show that] and J; and their powers have the same Hilbert series (HS
for short) correspondingly:

HS(S/J¥) = HS(S/J)),  Vk.

Indeed we have computed the multigraded Hilbert series efcrresponding ideals
to the Rees algebra od and J; and observed that they are the same. As a result
we conclude that all of the powers df and J; have the same graded Betti numbers
as well:

B.i(39 = B,;(IN, Vi, j, k.
2. Main results

Let K be a field,| =(fy,..., fn) be a graded ideal o= K[xy,..., %] generated
in a single degree, say. The Rees algebra df is known to be

R(I)=EP It =g fst,..., fut] < St].

j=0

Let T = Jty,...,tn]. Then there is a natural surjective homomorphism of bigdad
K-algebrase: T — R(l) with ¢(x) =x for i =1,...,r and ¢(y;) = fjt for j =
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1,...,m. So one can writeR(l) = T/P. In this paper we consideF, and soR(l), as
a standard bigraded polynomial ring with deg( (0, 1) and dedf) = (1, 0). Indeed if
we start with the natural bigraded structure dep€ (0, 1) and degfjt) = (d, 1) then
R(Nk.vay = (1%),q, but the standard bidegree normalizes the bigrading in dHewfing
sense:

(2.1) Ry = (X)) -

For eachk € Z we define a functoir, from the category of bigraded@-modules
to the category of grade&modules with bigraded maps of degree zero. Metbe a
bigradedT-module, define

Fu(M) = P M j),

JEZ

obviously F¢ is an exact functor and associates to each de, t]-module a free
K[x]-module. Sometimes we simply writel . instead ofF(M). Using (2.1) we get

(2.2) [T/Plks = RDkw = P Rk, = @D karj = 1¥(ka),

jeZ jez

which provides the link betweeh and its Rees ringR(l). In the sequel we need to
know what isF(T(—a, —b)). For the convenience of reader we provide a proof.

REMARK 2.1. For each integek we have

_ o, if k<a,
(2.3) 'W—&—m&ﬁ‘{q_mw otherwise.
Where N := #{t*; |a| =k — a} = (m_n}jkl_a)'
Proof.
T(_a, _b)(k,*) = @ T(—a, _b)(k,J) = @ T(k—a,j—b)

jez JEZ

(2.4) '

=P¥; lel =k—a, |l =] —b),

JEZ

where the last equality is as vector spaces. From (2.4) thef ps immediate when
k < a. Considering as ars = K[x]-module the last module in (2.4) is free. Since
|Bl = j — b could be any integer wherg changes ovef, a shift by —b is required
for the representation of the graded free modLie-a, —b)( ., and finally the proposed
N will take care of the required copies. O
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Note that in the spacial case= b =0, we have

m—1+K

(2.5) T(k,*) = S( m-1/,

As we mentioned in Introduction, Theorem 1.1 is subject todition that in(P) =
(ug,...,um) and deg(u;) < 1. So the natural way to generalize it is to change the upper
bound for x-degree ofu; with some numbet. As one may expect, we end up with
reg(l") < nd+(t — 1) pd(T /in(P)). The proof is mainly as that of Theorem 1.1 but for
the convenience of reader we bring it here.

Proposition 2.2. Let | € S be an equigenerated graded ideal and lgtl )R=
T/P. If in(P) = (uy,...,um) anddeg (ui) <t, thenreg(™) < nd+ (t — 1) pd(T /in(P)).

Proof. LetC, be the Taylor resolution of if). The moduleC; has the basig,
with o = j; < jo < -+ < ji €[m]. Each basis elemerd, has the multidegreea(, b,)
wherex® .y = lem{uj,,..., uj,}. It follows that deg(e,) <ti for all e, € C;. Since
the shifts of C, bound the shifts of a minimal multigraded resolution of Riy( we
conclude that

reg (T/P) < reg(T/in(P)) = maxa; —i}
]

<ti—i=(—1)
< (t — 1) pd(T /in(P)).

Now (1.4) completes the proof. O

One can see that now Theorem 1.1 is the special case of Piopdai2 witht = 1.
However, this approach seems to be less effective. Our apprto generalize Theo-
rem 1.1 is to changé® with an isomorphic imagg(P) so that ing(P)).. only con-
sists of terms withx-degree< 1, for somek. To this end, we need a simple fact.

Let < be any term order or5= K[x] and letV C S be aK-vector space. Then
with respect to the monomial order ddobtained by restricting<, by definitionV is
homogeneous if for any elemerit of V, f = Zi”:o fi, where f; is an element ofS
of degreei, we havefi € V, Vi =0,...,n. Thatis to sayv = 5, Vi, Vi =V NS.
It yields that in{/) = /5, in(Vi) and so, in¥);i = in(V;). Generalizing this idea to
bigraded (or multigraded) situation is also well underdtobet F be a freeS-module
with a fixed basis and a bigraded subvector space of it. Then

in(M)g, j) = in(Mg, ),
and so

(2.6) in(M)(k,*) = @ in(M)(k,j) = @ in(M(k,j)) = in(M(k,*)).

jEZ jezZ
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See [7] Chapter 15.2 for more details. Furthermore sifger /M) < g5(F/in(M)),
it is easy to conclude with

(2.7) reg(F/M) < reg(F /in(M)).

Lemma 2.3. Let P be the associated ideal of Rees rin¢l Rand let T= R/P.
Thenreg([T/Plk.«) < reg([T/in(P)]«,«)-

Proof. SinceP is a naturally bigraded ideal of, and since easilyl.) is a
free Smodule (see (2.5)), (2.6) implies that B, = in(Px.). Applying (2.7) for
F =Tk and M := P we obtain regl.«)/Pk+) < red(Tk.«/in(Pk,.)). Finally putting
all together we get the required inequality.

reg([T/Pl,«) = reg(M,«/ Pk.«) < reg(Tk.«/iN(Px,+))
= reg(T,«/IN(P)k.»)
= reg([T /in(P)]k,«))- O

In the following the proof of Theorem 1.2 is given.

Proof. First of all notice that, sincg: K[x,t] — K[x, 1] is an invertible bi-
homogenous transformation, we have the following bi-hoemagis isomorphism:

Kix.t] _ KIx ]
P oP)’
and so we can simply takg=id in the rest of proof. Write down the so-called Taylor
resolution of T/G:

F20
&) F1,0
(2.8) o> 1> @ > T—>T/G—0,
&) Fi,1
F2,2

where Fi j = @,., T(—a, —j)Fe(T/6). Note thathi @ j)(T/G), is an integer number
which depends om, a, and j. Since k, %) is an exact functor, the following complex
of K[x]-modules is exact:

(F2,0k.%)
@ (F1,0)k»)
(2.9) e — (F2,l)(k,t) — (&) — T(k’*) — [T/G](k’*) — 0.
& (F1,D .

(F2,2) k%)
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Using formula (2.3) we obtai (—a, —b).) = S(—b)N=«, so for F ; we get

(2.10) (Fi. ks = @ S(— j)Nexbi@n(T/G),

acZ

It follows that (2.9) is a (possibly non-minimal) gradeddii€[x]-resolution of [T /G] ..
Since deg(G) < 1, from (2.9) and (2.10) we conclude that

(2.11) reg([T/Glw.») =0 for all k.
Now we have

dk < reg(Q") < reg([T/P]w) +dk < reg([T /in(P)] k) + dk
(2.12) =reg([T/G]k») +dk forall k> ko
=0 +dk = dk,

where the second (in)equality in (2.12) follows from (2.8)e third inequality is due to
Lemma 2.3, and the forth comes from the easy arguniefinf P)] .) = Ta«) /IN(P) .+ =
Tes)/Gkn) = [T/Clk,)-

Finally (2.12) implies that reg®¥) = kd for all k > ko as desired. 0

3. Examples and applications

In this section we provide some applications of Theorem B@ before that we
examine our condition on the decomposition ofRfi(n a closer view. In the following
a reformulation of our results is provided.

With the assumptions and notation introduced in Theoremakfume thaBB =
(my, ..., my) and bidegfy) = (ti, > 2). By (i, > 2) we mean that the de@m;) > 2. It
is harmless to assume that< --- <tp. If forall i =1,..., p and alla € N" with
le| =tp + 1 —t; we have tm; € G thenly,) = Gy for all k > t, + 1.

Using this strategy and as an application for our main resaltgive an answer to
the Question A proposed in the Introduction.

ExXAmMPLE 3.1. LetS=Q[xy, ..., Xs] and let J be the ideal of (1.3). Lef =
Q[X1,---, Xg, t1, ..., t10] With order x>t (and DegRevLex). We also uskfor the ideal
of T generated by the same generators ad @f S. Let P be the defining ideal of the
Rees ring ofJ, so R(J) = T/P. One can check thaP has 15 elements of bidegree
(1,1), 10 elements of bidegree (3,0), and 15 elements ofjbede(4,0). Takés and B
as in Theorem 1.2. We have checked tfat=60, B = Ideal(t6x4x5,t4x3x5,t4t6x§), and
so maxdeg(h) | h € B} = 2. But ()3(teXaXs) € G, (1)*(taxsxs) € G, (t)(tateXs) Z G.
So in DegRevLex (also Lex) order and>xt, we were unable to admit the conditions
of Theorem 1.2. We have observed that the same story happensdering t> x
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either DegRevLex or Lex. One could try to tage“generic”, as in (3.1).

g:=01 X 02,
(3.1) 01 := X — Random(Sunxj, . . ., Xg)),
02 :=tj = Random(Sunig, . . ., ti0)),

foralli=1,...,6 and allj =1,..., 10, where by Random(Sumy ..., Xs)) we mean
a linear combination ok, ..., X¢ with random coefficients and the same interpretation
for ty, ..., tijp. But we realized that a properly chosen sparse random upipaegtlar

g does the job as well. We continue in DegRevLex order andxt

We have implemented some functions (in CoCoA) to look for sirgd upper tri-
angular bi-change of coordinates. For example, the foligwg works fine for J, in-
deed there exists many of sugh

g:=01 X & € GLg(Q) x GL10(Q),
whereg;: Q[x] — Q[x] is given by

X4 > X1+ Xg,

Xp > X3 *+ Xg,

and sends for i # 4, 6 to itself and leg, to be the identity map ove@[t]. One can
compute thafG| = 98, B = (t7X3, tstex2). It is easy to verify that

(tzx3)(ta, . . ., t10)> € G,

3.2 Ik =Gky, for k>2
(32) (<) () {(Mtsxé)(tl, . 110 € G,

and since in the right side of (3.2) both containments arédvale conclude with
reg(@*) = 3k for all k > 2.

Taking several ideas from Example 3.1 now we are able to fuiokd an answer
to Question A forJ;. In the following we show that reg{‘) =3k, for all k > 2.

EXAMPLE 3.2. LetS=Q[Xy,..., Xg] and let J; be the ideal of (1.5). Lef =
Q[ty, - - -, tao, X1, - - -, Xg] in DegRevLex order, and leP; be the defining ideal of the
Rees ring ofJ;, so R(J;) = T/P;. One can observe th& has 15 elements of bidegree
(1, 1), 10 elements of bidegree (3, 0), and 12 elements ofgkede(4, 0). Takey to
be the following simple upper triangular bi-transformatio

0:= 01 x & € GLg(Q) x GL10(Q),
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whereg;: Q[x] — Q[x] shall be given by

X4 > X2 + X4,

Xg > X1 *+ Xg,

and sending the rest to themselves and tgkeQ[t] — Q[t] to be

tg — t7 + g,

and fori #8, tj > t;. Computations by CoCoA shows th&| =144, B = (t10X2X3, t2t4x§).
Sincel :=in(g(P)) =G + B, we have

(tioXeXa)(ty, . - -, t10)?> € G,

3.3 Ik =Gy, for k>2<:>{
(33) e () (totax2)(ta, . - ., t10) € G,

and since it is easy to check that the right side of (3.3) iglihg, we obtain that
reg(dy) = 3k for all k > 2.

We conclude with the following two corollaries which indieahat ideals], (1.3),
and J;, (1.5), are very tightly related.

Corollary 3.3. When the characteristic of the base field is zeatl the powers
of J, and J, but the second power have linear resolution

Since the least exponeky for J¥, and also forJ¥ in order to have linear resolu-
tion for all k > kp is 2, the following question seems to be interesting to disco

QUESTION B. Does there exist an ided) with generators of the same degree
d over some polynomial rind5 = K[Xa, ..., %], for which reg@Q¥) = kd, Vk # 3 or
vk # 2, 3?

As we mentioned in Introduction, it is easy to check tiatP and T /P; have the
same multigraded Hilbert series, whdpe and P, are the defining ideals of Rees rings
of J and J; correspondingly. The immediate result is as follows:

Corollary 3.4. HS(S/J¥) = HS(S/Jf)vk, and sop; j(I¥) = Bi,;(I) Vi, j, VK.
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