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LONG TIME EXISTENCE FOR VORTEX FILAMENT EQUATION
IN A RIEMANNIAN MANIFOLD
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Abstract
Vortex filament equation in the Euclidean space has a long time solution for any

closed initial data, because it can be converted into a standard nonlinear Schrödinger
equation. While the Riemannian version of vortex filament equation is not integrable
at all, we prove that it has a long time solution for any closedinitial data.

1. Introduction and preliminaries

The vortex filament equation is an equation of a curve
 (x, t) in the three-
dimensional Euclidean space:


t = 
x � 
xx, j
xj � 1,(V)

where� is the exterior product. H. Hasimoto [1] proved the whole time existence of so-
lutions of (V), provided that the solution has non-vanishing curvature. T. Nishiyama and
A. Tani [5] proved the whole time existence of solutions of (V) without such an assump-
tion. A key step in [1] is a transformation of (V) to a standardnonlinear Schrödinger
equation, while [5] uses a perturbation to a 4-th order parabolic equation.

Later, the present author showed that the method of [1] can beapplied without the as-
sumption on the curvature [2], and generalized to the case of3-dimensional space forms,
i.e., the projective spaceP3(R) and the hyperbolic spaceH3 with Riemannian metric of
constant sectional curvature. The generalization is strongly related to the “non-linear in-
tegrable system”, and cannot be applied to the case of general 3-dimensional Riemannian
manifolds. Here, vortex filament equation in oriented 3-dimensional Riemannian mani-
fold (M, g) is given by simple replacement of differentiation to covariant differentiation:


t = 
x � rx
x, j
xj � 1.(VM)

Recently, the present author found a proof of short time existence for general
Riemannian manifold [3], using perturbation to a parabolicequation: 
t = 
x �rx
x +"rx
x (" > 0). It is natural to conjecture that the solution will diverge in finite time,
because it seems that (V) has infinite-time solutions solelybecause of its integrability.
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(V) possesses infinitely many conserved quantities, while the perturbed equation (VM)
cannot have such quantities, because the curvature of the Riemannian manifold varies.
In fact, as we will see in Example, we can easily construct a complete Riemannian
manifold where a solution of (VM) blows up at finite time.

However, in this paper, we will prove that, the conjecture isfalse under a curva-
ture condition.

Theorem. Let (M, g) be an oriented3-dimensional complete Riemannian mani-
fold with bounded sectional curvature. Then, equation(VM) has a unique whole time
(�1 < t <1) solution for any C1 closed initial curve
0(x) with jrx
0j � 1.

We summarize notations. We denote byj � j the norm, byr the covariant dif-
ferentiation, byR the curvature tensor, and by� the exterior product of each tangent
space ofM. Partial derivation is denoted by subscript or�x, �t . The manifold, its
structure and all functions are supposed to beC1.

By re-scaling, we may assume that the initial length of the curve is 1. Therefore,
we may consider
 as a map from (R=Z)� R�0 to M.

We will take function norms only forx-direction. More precisely,

h�, �i :=
Z 1

0
g(�, �) dx, k�k2 := h�, �i, k�k2

n =
nX

i =0

kr i
x�k2.

Also, k�kCn counts onlyx-derivatives and is a function int .

2. Proof of Theorem

Let 
 be a solution of (VM) defined on a finite time interval [0,T).

Lemma 2.1. krx
xk is bounded from above.

Proof. The quantitykrx
xk is estimated as follows,

d

dt
krx
xk2 = 2hrx
x, rtrx
xi = 2hrx
x, R(
t , 
x)
x +rxrt
xi

= 2hrx
x, R(
x � rx
x, 
x)
xi � 2hr2
x
x, 
x � r2

x
xi
� C1krx
xk2,

and increases at most exponentially.

Lemma 2.2. 
 is in a compact set of M. In particular, all derivatives of curva-
ture tensor are bounded along
 .
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Proof. Sincek
tk = k
x � rx
xk is bounded by a constantC1,

min
x2S1

Z T

0
j
t j dt � Z T

0
k
tk dt � C1T .

Therefore, taking account of the length of
 , the distanced(
 (x, t),
 (0, 0)) is bounded
by C1T + 2.

Lemma 2.3. kr2
x
xk is bounded from above.

Proof. Note thatjrx Rj = j(rR)(
x)j is bounded by Lemma 2.2. The quantitykr2
x
xk is estimated as follows:

d

dt
kr2

x
xk2 = 2hr2
x
x,rtr2

x
xi
= 2hr2

x
x, R(
t , 
x)rx
x +rx(R(
t , 
x)
x)+r2
xrt
xi

= 2hr2
x
x, R(
x�rx
x, 
x)rx
x +rx(R(
x�rx
x, 
x)
x)+r2

xrt
xi
�C1kr2

x
xk(krx
xkmaxjrx
xj+krx
xk+kr2
x
xk)�2hr3

x
x,rx
x�r2
x
xi.

Sincekrx
xk is already bounded by Lemma 2.1, we see that

d

dt
kr2

x
xk2 � C2(1 +kr2
x
xk2)� 2hr3

x
x, rx
x � r2
x
xi.

We rewrite the last term. Note thatg(
x, r2
x
x) = �jrx
xj2 and g(
x, r3

x
x) =�x(g(
x, r2
x
x)) � g(rx
x, r2

x
x) = �(3=2)�xjrx
xj2. We denote by�? and �> the
x-factor and the factor perpendicular to
x, respectively. The last term becomes

hr3
x
x,rx
x�r2

x
xi= h(r3
x
x)?+(r3

x
x)>,rx
x�f(r2
x
x)?+(r2

x
x)>gi
= h(r3

x
x)?,rx
x�r2
x
xi+hr3

x
x,rx
x� (r2
x
x)?i

= hg(r3
x
x, 
x)
x,rx
x�r2

x
xi+hr3
x
x, g(r2

x
x, 
x)rx
x�
xi
=�3

2
h�xjrx
xj2 �
x,rx
x�r2

x
xi�hr3
x
x, jrx
xj2rx
x�
xi

=�3

2
h�xjrx
xj2 �
x,rx
x�r2

x
xi+hr2
x
x, �xjrx
xj2 �rx
x�
xi

=�5

2
h�xjrx
xj2 �
x,rx
x�r2

x
xi.
On the other hand,

d

dt
kjrx
xj2k2 = 4hjrx
xj2, g(rx
x, rtrx
x)i = 4hjrx
xj2rx
x, R(
t , 
x)
x +rxrt
xi

� �C3krx
xk2 maxjrx
xj2 � 4hrx(jrx
xj2rx
x), 
x � r2
x
xi
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� �C4krx
xk(krx
xk + kr2
x
xk)� 4h�xjrx
xj2 � rx
x, 
x � r2

x
xi
� �C5(1 +kr2

x
xk) + 4h�xjrx
xj2 � 
x, rx
x � r2
x
xi.

Therefore, we have

d

dt
f4kr2

x
xk2 � 5kjrx
xj2k2g � C6(1 +kr2
x
xk2).

As in the above calculation,kjrx
xj2k2 � C7(1 +kr2
x
xk). It implies that

4kr2
x
xk2 � 5kjrx
xj2k2 � 4kr2

x
xk2 � C8(1 +kr2
x
xk) � 3kr2

x
xk2 � C8(1 + C8).

Thus, X(t) := 4kr2
x
xk2�5kjrx
xj2k2 satisfiesX0(t)� C9(1+X(t)), andX(t) is bounded.

Hence,kr2
x
xk is bounded.

REMARK 2.4. When the manifold (M, g) is a space form, i.e., has constant sec-
tional curvature, the quantity 4kr2

x
xk2 � 5kjrx
xj2k2 is preserved.

Lemma 2.5. For each positive integer n, krn
x
xk is bounded from above.

Proof. We use induction. Take any integern � 2 and suppose thatkrk
x
xk is

bounded for any non-negative integerk � n. It implies thatjrk
x
xj is bounded for any

non-negative integerk < n.

d

dt
krn+1

x 
xk2 = 2hrn+1
x 
x, rtrn+1

x 
xi
= 2

*
rn+1

x 
x, rn+1
x rt
x +

nX
i =0

r i
x(R(
x � rx
x, 
x)rn�i

x 
x)

+
.

Here, the summation term is decomposed into contraction ofr�
x R
�N j r p j

x 
x
�

whereP
j p j � n + 1. Hence theirL2 norms are bounded byC1(1 +krn+1

x 
xk).
The termrn+1

x rt
x = rn+1
x (
x�r2

x
x) is a linear combination ofr p
x 
x�rn+3�p

x 
x

(2p < n + 3), and L2 norm of each term is bounded byC2(1 + krn+1
x 
xk) except the

casesp = 0, 1, 2, 3. If p = 3, thenn > 3 and theL2 norm ofr3
x
x �rn

x
x is bounded.
If p = 2, the termr2

x
x � rn+1
x 
x is perpendicular torn+1

x 
x.
We calculate the remaining terms:p = 0, 1. As in the proof of Lemma 2.3,

2hrn+1
x 
x, 
x �rn+3

x 
x + (n + 1)rx
x � rn+2
x 
xi

= �2hrn+1
x 
x, rx
x � rn+2

x 
xi + 2(n + 1)hrn+1
x 
x, rx
x �rn+2

x 
xi
= 2nhrn+1

x 
x, rx
x �rn+2
x 
xi

= 2nh(rn+1
x 
x)?, rx
x � rn+2

x 
xi + 2nhrn+1
x 
x, rx
x � (rn+2

x 
x)?i
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= 2nhg(rn+1
x 
x, 
x)
x, rx
x � rn+2

x 
xi + 2nhrn+1
x 
x, g(rn+2

x 
x, 
x)rx
x � 
xi.
Here, g(rn+2

x 
x, 
x) in the second term is expressed by a linear combination of

g(r p
x 
x, rn+2�p

x 
x) ((n + 2)=2 � p � n + 1), hence the second term is bounded by
C3(1 +krn+1

x 
xk2). For the first term, we have similar estimate by using

hg(rn+1
x 
x, 
x)
x, rx
x � rn+2

x 
xi
= �h�x(g(rn+1

x 
x, 
x)) � 
x, rx
x �rn+1
x 
xi � hg(rn+1

x 
x, 
x)
x, r2
x
x � rn+1

x 
xi.
Thus, we have proved that

d

dt
krn+1

x 
xk2 � C4(1 +krn+1
x 
xk2).

Proof of Theorem. By Theorem 3.1 in [3], there exists a uniquemaximum so-
lution 
 . If 
 is defined only on a finite time interval [0,T), 
 can beC1-ly ex-
tended onto [0,T ] by Lemma 2.5. Hence, we can extend the solution overT again
by Theorem 3.1 in [3]. This is a contradiction. Therefore,
 is defined on the interval
0� t <1. Since the equation is invertible, we get a unique solution on the real line
(�1, 1).

3. Example

In this section, we give examples such that the equation reduces to an ordinary
differential equation. LetM be a S1 bundle over a Riemann surfaceB. We assume
that the projection� is a Riemannian submersion from (M, g, r) to (B, ḡ, r̄). We
denote by X̃ the horizontal lift of a tangent vector onB. Let V be a unit vertical
vector field such thatfV , X̃1, X̃2g becomes positive basis iffX1, X2g is positive. Since
[ X̃, V ] is vertical and independent of extension ofX 2 Ty B, we can define a 1-form�
on M by �(X̃)V = [ X̃, V ] and �(V) = 0. We assume that� is a pull back of a 1-form� on B, i.e., [X̃, V ] = � (X)V .

SincerV V is perpendicular toV and

2g(rV V , X̃) = 2V(g(V , X̃))� X̃(g(V , V)) + g([V , V ], X̃) + 2g([ X̃, V ], V)

= 2� (X),

rV V is the dual vector field�℄ of �.
Let fX1, X2g be a positive orthonormal basis ofTy B. Then,

rV V = �℄ = � (X1)X̃1 + � (X2)X̃2,

V � rV V = �� (X2)X̃1 + � (X1)X̃2,

[V , V � rV V ] = �� (X2)[V , X̃1] + � (X1)[V , X̃2] = 0.
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Therefore, we can define a map
 : S1 � R = f(x, t)g ! M such that
x = V and
t = V�rV V . It means that if the initial data is a fiber, then the solutionof the vortex
filament equation is a family of fibers. The family is governedby the integral flow of
the vector fieldJ� ℄, where J is the almost complex structure of the base manifold.

Let (M,go) be anS1 fiber bundle with geodesic fibers. (Hopf fibering:S3 ! S2 and
trivial bundle B � S1 = f(y, �)g are typical examples.) We denote byro the covariant
differentiation andVo the fiber vector field defined as above. Letf be a function on
B. We define a new metricg f on M by modifying the fiber metric tog f (Vo, Vo) =
exp(�2 f (y)). Then, the unit fiber vector field is given byV = exp f � Vo, and

2g f (rV V , X̃) = 2V(g f (V , X̃))� X̃(g f (V , V)) + g f ([V , V ], X̃) + 2g f ([ X̃, V ], V)

= 2 exp(�2 f )go([ X̃, exp f � Vo], exp f � Vo) = 2X( f ).

Therefore,� = d f .

Proposition 3.1. Let (M, g f ) be as above. If the initial data is a fiber, then the
solution of (VM) moves along contour lines of f. In particular, if B is compact, then
the solution is periodic with respect to time, provided that the contour line does not
contain critical points of f.

EXAMPLE 3.2. Let B be the Euclidean planeR2 = f(u, v)g and f the function
tanh(uv2). Thend f = (v2, 0) along the contour lineu = 0, and the solution with initial
data (u, v) = (0, 1) is governed by an ordinary differential equationv0(t) = v2. This
solution v(t) = 1=(1� t) blows up att = 1. Note that the Riemannian manifoldM is
complete. This example shows that we cannot omit the assumption of boundedness of
curvature in Theorem.

REMARK 3.3. This behaviour of blowing up in Example 3.2 is completely dif-
ferent from 1-dimensional Eells-Sampson equation:
t = rx
x. Any solution of Eells-
Sampson equation on a complete Riemannian manifold never blows up at finite time,
because

�Z T

0
k
tk dt

�2 � T
Z T

0
k
tk2 dt = T

Z T

0
krx
xk2 dt = �T

2
[k
 k2

x]T
0

is bounded by the initial energy.
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