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Note on Lattice-Isomorphisms between Abelian Groups
and Non-Abelian Groups

By Shoji Sato

The purpose of this note is to settle the problem of determining the
groups lattice-isomorphic to abelian groups. This question was first put
and studied by R. Baer. K. Iwasawa determined completely those finite
groups and infinite groups with elements of infinite order whose lattices
of subgroups are modular (= m-groups), and determined the infinite m-
group without elements of infinite order under the hypothesis that any
m-group which has the lattice of subgroups of finite dimension is a finite
group”. We shall call this Aypothesis (A). So the only thing for us to
do now is to find out whether non-abelian m-groups are lattice-isomorphic
to abelian groups or not. In the case of finite groups this question was
completely studied by A.W. Jones®, and in the general case by R.E.
Beaumont® to some extent.

We shall show in this note the following :

If G is a non-abelian infinite m-group and has no element of infinite "
order, under the hypothesis (A), similar theorems as those by Jones in
the finite case hold, while if G has at least one element of infinite order,
then there exists always an abelian group lattice-isomorphic to G.

We shall denote by LC(G) and L(G) the partially ordered set formed
of all cyclic subgroups and the lattice formed of all subgroups of a group
G respectively.

Definition. Let s, » and @ be positive integers and « be an integral
p-adic number such that « =1 mod p°(s=>2 if p=2), then we define

(1) o, u, &)= aiv,
=0

When the value of « remains fixed, we shall write ¢(u, ) for ¢(a, u, 2).
Let a=1+p'B, then (1+9°B)- ¢(1, u)= e, u)+(1+p°8)“—1, hence
A+p'B) =91, u) PB+1, and so

z-1
@(u, x)=§0§1+¢(1, u) p°R}°
— s & ! ) s xr ! : s 7
= a,+2-i-mﬂ (1, u) B+ ... 4-;17’5:;) 1 (p(1, w) p By 1+...

2! s Qe
oo (L) p B,

1) Iwasawa (1], (2], [3), cf. also Sato [1].
2) Jones (1].
3) Beaumont (1). I could not see this paper.
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But s(r—1)—1=b*%, where p’ | r, so we have

Lemma 1. ¢(u, ¥)=ax has @ solution a of p-adic number for every
pair of integers x and u, and a=1 mod p.

We shall denote the solution ¢ in Lemma 1 by ¢'(%, 2): ¢(u, &)=
x - ¢'(u, ®). Then we have

Lemma 2. ¢'(u, 2,) - ¢'(ux,, 2,)=¢'(u, 2,2,).

xl—l x2—1
Proof. (u, 2,)- plux,, ,)=/_ a™)( ¥
¢ (p i=9 J=0
x1—-1 x9-1 ) x1x9—1
= E) jZo QT = nEO at = g(u, 2,,).
= = =

Hence our lemma is the immediate consequence of the definition of ¢'.

Corollary. If M0)is a p-adic number and Aj)= ¢'(p’~, p) - Mj—1),
(j=1, 2,...), then N7)-9'(p’, p'm)=Nj+1i)- @'(p’*, m), where m is a
natureal number. _

Lemma 3. Let G =F - {2} be a non-abelian m-group with elements
of infinite order, where E is the abelian normal subgroup consisting of
all elements of finite order from G and {z} is @ free cyclic subgroup
generated by z. Then G is lattice-isomorphic to an abelian group H = E' x
fw}, where E'=FE and {w}={z}.

Proof. E, E' are the direct products of p,-components; E = P, x
P,x ..., E'=P/'xP,/x ..., and P=~P'. There exist integral p,-adic
numbers «, such that a«,=1 mod p;* for positive integers s(s,>2 if
p,=2), and zAz"'=A* for any A€ P,” We shall denote by ¢, the
function ¢ in (1) defined concerning «;, and consider the following cor-
respondence T between LC(G) and LC(H).

! v l r(piti )
(#) {(CIT Bywey} o {( 1T adiCto-s/ @t alpdy oy
i=1 i=1

14
where ¢ = II p!‘, and A,, B, are elements from P,, P,’ respectively which
=1

correspond to each other by a fixed isomorphism E=FE’', r is a non-
negative integer, and \, are p,-adic numbers defined as follows :

2 (0)=1mod p, N()=p/(p!7*, p:)-A(7~1),(T=1,2,...), for every
i. We shall fix those notations 4, B and X\ throughout this proof.
Then -~ is one to one and can be extended to a lattice-isomorphism
between G and H. We shall show this by induction on the exponents
of P, and P,.

4), 5) For the detail of the proofs cf. Jones (1) 3. 10 Lemma.
6) Iwasawa (2], cf. also Sato [1].
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Put ™ =1II P{® and E'™ =1I P;', where P{® and P, are the
greatest subgroups of exponent equal to cr lower than p* in P, and P,
respectively. We shall denote by 7, the correspondence (x) defined on
the cyclic subgroups of G = E™ . {z{ and those of H" = E'™ x {w].
Then we have EV. {z}=FE'Px {w}. Since A(j)=1 and ¢,/=1 mod
p,, we can suppose that r, is induced by this isomorphism.

Now we assume that -,_, is a one to one index preserving cor-
respondence between LG(G™™Y) and LC(H" V), and can be extended to
a lattice-isomorphism between G~V and H" v if we let correspond to
each other such two subgroups that every cyclic subgroup of each of
them has the image of it by r,_, in the other. And we shall prove r,
has the similar properties and +, >r,_;, i.e., 7, induces +,_,. This will com-
plete the proof of our lemma, for r =\/7,, G =\/G™ and H=\/H™.

I) 7, is defined on every cyclic subgroup of H™ and G“™.

For H™ the proof is trivial. As for G@“’, according to the fact that

7t - pda, m) - p/(p, o/pi)=1mod p, (i=1,...,0)
have always a solution » if (m, p,)=1 (i=1,...,1), there exists always

l
{(( II Bl)’w“)’"’} in H™ that corresponds to a given cyclic subgroup
i=1

14 1
{( II A) z'“"}, where o = II pt,
i=1 =1
II) , is a one-to-one correspondence between LC(G™) and LC(H™).

Let a be an arbitrary cyclic subgroup of infinite order of G and
a’>a be a maximal cyclic subgroup of G*”. To prove our proposition,

it is sufficient to show that, if a’ <>V, a<T—">b, then we have always
b >b and the index [a’:a] is equal to [b’:b] and conversely, because,
from the definition of r,, the mapping a’—b’ and b’—a’ are one-valued.

l . l 124
__ _,am _ TN __f a’
Let a={( Il 4) 2"}, b= (( I Byw'y}, a'={(IL 4/) 2"},
b/ = f( iI B,)",wa/} and
S
(2) a”’”:a,

l /’
where a= II p!!, o = IZI Py, (pym)=1(i=1, ..., D, (ps B)=1
i-1

i=1

(=1, ..., I'), b has only those prime factors p;(j =1, ..., I'), a’”* is a
cyclic subgroup consisting of those elements expressed as a°* for a€a’,
and r, ' satisfy the following congruences,

(3)  r\(t)- p/(p, a/P")- pla, m)=1 mod p} (i=1,.., 1),
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(4) 77 M) p/(0Y, @//pi)=1 mod p} G=1, .., 1)
From (2) we have
( 5 ) Az - A;s': ’

»/ bh
where s, = ¢a’, b)- ,(a’b, h). Now we are only to prove B;"= B,

(i=1,..,1). From (4) and (5) we have

so=1"- M) - /08, a//Di)- pla), b) - p @b, B)
=1 A (L) - @, (DY, a'Dh/ptY) bR
=1 M(t) - /0", am/p}") mod p} (i=1,...,1), (cf. a’bh=am).

Hence, from (3), we have rs, ='bAm mod p7, i.e.,
,r’bhm"1

.
A= 4,

17’ ok

But this is equivalent to B/» =B
from the proof above.

As 7, is an index preserving mapping, we have

III) 7, is an isomorphism between the partially ordered sets
LC(G™) and LC(H™).

IV) 7,>7r,._;,. This is also evident from the prosf of II) if we con-
sider the case aZG™ " but a/&G™P.

V) 7, can be extended to a lattice-isomorphism between L{G™)
and L{H™).

When we prove the fact that, for any pair of cyclic subgroups a,
a,ZG™ and corresponding b,, b, H", any cyclic subgroup of a,\ /a, has
its image by 7, in b,\ /b, and conversely, the validity of our proposition
will follow immediately. If a,'>a;, a,/>a, are maximal cyclic in a,\ /a,,
then, from III) and the modularity of L(G™) and L(H), we can con-
clude by simple calculations that b,’, b,’ are contained and maximal
cyclic in b;\ /b,. The converse is also true. Hence we can assume that
a,, a, are maximal cyclic in a,\ /a,.

If #, y are minimal positive integers such that b? = b3, then it can
easily be seen that z, ¥ have no other prime factor than those of the
orders of X and Y, where X, Y€ E’/, and b, = {Xw*™}, b, = {Yw"}.
Put @ = a'(%, ), y=19'(x, y). Then, considering m’ = A/, we can easily
conclude that the unique maximal cyclic subgroup of finite order in
b,\ /b, is {X"'Y"”’}, where m' and A’ are the greatest factors of m and

The converse is also obvious

7) b* means the cyclic group generated by the x~-th power of the generator of §. This notation
will be fixed throughout this paper.
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& respectively which have no cornmon factor with both orders of X and
Y. We can also see by calculations that the unique maximal cyclic
subgroup of finite order of a,\/a, is {R"/S””';, where R, S€FE, cor-
respond to X, Y respectively. The converse is also true. Thus we can
suppose without loss of generality that a, is a finite subgroup.

Then we can see without much difficulty that, if f, 2 are integers
and ~2>0, the image of bJb% by 7, is aja} for some integer ». The con-
verse is also true. This completes our proof.

Theorem 1. Let G = {E, z, 2,,...} be a mnon-abelian m-group.r’
Then there exists an abelian group H = {E', w,, W,, ... } which is lattice-
isomorphic to G, where z,, w, are generators of infinite order and FE, E'
have the same significances as in Lemma 3.

Proof. Let a(f), gp(f) have the corresponding significances for z; to «;
and ¢; respectively in the proof of Lemma 3. We shall denote by o,
the lattice-isomorphism between G, = {F, z,} and H,= {£', w,} that
is defined as in Lemma 3. If 2§ =Rz, for an Rc E, we set w}= Xw,
for such an X€E' as o,{Rz,} = {Xw,}. Now we define the lattice-
isomorphism o, between G,={F, 2, 2,} =1{F, 2,} and H,=
(B, w,, wy} = {E, w,}, using s,(t;) = My(t,)-9P(p¥, @)™ for A (t,). Then

\
Oy ~ 0.

G 14
To prove this, let b= {ng}’”<—2>a= {Sz23™, where a= II p¥, Y=

l i s =1
Il B, S= II A, (some of B, A, may be 1). Then 5?<>a® and the
i=1 =1

exponent of 4, in a? is
plt) -9 (0l a/pi) - 9., @) - @, (ag, m)
2)r . s .

=q-wt) o 0, @)@ (plg, a/pl)- $(aq, m)

=q Mt - (0, /P @ (a, m)
Hence b*«—a* by o,. This shows o, >0,. Repeating this process, we
can construct an abelian group H which is lattice isomorphic to G by
the correspondence o =\Jo;, q.e€.d.

As the infinite non-abelian m-group with elements of infinite order
has always the same type as G in Theorem 1 or in Lemma 3%, our
problem is now solved for this type of m-groups.

Under the hypothesis (A), the directly indecomposable non-abelian
infinite m-group M is either a p-group or of the following typel®’;

8) Iwasawa [2]. cf. also Sato [1].
9) Iwasawa [2].
10) Iwasawa [3].
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M =P .}Q}, where P is an elementary abelian normal p-subgroup of
infinite order, {Q} is a cyclic g-group generated by @ of order ¢™ for
some natural number m, and there is a natural number » such that
==1 mod p, r*=1 mod p and QAQ = A" for any A€ P.

If M is a p-group, it is isomorphic to some factor group G/{z2"}
of a non-abelian m-group G =P . {2z}, where P is an abelian normal
subgroup of exponent p" for a natural number » and z has the same
significance as in Lemma 3. Hence any group of this type is also
lattice-isomorphic to an abelian group.

If M is of the second type, it has non-nilpotent finite subgroups, so
it cannot be lattice-isomorphic to any abelian group, unless m =1,
according to the results by Jones. Furthermore, under the hypothesis
(A) we can prove quite analogously as Jones did in the case of finite
groups, that, if m=:1, M is lattice-isomorphic only to such a m-group
N as N=P'.{T}, where P'=P and normal in N, and {T} is a cyclic
t-group generated by T of order ¢®, but if m =1, M is lattice-isomorphic
to an elementary abelian p-group. We shall omit the proof.

Finally, the only case to be considered is the 2-group that is the
direct product of the quaternion group and an infinite elementary abelian
2-group.’” In this case also, it is not difficult to prove that any group
lattice-isomorphic to one of this type, under the hypothesis (A), is always
isomorphic to it, as in the case of finite groups.

As any m-group without elements of infinite order is the direct
product of subgroups of the types above, the study of our problem is
completed.
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