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Abstract
We consider the linear integro-differential operatodefined by

L0 = [ (U y) =00 = L)L pp=a(9)y - VUOOK(X, ¥) .

Here the kernek(x, y) behaves likgy|™", « € (0, 2), for smally and is Hdolder-

continuous in the first variable, precise definitions areegibelow. We study the
unique solvability of the Cauchy problem correspondinglLto As an application

we obtain well-posedness of the martingale problemlfoOur strategy follows the
classical path of Stroock-Varadhan. The assumptions ditowcases that have not
been dealt with so far.

1. Introduction

A linear operatorA: Cg(R") — C(R") is said to satisfy the global maximum prin-
ciple if Au(x*) < 0 for all x* € {x € R"; u(x) > u(y), Yy € R"}. It is well-known
that infinitesimal generators of strongly continuous cactipn semi-groups oCy(R")
generating Markov processes satisfy the global maximumciplen  Surprisingly, the
global maximum principle implies already a certain stroetaf A, see [12]. More pre-
cisely, A is the sum of a possibly degenerate elliptic diffusion ofmravith bounded
coefficients, a drift and a jump part which we c&ll SinceL alone generates pure
jump processes which generalize Lévy processes it is somaetcalled a Lévy-type
operator, see [19], [5], [17] and [22] for surveys.

It is the aim of this work to study important properties of thgeratorL which is
defined by

(1.1) Lu(x) = /Rn(U(X +y) —u(x) — Ig,(y)y - Vu(x)k(x, y) dy
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ifl<a <2 and
(1.2) Lu(x) = / (U(x +y) — u(x)k(x, y)dy
Rn

if 0 <o < 1. Herek: R" x (R"\ {0}) — (0,00) is Hdlder continuous of order € (0, 1)
in x € R", measurable iny € R"\ {0} and can be decomposed ks= k; + ky such
that ky(x, y) =0 for |y| > 2, ky is (n+ 1)-times differentiable iny, and the following
estimates are satisfied:

(1.3) 19Fka( -, Ylice@ny < ClyI™" 7P, 0 <yl <2,
(1.4) ki(x, y) < cly|™"™, O<l|y| <1, xeR",
(1.5) Ika( ., Yllcr@ny < Clyl ™™,  0<ly| <1,
(1.6) / ke . )lles@ny dy < oo,
lyl=1
(1.7) IyI\iLnoo Ika( ., Y)lic @y =0

for all B € Ny with [8] < N :=n+1, where 0< o’ < @ < 2. Moreover, we assume
ki(x, —y) = ki(X, y) if @ = 1. There are many examples satisfying these assumptions,
see the discussion below. A model case is giverkpy y) = c|ly|™""%, y # 0, which
leads toL = —(—A)*/2. Other examples are given tyx, y) = g(x, y)|y|™"¢, y #0, if
g is sufficiently smooth, positive and bounded from above amdyafrom zero. Note
that g does not need to be homogeneousyimor in x.

Our main result concerning the Cauchy-Problem foris given by the follow-
ing theorem. In the following’3(R"), s > 0, denotes the Hoélder-Zygmund space and

Co(R") = CSO(R“)”'HCS. For a precise definition of the function spaces we refer to- Se
tion 2.1 below.

Theorem 1.1. Let k satisfy(1.3)—(1.5),let L be defined as ifiL.1), and let T> 0O,
O<s<rt, 0<0 <1 Then for every fe C/([0, T]; C5(R")) with f(0) =0 there is a
unique ue CL9([0, T]; CS(R™) N CY([0, TJ; C5*(R™M) solving
(1.8) du—Lu=f in (0, T)xR",

(1.9) u@©, -)=0 in R".
If f is non-negativethen u is non-negative as well
The latter theorem will be a direct consequence of the faat lthgenerates an an-

alytic semi-group orC3(R") with 0 <'s < 7. In order to prove this we will construct an
approximate resolvent tb using pseudodifferential operators with non-smooth syisibo
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Further down we formulate and prove an important corollarytite above theo-
rem. It involves the martingale problem which we briefly mvi By D([0, c0); R")
we denote the space of all cadlag paths. A probability meaBtiron D(]0, co); R")
is said to be a solution to the martingale problem for D(L)) with domain D(L)
being contained in the set of bounded functidnsR" — R, L defined as in (1.1) and
u a probability measure oRR" if, for any ¢ € D(L)

t
(qs(nt) — (o) — /o (L)) ds)
t

>0

is a P*-martingale with respect to the filtratiow ([1s; S < t))s0 and P#(TTp = u) = 1.
HereTl is the usual coordinate process, i.E; [0, c0) x D([0, 00); R") — R", T(w) =
o(t). If for every u there is a unique solutiof®* of the martingale problem, we say
that the martingale problem foi( D(L)) is well-posed.

As a corollary to Theorem 1.1 we obtain the following result.

Theorem 1.2. Let L be defined as aboveThen the martingale problem for
(L, C3°(RM) is well-posed

Proof. The existence of a solutidi* for a given distributionu on R" has been
established by several authors, see Theorem 2.2 in [40]Jpréhe IX.2.31 in [20] and
Theorem 3.2 in [15]. Note that these papers establish existéor a class which is
much larger than the class for which uniqueness is shownauec of these results,
it is sufficient for us to prove uniqueness. Theorem 1.1 andenprecisely, Corol-
lary 2.17 below, provide a bounded analytic semi-grotig{o on C5(R") for any s €
(0, 7) with generator I, C3™(R")). In particular, this implies thaR(x — L) = C5(R")
is dense inCo(R") for all » > 0 and the condition of the Hille-Yosida theorem for
Feller semi-groups, cf. [21, Theorem 17.11] are satisfiedere the global maximum
principle is easily verified. Thus is a closable operator ofy(R") such thatL gener-
ates a Feller semi-group. Unigueness of the martingalelgmolbow follows from [14,
Chapter IV, Theorem 4.1]. 0

Studying the existence of pure jump processes, i.e., psesewithout a diffusion
component, together with their properties is a field of stitreasing interest. We list
some references dealing with the martingale problem for-looal operators such as
L. In the casek(x, y) = k(y) with k as in (1.1)L is a generator of a Lévy jump pro-
cess, i.e., a jump process with independent stationareiments. There are different
and more elegant approaches than the martingale probletmetexistence of a corre-
sponding process, see [7], [38].

The martingale problem for an operator of the fon+ L where A is a non-
degenerate elliptic operator and is an operator of our type has been studied first in
[27], [40], [30]. SinceA is a second order operattr is a lower order perturbation of
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A for many questions. [28], [29] seem to be the first articlesting the martingale
problem for pure jump processes generated by operatorsLlikdhe main assump-
tions are thak(x, y) is a perturbation ok(x, y) = |y|=9~*, y # 0, together with quite
strong regularity assumptions. More general results haen lobtained in [35] using
techniques from partial differential equations. In thddatarticlek(x, y) is assumed to
be twice continuously differentiable in the first variable.

Strong results on the well-posedness have been obtaine82]n [33], [34]. The
authors use a setup similar to the one of the so called Cald&ygmund approach
in the theory of partial differential equations. In [32],3[3k(X, y) is assumed to be
only continuous in the first variable but some additional bgeneity is assumed in the
second variable. To add a personal comment, these reswist®en underestimated
in the literature from our point of view. This is maybe due bke ffact that the journal
is not available easily and that the articles are written isomewhat dense style.

Using pseudodifferential operators and anisotropic Smbspaces built with con-
tinuous negative definite functions [15] proves well-posess of the martingale prob-
lem under assumptions like — k(x, y) € C3"(R") but allowing for a more general
dependence ok(x, y) on y. Moreover, the extension df to a generator of a Feller
semi-group is discussed. See [10] for similar techniquesfinite dimensions and [36]
for related questions. In the setting of [15] a parametrix tfee pseudodifferential op-
erator is constructed in [11]. These results do not applyutosetting since we assume
only Hélder regularity of the mapping — Kk(Xx, y).

The results of [35], [32], [33], [15] and the ones in the praseork do not
imply one another but have a large region of intersectione @esumptions on the
x-dependence dk(x, y) in [35], [15], [34] are more restrictive but the assumptomm
the y-dependence are partly weaker than ours. The situatiorvé&sed when compar-
ing our results to [32], [33]. Our techniques solving the €auproblem are different
from [35], [15] and [32].

The authors of [13] prove solvability of the Cauchy probleon & time dependent
pseudodifferential operatoc(t) = p(t, X, Dx) where the principal part of the symbol
p(t, X, &) is homogeneous i of degreex € [1, 2] and uniformly Hoélder continuous
in (t, x). Their results do not apply to the uniqueness for solutiohshe martingale
problem since sufficient regularity of solutions to the Gauproblem is not provided.

In the above list we do not mention results concerning whatoimetimes called
“stable-like” cases, i.e. whek(x, y) =~ |y|~9-*®) 'y #0. Well-posedness of the martin-
gale problem is proved in one spatial dimension in [4] wlh&n) is Dini-continuous.
Uniqueness problems for stochastic differential equation similar situations but in-
cluding higher dimensions and also diffusion coefficients eonsidered in [45]. The
techniques of [4] can be extended to higher dimensions aral lesger class of prob-
lems, see to a larger class of problems, see [6]. See [18],f§2Fesults on the ques-
tion when the linear operators of tyde extend to generators of Feller processes in
the case when thg-singularity ofk(x, y) is of variable order. [16] provides such a re-
sult together with well-posedness of the martingale problehenx — «(x) is smooth
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wherea(x) is the order of differentiability ofl.

One scope of this contribution is to present an applicatibthe theory of pseudo-
differential operators with non-smooth coefficients to puprocesses. We hope to draw
the attention of probabilists to this method.

2. The Cauchy problem for Lévy-type operators

2.1. Preliminaries and notation. The characteristic function of a sét is de-
noted byla. Furthermore, we defings) := (1 + |£]?)Y/2 for & € R". Moreover, we
defineZ; :={ze C\ {0}: |argz| < 8} for 0 < § < .

As usual, C3°(R") denotes the set of all smooth and compactly supported func-
tions f: R" - R, S(R") denotes the space of all smooth and rapidely decreasirg fun
tions, andS’'(R") = (S(R")) the space of tempered distributior@*(R"), k € N, shall
be the usual Banach space of continuous functions with lemlirntinuous deriva-
tives up to ordeik. By C'g(R“) we denote the closure @g°(R") with respect to the
norm of CX(R"). C3(M; X), wheres € (0, 1), M € R", M closed, andX is a Banach
space, is the space of uniformly bounded Hélder continuoustions f : M — X of
order s with uniformly bounded Hélder constant. Moreovet$(M) = C5(M; R) and
f e C13([0, T]; X) iff f:[0, T] — X is continuously differentiable andd(dt)f e
C3([0, T]; X). Finally, if f: R" — R, we define ¢, f)(x) = f(x +h), x, h e R", and
Apf =1, - f.

For functions f € S(R") the Fourier transformF and its inverseF~! are de-
fined via

.ﬂﬂ@=/€“”WNK fﬂnm:/é“uaﬁ,

wheredg = (27)~"d&. When there is ambiguity we use subscripts to indicate thie va
ables with respect to which the Fourier transform is takem, J(f) would be written
as Fy-¢(f). Finally, 7: S'(R") — S'(R") is defined by duality an®y, := (1/i)dx,, | =
1,...,n, wheredy; is the usual partial derivativeDx denotes the vectory,, ..., Dx,).

We use a dyadic partition of unity; € C3°(R"), j € No, which satisfies supg C
B2(0) and supp; C {2171 < |£] < 2I*1} for | € N. Then the Hélder-Zygmund space
C3(R™), s> 0, consists of allf € S'(R") satisfying

I fllcs = sug 2"l g(Dy) fllL~: k € No} < oo,
where

o(Dx) T = F (&) FLF1(E)].

Note thatC3(R") = BS,(R"), whereBy,(R"), se R, 1< p,q < oo, denotes the usual
Besov space. Moreover, it is well-known th@t(R") = C5(R") for s € R, \ N, cf. [42,
Appendix A] or Triebel [44, Section 2.7].
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The closure ofC3°(R") in CS(R") is denoted byC3(R"). We will use the following
sufficient criterion for a function to belong tG(R"):

Proposition 2.1. Let0 <s < < 1. Then every fe C5(R") satisfying
(21) lim I f ”CS(R”\BR(O)) =0
R— o0
belongs toCj(R").

Proof. Letg.(X) = e "p(c1x), ¢ € CP(R") with [ ¢(x)dx =1, be a standard
mollifier. Theng, * f —._o f in C3(R") since f € C5(R"). Moreover, (2.1) implies
that eachy, x f can be approximated by smooth, compactly supported fumtip to
an arbitrarily small error inrCS(R"). This proves the proposition. ]

2.2. Pseudodifferential operators with non-smooth symbal In the following,
the principal part of the Lévy-type operator will be repmsel as pseudodifferential
operator with a symbol of the following kind:

DEFINITION 2.2. Letn,n" e N, N € Np, me R, and lett € (0, 1). Then a
function p: R” x R" — C belongs toC™ S["o (R™; R") if p(x, &) is Holder continuous
w.rt. x € R", N-times continuously differentiable w.rt. € R" and satisfies

(2.2) 197 p(., &)llcr@ny < C(&)™

uniformly in &€ € R" and for all |8] < N. Moreover, let

IPlcrsry, = sup &)™l p(., &)l en)-

§€RMIB|=N

REMARK 2.3. Note that), ¢ yen C7 Son(R"; R") coincides with the classical
symbol classS['((R"; R") as defined in [23]. A first treatment of pseudodifferential
symbols which are merely Holder continuous in the spaceabfgix and the associ-
ated operators was done by Kumano-go and Nagase [24]. Fusbalts and many
references can be found in the monographs by Taylor [42, 43].

Fora=a(x,y,&) € C* o (R" x R";R") we define the associatedeudodifferential
operator in (X, y)-form (formally) by

(2.3) a(x, Dy, x) f ::/ / eOEq(x, y, £)f(y) dyde.

So far, it is not clear whethex(x, Dy, X) f in (2.3) is well-defined even fof € C3°(R").
This will be clarified later in each particular situation wavk to deal with.
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REMARK 2.4. In order to underline the connection between the opeagx, Dy, X)
and the corresponding symba{x, y, &) we write a(x, &, y) instead ofa(x, y, &) in the
sequel.

In the special case that(x, &, y) = p(x, &), p € Son[R™ R"), and f € S(R"),
the operator in (2.3) is well-defined as iterated integrald eoincides with

pix, DT = [ €¢pix, £)(e) .

which is a pseudodifferential operatonirfform The adjoints ok-form pseudodifferential
operators are the pseudodifferential operatory-fiorm, which corresponds to the case

a(x, &, y) = p(y, &), pe Son@R"R"), and is (formally) given by

P01 = 77 [ e ply, ) () dy].

If f eS@"), the inner integral defines a bounded continuous functiod € R" and
p(Dy, x) is a well-defined operatop(Dy, X): S(R") — S’(R").

REMARK 2.5. Working with non-smooth symbols it is important to gliguish
between pseudodifferential operatorsxisfiorm and iny-form since the mapping prop-
erties are different, cf. Theorem 2.6 below. The principaftf the operatol. will
be a pseudodifferential operator iform; but it is important to take the approximate
resolventQ; = q,(Dy, X) ~ (A — L)~! as an operator iry-form, not in x-form. Other-
wise the mapping properties @, would not fit to ¢ — L)~*: C§(R") — C§*(R") for
0 < s < t. This technique was already successfully applied to thelvest equation
of the Stokes operator in suitable domains with non-smoatinbary, cf. [3, 1]. An
alternative way for a parametrix construction is describe®, Section 6], where the
operator is first reduced to a zero order operator and thepdtemetrix is constructed
in x-form. The latter article deals with pseudodifferentimundary value problemsbut
the construction also applies to pseudodifferential eqnatonR".

Mapping properties of pseudodifferential operators witm-smooth coefficients
have been studied by several authors starting with the pramge work of Kumano-go
and Nagase [24], cf. Taylor [42, 43] and the references gitreare. For our pur-
poses we will use the following theorem, which is a conseqeeof the results by
Marschall [31].
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Theorem 2.6. Let N>n/2, 7 € (0, 1), and let pe C*S"y(R"; R"). Then

(2.4) p(X, Dy): CI™MR") — C3(R") if O<s<7t,s+m>0
and
(2.5) p(Dx, X): Cg™R") - C3(R") if s>0,0<s+m<r

are bounded operatorsvioreovey the operator norms can be estimated byc-sy, .,
where C is independent of @C* Sy (R"; R").

REMARK 2.7. Note that for an operatqr(x, Dy) in x-form the order of the range
spaceCs® is limited by the smoothness of the symbolxn For the corresponding oper-
ator in y-form, p(Dy, x), the order of the domaig§™ is limited by 7.

Proof of Theorem 2.6. First of all, we note that the symbossta’ S (R";R")
coincides with the symbol clasS"(z, N) defined in [31]. Moreover, iff € S(R"),
then p(x, Dx)f defined as above coincides with the definition in [31] as atliofi
operators obtained from a symbol decomposition, cf. prdof3&@, Proposition 2.4].
Hence [31, Proposition 2.4] implies that

p(X, Dx) f llcsrny < CII fllgsemn)

for f € S(R") provided that O< s <7 ands+m > 0.
By our definition of p(Dy, x): S(R") - S’'(R")

(0w 01,0 = [ [ @%py, 1) dya-e)d = [ f(a(x, Dg dx

for all f,g e S(R") with q(x, &) = p(x, —&). Because of [31, Proposition 4.3],
g(x, Dy)*: CS"™(R™) — CS(R") provided that O< s+m < 7 ands > 0.

Finally, it is easy to observe that all estimates done in treofpof [31, Proposi-
tion 4.3] are uniform for allp € C* Sy (R"; R") with || plicrsr,,, < 1, which is noth-

ing but the boundedness of the linear mapping from the symmd:eC’SfO;N(R“;IR{”)
into the corresponding space of linear operators. 0

The next important ingredient are kernel estimates of thew&dz kernel associ-

ated to a pseudodifferential operator. We follow the preg@n given in [39, Chap-
ter 6, Paragraph 4]. Givea € C*S[y(R" x R"; R") we define forj € No

kJ (X, Y, Z) = f%:—l)z[a] (X! o) y)]! a; (X, 5. y) = a(X, 5. y)(pj (g)i

where g; is the Dyadic partition of unity introduced above.
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First of all, we have

Lemma 2.8. Let ae C*S\(R" x R"), me R, N € Np, 7 € (0, 1), and let
Kj(X, y, ) be defined as abov&hen

(2.6) 192K (., -, Dllc@nxrny < Camllallcesp,, [zI~M21m=Mle)
for all @ € Nj, M =0,..., N, where G v does not depend on ¢ Ny and ae
CT S on(R" x RT; RM).

Proof. We start with

7' DK;(x, Y, 2) = /Rn e Dl [£%aj(x, £, y)] dE

for all o, y € Ngj. We estimate the integral on the right hand side from aboistly;
the integrand is supported in the bdJE| < 21*1}, which has volume bounded by a
multiple of 2. Secondly, since the support is also limited by the conditb ! < ||
(when j #0) andc2! < () < C2l on {21! < |g| < 21"},

IDY[%ay (X, £, Y)]| < Ca,y llallcrgp,,, 21110
due to the symbol estimates faj(x, &, y) € C*Sgy (R" x R"; R"). Hence

sup |2 D2k (X, ¥, 2)| < Cy,y lallcrgr,, 2/ ™™= whenever |y| = M.
X,yeRN o

Taking the supremum over ajt with |y| = M, gives (2.6) withC*(R" x R") re-
placed byCO(R" x R"). In order to get the same f&@*(R" x R") one simply replaces
a; (X, ‘i:l y) and k] (X, Y, Z) by a; (Xr ‘i:l y) —q (X/! si y/) and kJ (X! Y, Z) - k] (X/, y/l Z)!
resp., in the estimates above and uses that

IDZ[&*(@5(x, &, ¥) - 8 (X', &, Y))I
< Cuy lallcrsp,, 2 ™D (1x — x| +1y — Y1)

This finishes the proof. ]

Using the latter lemma, we are able to prove the followingnkérestimate:

Theorem 2.9. Let ae C* o (R" x R R"), 7 € (0, 1), m> —n, and Ne No
such that N> n+m and let k be defined as abov@hen for every xy,ze R", z #0,

K(x, ¥, 2) =) _Kj(x, Y, 2)

j=0
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exists converges uniformly in xy € R", |z| > ¢ > 0, and satisfies

Collallcesp,, |zl "™l for |z| <1,

o7k(., ., 2lcrrrxrny < _
K Mo <1 ¢ jalcg, f21-N for |z > 1,

uniformly in z# 0 for all « € Ng with |¢| < N —n —m, where C is independent of
ae C o (R" x R"; R").

Proof. First we cons_ider the case wher:(z| < 1. We brake the above sum into
two parts: the first where/2< |z|~1, the second where!2- |z|1. In order to estimate
the first sum we use (2.6) witM = 0:

> 192K (- 0 - Dllcr@nxan < Clallcegp, » . 21D,

2i<|z-1 2|zt
where

Z 2i(n+m+el) — O(|Z|,n,m,‘a‘)

2i<|zt
sincen+m+ || > 0.
Next, for the second sum, we use again (2.6) with= N and get the estimate
D 105K (- Dlicr@nxan < Callalcrspy, 2™ Y 2irmtel=M)
2i>|z|-1 2>zt

< C,llallcrsp,, 121" ™.

Finally, we consider the situatiofz| > 1. SinceN > n+m+ |«|, (2.6) shows that
o0 o0 )
> 105K (- Dllce@axrny < Calzl Mialcegp,, Y 2MmNHeD

j=0 j=0

< Cllalicrsp,, 1217
Hence the proof is complete. ]

The following corollary shows that (2.4) can be improvedp(, Dy): C§"™™(R") —
C5(R") under the same assumptions.

Corollary 2.10. Let N>n+m, t € (0, 1), let pe C*S' (R";R"), and let fe
C3°(R"). Then x, Dy) f € C§(R") for all 0 <'s < v with s+m > 0 and pDy, x)f €
Cs(R™) provided that0 <s+m <t and s> 0.
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Proof. For simplicity we only treat the case of the operatoxiform. The other
case is treated in the same way.

Fix 0 < s < r with s+m > 0 and choos&' € (s, 7). Then p(x, Dy) f € C5(R") due
to Theorem 2.6. Hence, using Proposition 2.1, it is suffictenshow (2.1). Because
of Theorem 2.9 witha(x, &, y) = p(x, &),

Px, DT =3P, DIF = [ atx x =) Fy)dy
j=0 /¥

=0

:/ k(x, x —y)f(y)dy forall x ¢ suppf.
]Rn

The latter representation and the kernel estimate statdthémrem 2.9 imply that for
sufficiently largeR > 0

lp(X, Dx) fllcs@n\ Br(0))
< supzIV[Ik(. , 2)llcs@n) Sup ( / Ix — yI "N dy]l f ||CS(Rn)>
z70 X|=R supp f

< Clsuppf |l flloo|RI™N = Ros00 O

Hence (2.1) holds and thereforgXx, Dy) f € C5(R"). The statement fop(Dy, x) f is
proved in the same way. O

Recall that, ifa € S'(R" x R";R") is a smooth symbol, then by the results of
the classical theory of pseudodifferential operators

a(Xv DX! X) = p(X1 DX):
where p € S"o(R" x R"; R") and
p(x, §) =a(x, §, x) +r(x, §),

with r € Sfjgl(]R“; R"), see [23, Chapter 2, Section 3]. In the case C* S (R" x
R"; R"), 0 <t <m, the following result can be applied to

r(X, %-v y) = a.(X, é:! y) - a(X, S! X)'

Proposition 2.11. Let r € C* o (R" x R"; R"), wheret € (0, 1), 0<m < t,
and N=n+ 1. Moreover we assume that(k, &, x) = 0. Then

r(x, Dy, X) := i ri(x, Dx, X)
j=0
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converges absolutely if(C3(R")) for eachO < s < t —m and satisfies
(2.7) Ir (X, Dx, Xl zcsmmy < ClIr llcesry,, s

where C does not depend onerC™ o (R" x R"; R"). Moreover r(x, Dy, X) maps
C5(R") into itself

Proof. First we denote

M
rM(x, Dy, ) f 1= > rj(x, Dy, X) .
j=0

Using that
(%, Dx,x):// Koy, x— Y ) dy, feSE,
Rn Rn
we have
M — M n
PM(x, Dx,x)—f KM(x, y, x— ) F(y)dy, f e SR,
]Rn

with kM(x,y,2) := Z}V':Ok,- (X,Y,2). Note thatkM(x, X, 2) = k;(x, X, z) = 0 sincer (X, &,x) =
0. By the proof of Theorem 2.9 it is obvious that

Clirlicrspy, lzI7"™ if ]z < 1,
kM.,Z TROxRN) < ON .

I+ PHerueamey = {cnrncr%uwl it 12> 1
uniformly in z #0 andM € N. But this implies

KM(x, v, x = 9 = KM(x, y, x —y) —kM(x, x, x — )]

(2.8) —N—m+t m-1
< ClIrllcrgpy, X =Yl (L+x—=yN" .

Hence Lebesgue’s theorem on dominated convergence inthbgs

(D) = fm 1, D0 f = [ kY, x = 9T dy
— 00 RN

exists for everyx € R" and f € L*(R"). Moreover, since (2.8) holds fd(x, y, x —)
as well, we conclude

(2.9) Ir (X, Dx, X)ll £(Leeqrny) < CIIF llcespy,,-
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In order to prove (2.7), we use the relation
A (% D X)F =1 D)D)+ [ Kl v x = )Ty + ) dy,
Rn

where Anf)(x) = f(x+h) — f(x), heR", and
kn(X, ¥, 2) =k(X+h, y+h, 2) — k(x, y, 2).

Moreover, kn(X, Y, z) is the kernel belonging ton (X, Dy, X) with rp(x, &, y) =r(x +
h, &, y+h)—r(x, & y) and it is easy to prove that

Irnllcrssp,,, < CIRElIrllcrsp,,

uniformly in h € R" for each O< s < 7. Hence using (2.9) for andr,, we con-
clude that

1 AaF (% Dy, X) Fllie < CIIFllcrspy, 1A Fllis + Cllrnllce-sspy, Il
< ClIrlicegpgy, Il fllcs@ny

for 0 < s < ¢ — m. This finishes the proof of (2.7). The last statement is piokg
showing thatr (x, Dy, X) f € C3(R") for f € Cg°(R"). This can be done in the same
way as in Corollary 2.10 using the decay of the kerk@t, y, z) as |z]| - oo and
Proposition 2.1. O

2.3. Application to the resolvent equations. In this section we construct an ap-
proximate resolventQ, to a Lévy-type operatot as introduced in (1.1), (1.2). Here
Q; = 0.(Dx, X) is a pseudodifferential operator obtained by inverting slymbol of the
principal part ofA — L.

More precisely, because of the assumption on the kernel, we &i@ecomposition

Lu(x) = L*u(x) + L2u(x), ue S(R"),

where L1 denotes the same kind of operator with kerkgl j = 1, 2. HereL! can be
considered as principle part and is of lower order in the following sense:

Lemma 2.12. Let L? be as above Then |?> extends to a bounded operator
L2: Cc$'(R") — CS(R") for any «” > o’ and 0 < s < t provided that s+ «” > 1
if > 1.

Proof. First of all, ifu e CS(R") and 1< s’ < 2, then

(2.10) Ju(x +y) —u(x) — y - Vu(x)| < Cllulles @mlyl®, lyl < 1.
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First we assume that 4 o’ < o < 2. Then (2.10) withs’ = «” yields

| L2u]| ooy

(2.11) »
<C| sup [yI"™™ k(X y)|+/ Ika(. s Voo AY | Ul e )
lyl=1

xeRN |y|<1
with a constantC independent ok,. Moreover,
(2.12) An(L?u) = L¥(Anu) + L (thu),

where L2 is the Lévy-type operator with kerné&f(x, y) := k?(x + h, y) — k?(x, y). By
the assumptions on the kernel,

sup [y™ [K3(x, y)|+/ 1KC )l dy = CIhF
lyl=

xeRM,|y|<1

uniformly in h € R". Therefore using (2.11) witt.? replaced by holds fot.2 and ky
replaced byk? we conclude

ILE(tnW) [l Ly < CIRIP (Ul cor gan)-
Hence, using the inequality above, (2.12), and (2.11), weclcale
||Ah(L2U)||L00(]Rn) =< C(”AhU”cav(Rn) + |h|5||u||cqu(Rn)) < ChS”U”Csm”(Rn),

where we have usedAnul|cegny < C|h|S||u||Cs+av(Rn). The latter inequality can be
easily proved by first proving the cases= 0, 1 and then using interpolation. Hence
L2: Cs+a”(Rn) — CS(RH).

Secondly, if O< « < 1, then the proof above is easily modified using

lu(x +y) = u()| < Cllulles @nlyl®, Iyl <1,

for u e CS(R") ands € (0, 1) instead of (2.10).
It remains to consider the case<x’ < 1 < «. Using (2.10) withs' =s+a” € (1, 2)
we conclude as before

I L2u ]| L oy

(2.13) »
<c sup Iy ika(x, y)l+ f Tl Yl @Y ) Dl
lyl=

XeR",|y|<1

with a constantC independent ok,. We use again (2.12). The second term can be
estimated in the same manner as before to obtain

ILA(thW)lIL>@ny < ClI Ul osrar gny-
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But the first term in (2.12) has to be estimated differentlygirlg (2.10) withu replaced
by Anu, we have on one hand

[ApU(X +Y) — Apu(X) — Y - VARU(X)|

< Cll Anullgsrer @y YT < Cl[Ullgsr oyl YIS, 1y < 1.
On the other hand

|ARU(X +Y) — Apu(X) — Y - VARU(X)]

< CllAnullcienlyl < ClYINE " ullgow @ny, 1yl Il < 1.
Interpolation of both inequalities yields

| ARU(X +Y) = ApU(X) — Y - VARU(X)| < CIhI%|Y|* ull s an)
uniformly in |h|, |y] < 1. With this inequality

IL2AnUllL@n) < CIh®(IUlleser @y, M < 1,
is proved in the same way as before.
Finally, if f € C°(R"), one easily proves.?f e C3(R") with the aid of Proposi-

tion 2.1 and (1.7). O

For the principal part_?, we use

u(x +y) —u(x) = y- Vu(x) = F. 1, [(67 — 1—i& - y)a(s)],
u(x +y) = u(x) = F. 1, [(€” — 1)0E)].

HencelL?! can be represented as a pseudodifferential operator
Lupo = [ €% pix, )0(6) Gk,
where
p(x, §) = /Rn(eiy'é —1-i&-ykx, y)dy if «€[l, ?2),
p(x, &) = /}lgn(e‘y'é — Dky(x, y) dy if «oe€(0,1).
Note that in the borderline cage=1 we also have
pix, €)= [ (@~ Dhatx, y) dy

sinceky(x, —y) = ki(x, y) by the assumptions.
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The following lemma shows thap is a symbol in the class studied above.

Lemma 2.13. Let k: R" x R" — R be N-times differentiable .nt. the second
variable satisfying

(2.14) 108k ( ., Y)lIce@ny < Cly|"*#!

forall 0<|y|<2and|B] <N and k(x, y) =0 for |y| > 2 and k(x, —y) = ki(X, y)
if « =1. Then pe C* S}, (R"; R") where p is defined as abave

Proof. We denotef(s) = €S —1—1is, seR, if « €[1,2) and f(s) = €5 — 1,
seR, if « €(0,1). Lety, B € Nj with m=|y|=|8| < N. Then

L (& T(y-£) = df O F™(y- &) = 9y (L F™(y - &) = 97 (v T (y - )

where F™ denotes them-th primitive of f. Therefore
D0, )= [ 908 1y Dkt ) dy

=1 [y ry- 93kt ) dy

:(_1)m'5'nm/ugnzﬂf< |§|) )< |§|> “

—N—a—m

Hence, ifa #1

z

1€

Zm A 2]

||a£(syp(.,s»||cf(mn)scwr”*m 2"

=< Clgr,

wherej =2 if « > 1 and j =1 else. Moreover, itx =1, we use that

af(éyp(x,é))=(—1)mlé|“m/|lzﬂf( |§|) 1)( |§|>OIZ

e [ 2@ - eio(x ) dz

|z|>1

sinceky(x, —y) = ki(X, y) by assumption. Therefore

—N—a—m
4

€1

|z|2
1+]z)2

1927 p(. . €)lc-(en) < ClEI ™™™ /R 2"
<C'jg1*,

also in the caser = 1.
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Since B, y € Nj with |8| = |y| < N are arbitrary, the latter estimate implies
1670 p( . , &)llc-(en < CIEI”
for all |8] = |y| < N, which is easy to prove by induction. Hence
197 p(., )llcr@n < ClE[*™
sincey € Ng with |y| = |8]| is arbitrary. ]
Hence (1.3), Lemma 2.13, Theorem 2.6, and Corollary 2.1Qyirthmat
p(x, Dx): C5™(R") — Cg(R")

for all 0 < s < . Moreover, (1.4) implies
~Rep(x, &)= [ (1 cosy- E)lalx, y) dy
RI’\
>c [ (- cosy- )yl " dy= Clel”
B»(0)

for all |§] > 1 and —Rep(x, &) > 0 for all £ € R". Since |p(x, &§)| < C(§)%, we
conclude that

‘WMx9<
Rep(x, &)| ~

uniformly in |§] > 1. Thusp(x, §) € C\ X; for § := 7 — arctanM > 7/2 and for all
&1 > 1.
Hence, we can define

Ay, &)= —py, &) ", y.EeR", LeZy, A =R

for 0 < ¢’ < and R > SURcgn <1 P(X, &)
Since p € C*§f o (R"; R"), we haveq, € C*S o, (R"; R"). More precisely, the
following lemma holds:

Lemma 2.14. Let g, § be defined as above and e 5 whered’ € (0, d) is
arbitrary. Then there is some R 0 such that g € C*S;q for all A € Zy with [A] >
R. Moreovey for eacha’ € [0, «]

I llgrgy, < Co(L [~

uniformly in A € Iy with [A| > R.
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Proof. First of all, by a simple geometric observation
A=z >cymaX|r], 1z|]} if Ae Xy, ze C\ X5

provided that O< §’ < §. As seen above(x,§) € C\ X; for |§] > 1 and somé& > /2
and [p(x, £)| > c|§|“ for || > 1. Hence

(2.15) |A — p(x, §)I = ¢y max{|Al, [§]%}

for all ] > 1 andX € Iy with 0 < 8’ < & arbitrary. Moreover, sincép(x, £)| < C
for all |£] <1 andx € R", we conclude that (2.15) holds for @le R" and 1 € Zy
with [»| > R for someR > 0 sufficiently large. Using thisp € C* S}, (R"; R"), and
the chain rule, one derives in a straight-forward manner tha

(%:)—Uﬂ —(a—a')/a —a'—
18£:( . §)llcreny = Co e < CalA T ()=

uniformly in £ e R" and A € X5, |A| > R> 0 and for all|8| < N, which proves the
statement. ]

Application of Theorem 2.6, Corollary 2.10 and the lemmavabgives:
Corollary 2.15. Let g, 8,8’ be as above and léd < s < . Then
0.(Dx, X): G3(R") — C3™(R")
is a bounded linear operatpmwhich satisfies
16 (D X1l esgany, ey < ColA 7€V« forall 1 e Zy, A= R,

for all 0 < o« < «a with some sufficiently large R 0.

Now we are in the position to prove the following key lemma.

Lemma 2.16. Let g, 8,8 be as above and led < s < 7. Then

(A = p(X, D))%(Dx, X) = I = R,

with

IRl zcgmny) < CsA]™*

uniformly in A € X5 with |A| > M for sufficiently large M> 0 and somes > 0 de-
pending on st.
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Proof. First of all, for eachf € C5°(R"), 0,(Dx, X)f € CS*(R") withs < <.
We conclude

N
> 9i(D)%(Dx, ) f — au(Dx, ) f in C**(R") as N — oo.
i=0

Therefore
B.(Dx, X) = 9j(Dy)(Dx, X) f =D 0 j(Dy, X) f
j=0 j=0

whereq;, (€, y) = a.(§, Y);(€). Hence

(= p(X, DX)).(Dx, X) F =D (A — P(X, D))k, (Dx, X) f
j=0

=f+) aj(x Dx, ))f,
j=0

wherea; j(x, Yy, &) = ai(X, &, y)g;(§) and

A—p(x, §)

= p(y, £) 1=(p(y, &) — p(x, &)a(y, &).

a(x,y, §)=
Using Lemma 2.14, we conclude
180l sizs = CHPllcrsop 10 llg s < Cor(L+ 21"V,

Sincea; (x, &, X) =0, we can use Proposition 2.11 to conclude that

o0
a(X, Dx, X) = ) @,j(X, Dy, X)
j=0

is well-defined as limit inC(C3(R")) and satisfies
la5.(%, Dy, Xl c(cgtrny) < Clidillr ey < Co(L+[af) =7
for each O< o’ <a with o« — o’ <7 —5. O

Recall that an unbounded operatar D(A) € X — X generates an analytic semi-
group on a Banach space if and only if A is closed,D(A) is dense, and there are
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somes > /2, w € R, and M > 1 such that { — A)~* exists for allx € w + X5 and
satisfies

2.16 A— AL <
(2.16) ¢ ) “llexy) < o]

forall A e w+ s,
cf. [37].

Corollary 2.17. Let0 < s < 7. Then X, Dy) and L generate an analytic semi-
group onC3(R") with domainsD(L) = D(p(x, Dx)) = Cg"*(R"). Moreover if A = p(x, Dy)
or A=L, then

I = A pesqamy.cgw@my < ColA"@7Y¢ forall ae Sy, Al = R,
for all 0 < &’ < o with some sufficiently large R 0 and some’’ > /2.
Proof. By a standard Neumann series argument Lemma 2.1és\ibt
(A — p(x, DY))™t: C3(R") — C5™(R")
exists for allA € Xy with |A| > R for someR > 0 and satisfies
I(x = P(X, D)) ez < 216:(Dx, Xl ciezemy < CIAT

This implies (2.16) for a suitable choice af. Hence p(x, Dx) generates an analytic
semi-group orC5(R") with domainD(p(x, Dx)) = C5™(R").
Similarly,

(A — L)g:(Dyx, X) = | — Ry + L2q,(Dy, X),

where
ILZ0. (D, X)ll ez < A (Dxs X pesany s anyy < Covar [ 7E7

uniformly in A € =g, |A] > R, with arbitrarya’ < «” < «. Thus the same arguments
as before show that generates an analytic semi-group.
Finally, the uniform estimate ofa(— A)~* easily follows from Corollary 2.15. ]

Proof of Theorem 1.1. Because of Corollary 2.17, well-knawsults from semi-
group theory imply the existence of a unique classical gmut € C1¢([0, T]; CS(R™)N
C?([0, T]; D(L)) of (1.8)—(1.9), cf. [37, Chapter 4, Theorem 3.5]. Final§ynce { —
L)1 CS(R") — C3*(R") is a bounded operator for = R, the graph norm orD(L),
i.e., lulles + [|[Lu]lcs, is equivalent to the norm ofS**(R"). Thatu inherits the non-
negativity from f is easily established using the maximum principle. O
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