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0. Introduction

The classical Riemann-Roch theorem reads as follows. Suppose M is a compact
Riemann surface. Let p be a point in M and ra an integer. For a holomorphic form u
in a punctured neighbourhood of p, we write ord (u, p) > —m if the product (z—p^u
extends to a holomorphic form in a whole neighbourhood of p. Thus, u is allowed to
have a pole of order < m at p, if m > 0, and is required to have a zero of order > —m
at p, if m < 0. Given any point divisor δ = p™1 .. .p^N on M, denote by L(δ, d) the
space of all holomorphic functions on M \ suppί such that ord(u,p l /) > — m^, for
each v — 1,...,TV, and by L(δ~l, d') the space of all holomorphic forms of bidegree
(0,1) on M \ supp δ such that ord (u, p^) > m^, for each v — 1,..., TV. Then (cf.
Springer [20] and elsewhere),

(0.1)

where g is the genus of the Riemann surface M equal to the number of "handles" of
M. The quantity degδ — Σv mv *s known as the degree of the divisor δ.

Being a very particular case of the Atiyah-Singer index theorem, this result illus-
trates rather strikingly how the index theorem applies to proving the existence of solu-
tions of elliptic equations. Indeed, (0.1) implies the Riemann inequality dime L(£, <9) >
(1 — g) + deg δ, whence it follows that the space L(δ, d) is not trivial provided deg δ >
g — 1. On the other hand, if deg δ > 2(g - 1), then the space L(δ~l,df) proves to
contain only the zero form, and so the Riemann inequality in fact becomes the equality
determining the dimension of L(5, d).

The classical Riemann-Roch theorem has been generalized in different ways to
higher-dimensional complex varieties. The best known generalizations are the Hirze-
bruch Riemann-Roch theorem and the Grothendieck Riemann-Roch theorem (cf. Fulton
and Lang [5] and the references given there). In fact, the Hirzebruch Riemann-Roch
theorem served as a starting point and a source of technical tools for the Atiyah-Singer
theorem.

* Supported by the Deutsche Forschungsgemeinschaft.
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In the paper [6], Gromov and Shubin suggested a generalization that was moti-

vated by the classical analysis of solutions with point singularities to general elliptic

equations. Namely, let A G Diffa(V,V) be an elliptic differential operator of order

a between sections of vector bundles V and V over a smooth manifold M of dimen-

sion n. Pick a point p in M and an integer m. If m < 0, then, for a solution u of

Au = 0 in a punctured neighbourhood of p, we write ord (u, p) > — m if u extends

to a solution on the whole neighbourhood of p and Dau(p) — 0, |α | < — m — 1. If

m > 0, we proceed as follows. Let u be a solution of Au = 0 in O \ {p}, O being

a neighbourhood of p. After shrinking O, we may assume that O lies within a local

chart on M, both V and V are trivial over O and A has a fundamental solution Φ

in O. Were M, V, V and A real analytic, the well-known result on the structure of

hyperfunctions with a point support, if applied to Au, would allow us to conclude that

u(y) = Σa-DyΦ(y,p)ca modulo solutions on the entire neighbourhood O, the series

converging uniformly in y on compact subsets of O \ {p} (cf. [24, 9.1.11]). In the C°°

case we draw the same conclusion for those u which are extendable to a distribution

on the whole neighbourhood O. Now, we write ord (u, p) > - m if u extends to a

distribution on O and

(0.2) u(y) =

modulo solutions to Au = 0 on O. Since the singularity of Φ(y, y') on the diagonal of

O x O is actually the same as that of the standard fundamental solution for the (α/2)

th power of the Laplace operator in R n , we easily deduce that ord (u,p) > - m if and

only if u = ur + us in O \ {p}, where ur G Cf£.(O, V) and us(y) = o(\y - p\
a-™-™}

as y — > p. We write ord (u, p) = — m if ord (u, p) > — m but it is not true that

ord (u, p) > — m + 1 . Obviously, it is immaterial which local coordinates on O and local

trivialisations of V and V we choose to define ord (u, p). This definition is compatible

with the standard definition of the order of a pole or a zero for a meromorphic form

on a Riemann surface (this corresponds to the case n — 2, A = d and α = 1). By a

point divisor on M is meant any element of the free Abelian group generated by points

of this manifold. We write a point divisor in the multiplicative form δ = p™1 . . p%fN,

with mv G Z \ {0}. Set supp δ = {pi, . . . , P N } It is customary to write p° = 0

that corresponds to the unity of the group. The 'inverse' divisor is defined by δ~l =

Pi™1 . . >PπmN , and so s u p p ^ " 1 = supp δ. The degree of a divisor δ is defined to be

/ΛO\(0.3)
— 1\ /ΊraJ— α-fn — 1

' '
v=\

k being the rank of V, where (j) = j\^L^\ if 3 < J and 0 otherwise. Note that

degί depends also on the order a of A and on the fibre dimension k of V (or V,
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which is clear from the ellipticity of ^4). Having disposed of these preliminary steps,
we introduce two spaces

LOT1, A') = {ge C%C(M \ supp 5, V') : A'g - 0, ord (g, P l / ) > m,},

where A' G Diffa (V', V ) is the transpose of A. These are spaces of "meromorphic"
solutions to the equation Au = 0 and its transpose A' g = 0, respectively, depending
on a given divisor; the solutions are allowed to have some poles (at points that enter
into the corresponding divisor with positive degrees) and are required to have zeros (at
points that enter into the corresponding divisor with negative degrees).

Theorem 0.1 (cf. [6]). If M is a compact smooth closed manifold, then

(0.4) dime L(δ, A) = ind A + deg5 + dim c LOT 1 , A7).

Since the index of the Cauchy-Riemann operator on a compact Riemann surface is
equal to 1 — g, g being the genus, the classical Riemann-Roch theorem (cf. (0.1)) is a
very particular case of Theorem 0.1.

Let us mention yet another particular case of Theorem 0.1. If A is a selfadjoint
elliptic operator on a compact smooth closed manifold M, then ind A = 0, which
yields dime L(5, A) = deg δ + dime L(δ~l , A). This result for the scalar Laplacian on
a Riemannian manifold goes back at least as far as Nadirashvili [12].

It is worth pointing out that the index of the operator A can be evaluated in each
Sobolev space HS(M, V), s £ R. The elliptic theory on a compact smooth closed
manifold M shows that the mapping A: HS(M,V) -> Hs~a(M, V) is Fredholm and
its index is independent of s. This index can be calculated by the Atiyah-Singer formula
(cf. [1]).

Gromov and Shubin [6] gave also a generalization of Theorem 0. 1 to non-compact
smooth manifolds with compact boundary. In this case one imposes appropriate bound-
ary conditions and conditions at infinity in order to ensure that the given elliptic oper-
ator defines a Fredholm operator in suitable spaces.

In this paper we derive a generalization of the classical Riemann-Roch theorem
that is motivated by the analysis of solutions of elliptic equations on manifolds with
conical singularities (cf. Kondrat'ev [8], Melrose and Mendoza [9], Plamenevskii [14],
Schulze [17, 18, 19]). On such a manifold M live differential operators which are usual
over the smooth part of M and of so-called Fuchs type close to singular points. They
act naturally in weighted Sobolev spaces of distributions on the smooth part of M, the
weight functions being powers of the distance to the set of singular points. The concept
of ellipticity relies on two symbolic levels, the first of the two is the usual principal
symbol defined over the smooth part of M up to the singular points, and the second
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of these is the conormal symbol defined over the set of singular points. The conormal

symbol at a singular point v G M is a family of usual differential operators acting in

Sobolev spaces over a cross-section of M close to v. The parameter z substituting the

Fuchs-type derivative along the geodesic at v varies over a horizontal line 9z = - 7 ^

in the complex plane, 7^ being the weight exponent at v. Thus, the ellipticity depends

on the weighted Sobolev spaces to be domains of the operator in question. Elliptic

operators are Fredholm and have parametrices within the so-called cone algebra of

pseudodifferential operators on M (cf. ibid). In this setting we prove equality (0.4)

both for divisors δ supported away from the set of singular points and for those meeting

this set.

The idea of using the calculus of 6-pseudodifferential operators on a manifold with

boundary to deduce the classical Riemann-Roch theorem goes back to the book of

Melrose [10, 6.3].

1. Manifolds with Singular Points

Let M be a (topological) manifold of dimension n with a singular point v, and let

M have a C°° structure away from v. We are going to induce a singular C°° structure

on M at the point v.

To this end, let us fix the type of the singular point v by specifying a model

object in an Euclidean space. Namely, consider the model surface in R n + 1 given by

C 0 = {rS(f(r)x) : r £ [0, l) ,x G X}, where S is a diffeomorphism of a star-shaped

domain Ω C W1 onto an open subset of the unit sphere Sn in R n + 1 , X is a compact

closed submanifold of dimension n - 1 in Ω, and / is a C°° function on (0, 1) with

values in (0, 1], continuous up to r = 0. This surface is smooth away from the origin

0 G R n + 1 and the origin is a conical point of C 0, if / = const, and a cusp of a higher

order, if /(0+) = 0. Under the mapping π(r, x) = rS(f(r)x)9 the smooth part CΌ\{0}

of Co is identified with the cylinder (0, 1) x X over X, while the origin is blown up

to the base {0} x X of this cylinder. Moreover,

dπ _ drS(ω) ,
Λ \ Λ

o(r,x) o(r,ω)

vanishes only for r = 0 where rankκ det dfrx\ — l

Since C 0 is embedded into R n + 1 , there is a natural way to define a singular C°°

structure on this surface. Namely, by a C°° function on CO we mean the restriction,

to Co, of some C°° function in a neighbourhood of CQ. Were Co smooth at 0, then a

familiar result would yield that such functions have inner description in terms of local

coordinates on CQ, which serves as an additional argument in favour of our definition.

If u is a C°° function on C 0, then the pull-back π*u(r,z) = u(rS(f(r)x)) is a C°°

function on the cylinder [0, 1) x X, i.e., up to r = 0. The converse is not true as shows

any component of π~1(τ/), y G CQ.
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M

Fig. 1: A manifold with a cusp at v.

Now, a homeomorphism h of Co is said to be a diffeomorphίsm if Λ,(0) — 0 and
there is a diffeomorphism of a neighbourhood of Co in R n + 1 whose restriction to Co
coincides with h.

Returning to the original manifold M, we call M a manifold with a cusp at v
if there is a neighbourhood O of υ and a homeomorphism h : O -+ CQ such that
ft,(ΐ;) = 0 and the restriction h : O \ {υ} — > CQ \ {0} is a diffeomorphism. Any two
such homeomorphisms hi and h^ are said to be equivalent if the composition h^h^1

is a diffeomorphism of CQ. Then, the C°° CMS/? structure on M close to ι> is defined
by any class of equivalent homeomorphisms O — > CQ, as above. Our next goal is to
give an alternative description of the "model object" which still makes sense for not

necessarily embedded manifolds X. Set H = π~l o /ι, the composition being regarded
as a multivalent mapping O — » [0, 1) x X. This is a diffeomorphism of O \ {v} onto
(0, 1) x X and the image of υ by H is the base {0} x X of the cylinder. An easy
consideration shows that H is actually a homeomorphism of O onto the topological
cone

[0, 1) x X
Ct(X) = {0}xX

over X. We call any two homeomorphisms HI and H^ of O onto Ct(X) with these

properties equivalent if the restriction of H^H^1 to (0,1) x A" extends to a diffeomor-

phism of a neighbourhood of [0,1) x X in R x X. Classes of equivalent homeomor-

phisms H: O —>• Ct(X) give M various singular C°° structures close to the point v.

Let us elucidate the relevance of the C°° cusp structures among them.

Suppose hi, h% are two equivalent homeomorphisms O —> Co, thus defining the

same C°° cusp structure on M at υ. Write HI = π~l o hi and # 2 = π~l o /ι2
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and consider the composition H<2 o H^1 = π~l(h<2 ° h\ ) π Since /i2 ° h^ is a
diffeomorphism of CO, it follows that the restriction of H<2 o iff1 to (0, 1) x X extends
to a diffeomorphism of a neighbourhood of [0,1) x X, i.e., HI, H<2 are equivalent
homeomorphisms O -> Ct(X). Thus, each C°° cusp structure on M determines in a
natural way some singular C°° structure on M via the "model object" Ct(X).

As the topological cone Ct(X) has no canonical singular C°° structure, it is not
to be expected that C°° cusp structures on M at υ can be specified by singular C°°
structures on M via Ct(X). In other words, different C°° cusp structures on M can
determine the same singular C°° structure on M via Ct(X) because, for a diffeomor-
phism Δ of [0, 1) x X, the composition π o Δ o π " 1 need not be a diffeomorphism of
CQ. However, each singular C°° structure on M at v via Ct(A") originates with some
C°° cusp structure, as every homeomorphism H: O —ϊ Ct(X) factors through Co, i.e.,
H — π - 1 / ι for some homeomorphism h: O -» CQ (cf. Fig. 1).

We deduce that in order to specify a C°° cusp structure on M at v within a sin-
gular C°° structure defined by a homeomorphism of O onto Ct(X)9 one needs an
additional information on the original cusp structure. As such an information can serve
either a Riemannian (cusp) metric on the cylinder [0, 1) x X or a class of typical vector
fields near the base r = 0 of the cylinder.

The concept of a manifold with cusps extends in a natural way to the case of
several singular points.

2. Cusp Algebras

We begin by showing the class of Riemannian metrics on the cylinder [0, l).x X

specifying C°° cusp structures on M close to a singular point υ.

The diffeomorphism π : (0, 1) x X — )• CQ \ {0} pulls back the Riemannian metric

dyl + . . . + cfa/n+i fr°m m e smooth part of CQ to the cylinder (0, 1) x X, thus giving

(2.1) =

followed by restricting the differentials dωι,...,dωn to tangential vectors to X. Of
course, (2.1) degenerates at the base {0} x X of the cylinder.

EXAMPLE 2.1. Let n = 2 and let CQ be the surface with a cusp at the origin
given in the polar coordinates of R3 by

yι =
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where r G [0,1), φ € [0, 2ττ) and ΨQ is a fixed angle in the interval (0,π). Then, a

trivial verification shows that

π* (dp* + dyl 4 dyf ) = (14- (rf'(r)ψ0)
2)dr2 4 (r s i n / ( r t y 0 ) 2 dp 2 ,

dφ2 being the Riemannian metric along the unit circle S1. Π

Vector fields along the base X of the cylinder (0, l)xX endowed with Riemannian

metric (2.1) are of the form (rf)~lΣ™~ι ai(r,x)d/dxi in local coordinates of X.

The coefficients aL are of class C°° up to r = 0 if so is /. We are thus lead to typical

vector fields on a manifold with a C°° cusp structure. These are

( } 4

close to the cusp.

If / satisfies the condition sup | r j / ^ ^ ( r ) | < oo, for all j , then such vector fields

behave properly under composition. Modulo the weight factor ( r / ) " 1 , they are section

of a vector bundle bTM over M called the compressed tangent bundle. When restricted

to the smooth part of M, this latter is isomorphic to the usual tangent bundle over

M \ {υ}. On the other hand, the weight factor ( r / ) " 1 can be managed via suitable

weighted Sobolev spaces on M.

The microlocalisation of this Lie algebra of vector fields leads to an algebra of

pseudodifferential operators on M called a "cusp algebra." For more details we refer

the reader to [21] and [15].

In particular, if υ is a conical point of M, i.e., / = 1, then the Riemannian metric

close to υ becomes

resulting in the Fuchs-type derivative D = r\-j^ and in the cone algebra of Melrose

and Mendoza [9] and Schulze [17, 18, 19].

3. The Riemann-Roch Theorem

Let us consider a compact closed manifold M with a finite set of conical points

singM = {vi, . . . , vi }. As described above, such a manifold has a C°° structure away

from the set sing M and a C°° cone structure close to each point υ G sing M. Alterna-

tively, M can be thought of as a compact smooth manifold with cylindrical 'ends', i.e.,
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close to a point υ G singM, we identify M with a cylinder Cv — [0, 1) x Xυ over a

compact smooth closed manifold Xv of dimension n — 1, each C7υ being endowed with

a cone metric dr 2 +r2gχυ(r) where gχv(r) is a family of Riemannian metrics on XV9

smooth in r G [0, 1) up to r = 0.

The cone metric gives rise to the Lie algebra of vector fields on Cv spanned by

rd/dr and d/dxj, where x = (xi, . . . , x n - ι ) are local coordinates on Xv. It follows

that the typical differential operators on Cv are of the so-called Fuchs type

(3.1) Λ =
j=0

where D = r\^ and α, G C^c([0, l),Diff a~ j(X v)). The class of Fuchs-type opera-

tors is invariant under local diffeomorphisms of M preserving the C°° cone structure.

To each operator (3.1) we assign its principal Fourier symbol σ^(A) away from

r — 0 as well as its Mellin symbol at r — 0,

(3.2)

This latter is regarded as a family of differential operators over Xv acting in Sobolev

spaces HS(XV) — > Hs~a(Xv] and parametrised by the complex variable z varying

along a horizontal line Γ 7 = {z G C: ^sz = 7}, 7 G R.

Now, by a differential operator of order a on M, we mean any differential operator

of order α on the smooth part M \ singM of M which is of Fuchs-type (3.1) close to

singular points. In just the same way we define differential operators A between sec-

tions of smooth vector bundles V and V over M. When "pulled back" to a cylindrical

end Cv, both V and V are trivial over the boundary {0}xXv, which allows us to regard

the Mellin symbol at r = 0, σM(A), as a mapping HS(XV) ® Vυ -> Hs~a(Xv) ® K .

We continue to write DifFa(V, V) for the space of all differential operators of order α

between sections of V and V.

The natural domain of an operator A G Diffa(V, V) is a weighted Sobolev space

f P ' 7 ( M , V) of sections of V over M, where 5 G M and 7 = (71, . . . , 77) is a tuple of

real numbers. This space is modeled on the usual Sobolev space Hfoc(M \ singM, V)

away from the singular points and on a weighted Sobolev space H3>Ίi(Cυ.,V) close to

the singular point Vi. The definition of Hs'Ίi(CVi, V) invokes the Mellin transform in

r G R+ and the Fourier transform in x G R 7 1" 1, along with the weight factor r~Ίi (cf.

Schulze [18, 1.1.1]).

Each operator A G Diffa(V,V) is known to extend to a continuous mapping

HS^(M, V) -» H*-a"-a(M, V), for all s G R and 7 G R 7, where we set 7 - α =

(71 - α , . . . , 7 ι - α ) .

The weight tuple 7 enters into the concept of ellipticity on a manifold with conical

singularity in the following way. An operator A G Diffa(V,V) is said to be elliptic
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with respect to a weight tuple 7 G R7, if A is elliptic in the usual sense away from

the set singM and, for each ί = 1, . . . , / , the Mellin symbol of A at the singular point
r\J ~

Vi is an isomorphism Hs(XVi) ® T/y. ^ Hs~a(XVi) (g) V^, for any one s £ R and all

z G Γ _ 7 ί .

Note that if A is elliptic with respect to 7 G R7, then its transpose A! G Diffa(V/,

V7) under the pairing H~S-^(M, V) x HS^(M,V) -> C is elliptic with respect to

the weight tuple a — 7.

A basic result of the analysis on manifolds with conical singularities is that, given

any 7 G R7, the mapping A : HS^(M,V) -> Hs~a^-a(M, V) is Fredholm for all

s G R if and only if A is elliptic with respect to 7 (cf. ibid, 1.2.2). Moreover, if A is

elliptic, then the kernel and the cokernel of the mapping A are independent of s (but

not of 7), and so the index of A can be evaluated in the space H°°'Ί(M, V).

We are now in a position to introduce our first version of the Riemann-Roch the-

orem for a manifold M with conical singularities. To this end, given any point divisor

δ — p™1 . . . p^N with supp δ Π sing M = 0, we consider two spaces

ί, A) = {u G H^Ί(M \ supp 5, V) : Au = 0, ord (u,Pl,) > -m,},
L(δ~\ A'} = {ge H^a^(M \ supp 5, V') : A'g = 0, ord (g, P l /) > m,},

ord (u, p) being defined as above.

Theorem 3.1. Suppose A is a differential operator on M, elliptic with respect to

a weight tuple 7 G R7, and δ is a point divisor on M supported away from the set of

singular points. Then,

(3.3) dime L(δ, A) = ind A + degtf + dim c L(δ~l,A').

We emphasize that ind A means the index of the operator A evaluated in any one

Sobolev space HS'Ί(M, V], s G R. The problem of finding an explicit index formula

for Fredholm differential operators on a compact closed manifold with conical singu-

larities has not been solved in a completely satisfactory way (however, see the work

of Fedosov and the authors [3] and the references given there for partial results). The-

orem 3.1 can be useful anyway, for explicit index formulas are known for particular

operators.

The theorem is still true for elliptic differential operators on compact closed man-

ifolds with cusps (cf. Schulze and Tarkhanov [22]). As is observed by Melrose [11],

various problems for cusp and cone pseudodifferential operators are essentially the

same. The index problem for pseudodifferential operators is, as yet, unsolved for all

the fibred cusp algebras except the scattering algebra (cf. ibid).

If the set of singular points of M is empty, equality (3.3) gives (0.4), and so

Theorem 3.1 contains Theorem 0.1 as a very particular case. However, the proof of

Theorem 3.1 is similar in spirit to that of Gromov and Shubin [6].
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We postpone the proof of Theorem 3.1 until Section 5 while showing that artificial

conical points do not affect the index of the operator A if 7 is properly chosen.

Lemma 3.2. Let v G M \ sing M and let M1 be the manifold obtained from

M by regarding v as new conical point. Suppose 7' = (7,7V), where 7 G R7 and

Ίv G ( α - n , 0 ) . Then the index of A: Hs^'(M1 ,V) -» Hs~a^-a(Mf, V) is equal to

the index of A: HS^(M,V) -> Hs~a^-a(M,V).

Note that in order to a 7^ fulfilling the condition of the lemma exist it is necessary

and sufficient that α < n.

Proof. Pick a neighbourhood O of the point v such that O does not meet the set

singM. If — 7^ < n — α, then each section u G Hf£v(O,V) satisfying Au = 0 in

O \ {v} extends to a solution of this equation on the whole neighbourhood O. This

is a kind of the theorem on removable singularities for solutions of elliptic equations.

For the proof, use expansion (0.2) together with the observation that the elements of

Hϊoc°°(OιV) admit extensions to distributions on O. Conversely, if 0 < —7^, then

each solution to Au — 0 in O belongs to H^V(O, V). We turn now to the transposed

equation A'g — 0. Recall that the transpose A' is defined with respect to the pairing

H-s-~ι(M, V'} x HS^(M, V) -> C induced by the inner product in ff° '°(M, V), As

# ° ' ° ( M , V) is different from L 2 ( M , V), the transpose A! is no longer elliptic in the

usual sense close to the point υ. However, A' can be easily expressed by means of

the transpose of A with respect to the pairing H~s'~Ί~n(M, V) x HS^(M, V) -> C

induced by the inner product in HQ>~%(M,V). When localised to O, this latter inner

product corresponds to that in the space I/ 2(O, V) up to the choice of a positive density,

and hence the corresponding transpose of A is an elliptic operator in the neighbourhood

of υ. Summarising, we conclude that the conjugation of A' by the n th power of the

distance to υ, i.e. r~nA'rn, is an elliptic operator in the usual sense in O. Thus, if

0 < n - (a — 7 υ ) < n — α, then we may apply the above argument to solutions of the

transposed equation A'g = 0. The inequalities

0 < —7 υ < n — a,

0 < — (α — 7 υ — n) < n — a

are easily verified to coincide, thus resulting in α — n < 7^ < 0. Since we still have

ind A = dimker A — dimker A', the lemma follows. Π

4. A Duality Theorem

Let δ = p™1 ... p^N be a point divisor with a support away from the set of singu-
lar points of M .
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We introduce the positive and negative parts of δ as divisors

r-J- ^ i ' r n
 TV

δ+ = P l

l ...pN

N_,
ς — m7 m^r
δ = P i 1 ...pN

N,

where ra+ = max(m,0), m~ = min(m,0). Here all factors of the form p™ with
ra — 0 have to be omitted.

It is clear that δ — δ+δ~ and

We next introduce new spaces which play an important role in the proof of Theo-

rem 3.1 but on the other hand allow us to formulate a duality theorem which is impor-

tant by itself.

Namely, L'(δ,A) is defined to consist of all sections u G H^Ί (M \ supp£+ V)

such that u vanishes at pv up to order — πιv - 1, if pv G supp5~, and, for each

pv G supp<5+, there exist a neighbourhood O of pv and sections ur G Cj^c(0, V) and

u8 G Cι£c(O \ {PI/}, V) with the property that u = ur + us in O \ {p^} and Aus = 0

in O \ {PV}, ord (us, p,/) > -m^.

Thus, we allow merely singularities that occur as singularities of solutions to Au =

0. The space L'(δ, A) consists of sections with the same zeros and singularities as

allowed in the definition of L(<5, A). However, the definition of L'(δ, A) contains no

global restrictions on u, so all possible local singularities and zeros can be present at

each point pμ G supp δ independently from what happens at other points.

Now we introduce the reduced divisor

(4.1) i = P ? ' . . . p £ w ,

where mv = sgnm^ (Im^l — a ) + and the factors p™» with πιv = 0 have to be omitted.

Thus, compared with δ, the absolute value of every exponent decreases by α (or

becomes 0 if it was initially less than α). Note that ( ί - 1 ) ~ = (δ)~l and

hence the designations δ~l, <5+ and δ~ will cause no confusion.

We define the space L"(δ, A) to consist of all sections / G H°°^-a(M,V) such

that / vanishes at pv up to order — mv — 1, if pv G supp5~. Note that L"(δ,A)

actually depends on δ~ only, and so L"(δ, A) — L"(δ~ , A).
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Lemma 4.1. The differential operator A extends in a natural way to a mapping

Ά:L'(δ,A)-+L"(δ,A).

Proof. Indeed, pick u G L'(δ,A). It follows from the definition of L'(δ,A) that
An, being defined on M \ s u p p 5 + , extends by continuity to a section / G #°° ' 7 ~ α (M,
V). Moreover, / € L"(δ, A), as is easy to check. Hence, setting Au — f yields the
required extension of A. Π

We now apply these arguments again, with the operator A with domain H°°>Ί

(M,V) replaced by the transpose A' with domain #°° ' α ~ 7 (M, F') , to introduce the
spaces L'(δ~l, A') and L"(δ-l,A').

In fact, L'(δ-l,A') consists of all sections g G H^a~Ί(M \ suppδ~, V') such
that g vanishes at pv up to order rnv — 1, if pv G supp 5 + , and, for each pv G supp δ~,
there exist a neighbourhood O of pv and sections gr G Cf£c(O, V') and gs G C^C(O \
{Pi,}, V') with the property that g = gr + gs in O \ {p»} and Ags = 0 in O \ {pv},
ord(gs,p,,) > m ^ .

Furthermore, L"(δ~l,A') is generated by sections v G #°° '~ 7 (M, V') such that ι>
vanishes at pv up to order mv — 1, if pv G s u p p ί + .

Lemma 4.2. TTze differential operator A' extends in a natural way to a mapping

Proof. This follows by the same method as in Lemma 4.1. Π

Our next objective is to introduce an important duality in the spaces defined before.
To this end, we recall the definition of the dual bundle on a manifold with conical
singularities.

By a density on M we mean any density ω over the smooth part of M, which
takes the form ω = rn~ldrdx modulo factors smooth up to r = 0, close to each
conical point v. Obviously, this definition is independent of the particular splitting
of coordinates (r, x) near υ . As is customary, we denote by Ω the bundle of com-
plex densities on M. For every ω G C°°(M,Ω)9 the integral fMω is well-defined.
Note that this integral still makes sense for all integrable densities on M. If V is a
vector bundle over M, then the bundle V' — Homc(V, Ω) is called the dual bundle.
There is a natural pairing of bundles V 0 V — >• Ω which gives the pairing in sec-
tions {.,•): C°°(M,V'} x C°°(M,V) -+ C by means of (υ,u) •-> fyeM(υ,u)y. Here,
(v,u)y G Ω^ is obtained by use of the pairing between Vy and Vy. When restricted to
C?omP(M, V) x CSmp(M, V), this pairing extends to H^~n(M, V) x H^(M, V),
to each real 7. Indeed, if v G H°^-n(M, V) and u G H°π(M,V), then r^+nv G
//"°'°(M, V) and r~Ίu G fΓ0'°(M, V), where r is thought of as the distance to conical
points. Hence it follows that the density (v,u)y — r~n(rΊ+nυ,r~Ίu}y is integrable
over M . As usually, this subtends that the pairing V 0 V — ϊ Ω relies on fixed volume
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form on M and Hermitian metric on V. Since our reference space is 7J°'°(M, V), we
modify the pairing in question by including the weight factor r~n, thus arriving at

r
(υ,u)= \ r n(v,u}y

for υ € #°'-^(M, V), u e H°>i(M, V).
In contrast to the case of a compact closed C°° manifold M, the transposed op-

erator A' does not fulfil the property (<?, Au) = (A1 g, u) for all smooth u and g, but
only for those with (supp u Π supp g) Π sing M = 0. However, the following is what
we really need.

Lemma 4.3. For each u e Ha^(M, V) and g € Ha^(M, V'\

(4.2) (g,Au) = (A'g,u).

Proof. By a property of weighted Sobolev spaces, we can choose a sequence
(uv)ι/=ι 2 i n ^comp(^ \ singM, V) approximating u in the norm of Ha^(M, V).
Then Aul ->• Au in the norm of H°^~a(M, V), whence

(g,Au) = \ιm^(g,Auv}

= lim (A'g,Uv}

= (A'g,u),

as required. Π

We thus deduce that the natural domain of the transpose A' is the Sobolev space

Lemma 4.4. For each point divisor δ supported away from sing M, the pairings

H°°-τ(M, V) x H°°^(M, V) -> C,
H°°>a-i(M, Vf) x H°°"-a(M, V) -> C

extend to pairings

L"(δ~l, A') x L'(δ, A) -> C,
( ' } L'(δ-l,A') xL"(δ,A) -> C.

Proof. We claim that pairings (4.3) are in fact defined by integration over M \
supp δ. We only need to show that the integrals which appear here really converge.
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Indeed, suppose u G L'(δ, A) and υ G L"(δ~l, A'). Then, near a point pv with

mv > 0, we have u(y) = O(\y — pv\
a-n-™v+t} where e is any number in the interval

(0,1). The case a — mv > 0 does not evoke any problem. In the opposite case we

have υ(y) = O(|2/-p«/|m ι /~α). Hence (υ(y),u(y)) = O(\y - pv\~n+*} and the integral

/M\SU ξ(v(y)')u(y)} converges near all points pv with mv > 0 which are the only

possible singularities.

The same reasoning applies to the second pairing in (4.3) which completes the

proof. Π

Now let {•,•): H' x H —> C be a bilinear pairing of two complex vector spaces

H and H'. Given a vector subspace Σ of H, we define the annihίlator or orthogonal

complement Σ-1 of Σ with respect to the pairing ( , •) to consist of all υ e H' such that

(v, u) = 0 for each u G Σ. Thus, Σ-1 is a vector subspace in H1'. And vice versa, if Σ'

is a vector subspace of H', then Σ' 1" is defined as a vector subspace in H'.

In the following theorem the annihilator is with respect to the second pairing in

(4.3).

Theorem 4.5. 1) For each u G L'(δ,A) and g G L'(δ-l,Ar), it follows that

(g, Άu) = (Ά'g, u).

2) imA = (ker A') , i.e., f G imA if and only iff G L"(δ, A) and (gj) = 0

for all g G ker A'.

3) dimcoker A = dim ker A7.

The relevance of Theorem 4.5 to Theorem 3.1 is clear from the fact that kerΆ —

L(δ,A) and ker A! — L(δ~l,A'}. Both the theorems will be proved in parallel in the

next section.

Note that part 2) gives solvability conditions for the equation Au = f in the class

L'(δ, A) that consists of sections with prescribed orders of zeros and poles.

5. Proofs

Theorems 3.1 and 4.5 will be proved simultaneously because these proofs inter-
twine (cf. Gromov and Shubin [6]).

In the sequel # - ° ° ^ ( M , V) stands for the union of the spaces HS^(M, V) over

all s G R Obviously,

H-°°>i(M,V) *-> P ' ( M \ s i n g M , V ) ,
£ ' (M\singM,V) <-» # - ° ° ^ ( M , F ) ,

for each 7 G R.
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Denote by £δ(M, V) the subspace of £ '(M \ singM, V) consisting of sections u

such that suppu C supp5+ and, near supp5 + , u can be written as

(5.1) u(y)= Σ Σ ^QDaδ(y-p^

where δ(y) is the Dirac measure and CVOL G Vpv. Clearly, £$(M, V) — ££+(M, V).

Similar spaces will be used for the bundle V and other divisors occurring in the

proof.

For every u G L'(δ, A) we can find a "regularisation" u G H~°°^(M, V) such that

ύ = uon M\supp ί+ and Au = / r + / f l with fr G ί f ° °^- α (M, F) and /β G £J(M, F ) .

Denote by L'(δ,A) the space of all such regularisations. Due to the elliptic regularity

result and the structure of fundamental solutions (cf. Introduction), the space Z/(δ, A)

can be equivalently described as the set of all u G fl"~°°'7(M, V) such that u is of

class C°° in a neighbourhood of s u p p ί " , u vanishes at each point pv G s u p p ί " up

to order -mv - 1, and Au = fr + fa with / r G H°°^-α(M, V) and / 8 G S'δ(M, V).

Lemma 5.1. The sequence

(5.2) 0 — ^ ̂ ( M , VO - A L ;(ί, A) - ^ L'(δ, A) — ^ 0

w e cαct. //^re z α«J r are the natural inclusion and restriction mappings.

Proof. The surjectivity of r means the existence of a regularisation as mentioned

before, the injectivity of i is evident. So we must only prove the exactness in the middle

term which actually means that if u £ 8f(M \ singM, V) is supported on s u p p ί + and

Au G ε'δ(M,V), then u G S~(M,V). This is a local assertion, and so it suffices to

consider the case δ = p™ with m < 0. But then the statement easily follows from the

ellipticity of A. Π

Lemma 5.2. We have

(5.3)

Proof. Since 8'δ(M,V) = 0 S'rnv(M,V), it is sufficient to prove that, for
m ι y >0

every mv > 0,

n

which reduces to a well-known combinatorial exercise. Π
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Lemma 5.3. As defined in Lemma 4.1, the operator A is Fredholm and its index

satisfies

(5.4) ind A = ind A + deg δ.

Proof. Consider the following commutative diagram

0 — * £'~δ(M,V) -^ L'(δ,A) -^ L'(δ,A) — > 0

1^+
 [A [A

0 — > ε'δ(M,V) - ύ L»(δ,A)®εf

δ(M,V) - ^ L»(δ,A) — > 0

where the first row is sequence (5.2), the mappings i and π in the second row are

natural inclusion and projection, respectively, and A + , A are the restrictions of A to

the corresponding spaces of distributions. Since both rows in the diagram are exact, we

can assert, by the well-known algebraic property of the Euler characteristic, that

ind A = ind A + ind A + .

On the other hand, A+ operates in finite-dimensional spaces, and so its index is

equal to the difference of the dimensions of the spaces. Thus,

indA+ -

Σ
v -\-n-\\ ( mv — a + n — 1

the second equality being due to (5.3). Hence

(5.5) ind A = ind A + deg5 + .

Now consider the commutative diagram

0 __> H°°> v(M,V]δ) Ά L'(δ,A) ^ 4 εf

δ(M,V) — > 0

[A- [A jid
0 _ ) , L"(δ,A) ^ L"(δ,A)®ε'δ(M,V} ^ ε'δ(M,V) — ^ 0

where H°°^(M, V] δ) is defined to consist of all sections u G #° ° ' 7 (M, V) such that

u vanishes at pv up to order — πιv — 1 if pv G s u p p ί " . The operator A~ is the

restriction of A. Once again, the rows are exact whence

(5.6) ind A = ind A " .
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Finally, consider the commutative diagram

[A- ΪA ljw

where

# ~ ^ - α ( M , y ; 5 ) '

i and q are the natural inclusion and quotient mappings, and J(A) is the natural quo-
tient mapping. Then we deduce

ind A~ = ind A - ind J(A).

Since Jδ(V) = 0 Jp?» (V) and, for each mv < 0,

,. Ί n,. I —mv +n —
dim J™v(V) = qrv

(cf. (5.3)), we obtain

ind J(A) = dimJδ(V) - dimJδ(V)

= g ^ € Σ Λ _ ( ( " m ι / t n " ' j v
= -deg<5~.

Hence ind A~ — ind A + deg5~, and so applying (5.5) and (5.6) yields

ind A = ind A + deg5~ -f- deg5 +

= ind A + deg 5,

which completes the proof. Π

Equality (5.4) means that dimker A = ind A + deg 5 + dimcoker A, and so Theo-
rem 3.1 will be proved once we prove part 3) in Theorem 4.5. We begin with the proof
of part 1) in Theorem 4.5.
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Lemma 5.4. For each u G L'(δ, A) and g G L'(δ~l,Af), we have

(5.7) (g,Άu) = (Ά'g,u).

Proof. Let us first assume that equality (5.7) holds for all u G L' (δ, A) and g G

L'(δ~l,Ar) such that suppu Π suppg does not meet the set singM. Pick a function

X G C™mp(M \ singM) with the property that χ = 1 in a neighbourhood of suppί.

Then, for each u G L'(δ, A) and g G L'(δ~l, A'), we obtain

(g,Άu) = (

- (A'g,u)

the third equality being a consequence of Lemma 4.3. We are thus reduced to proving
(5.7) for u G L'(δ, A) and g G Lf(δ~1^A/) supported on the smooth part of M.

This latter case is actually treated in Lemma 3.4 of Gromov and Shubin [6]. For
the convenience of the reader we repeat the relevant material from [6].

Let us take a function ω G C ^ m p ( R n ) such that ω(y) = 1 if \y\ < \, and ω(y) = 0
if \y\ > 1. For each ε > 0, set ωε(y) = ω ( | ) , so that ωε is a C°° function with a
support in the ball \y\ < ε, satisfying ωε(y) — 1 if \y\ < f, and \Daωε(y)\ < cαε~'αl
for all y G R n .

For each point pv G suppί, we fix local coordinates in a neighbourhood Ov of pv.
Using these local coordinates we define

N

Xε(y) = l-^^e(2/-Pi/),

v=\

for small ε > 0. It follows that χε = 0 in a neighbourhood of supp δ, χε — I outside
a small neighbourhood of supp5, and Daχε(y)\ < cαε~'α ' , the derivative being taken
in chosen local coordinates. Now using the definition of the transposed operator and
the convergence of the integrals defining both sides in (5.7) we get

(g, Au) = lim (χεg, Au)

= lim (A'(χεg),u)

— lim (χεA'g,u) + lim([A',χε]g,u)

= (A'g,u) + lim ([A',Xε]g,u),

where [A', χε] = A'χε - χεA' is the commutator of A' and χε.
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It remains to prove that the last limit vanishes. To do this, we observe that [A', χε]
is a differential operator of order α - 1 with coefficients supported in a small neigh-
bourhood of supp δ. In fact,

[A',χe}=
\a\<o-l

close to pv, with

(5.8) suppAα,ε c {y: f <\y-p,,\<ε},

(5.9) |Aα

We now proceed by considering two cases: mv < 0 and mv > 0.
Let mv < 0. Then in Ov we have

u(y) = 0(\y-pv\-m >),
Dag(y) = o(\y-pv\

a-n+m"-M),

and so, on supp Aα ? ε,

u(y) = O ( ε - m " ) ,

which is due to (5.8). Hence (5.9) gives (Aa^εD
ag(y),u(y)) = o(ε~n) and, since the

volume of supp Aa^ε is O(ε n ),

(5.10) / ([A',χε}g(y),u(y)} = o(l) as ε -> 0,
Jov

as required.
Let πιv > 0. On the support of Aa^ε, we similarly have

u(y) = o ( ε α - n - m ^ ) ,
D*g(y) = 0(εm»-\a\)

whence (Aa^Dag(y),u(y)} = o(ε~n). This clearly forces (5.10), and the proof is

complete. D

Let ( , •}: H' x H —)• C be a bilinear pairing of two complex spaces H and H'.

We say that this pairing is non-degenerate if both H1- and Hf± are trivial, i.e., consist

of zero elements only.
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Lemma 5.5. Pairings (4.3) are non-degenerate.

Proof. The statement is evident because all spaces in (4.3) contain smooth sec-

tions of the corresponding bundles supported away from sing M U supp δ and, on the

other hand, the elements of these spaces are uniquely determined by their (smooth)

restrictions to M \ (sing M U supp δ). Π

Now we need the following abstract lemma from [6] which we reproduce with the

proof for the sake of completeness.

Lemma 5.6. Suppose (•,:): H' x H — > C is a non-degenerate bilinear pairing

of complex spaces H and H' . Then, for each vector subspace Σ of H, we have Σ C

and

dimΣ = codimΣ-1, if dimΣ < oo;

codimΣ > dimΣ- 1, if dimΣ- 1 < oo.

Proof. The inclusion Σ C (Σ-1)-1- is obvious. From this we conclude that codimΣ

> codim(ΣJ-)-L. Thus, the first formula of (5.11) implies the second one and we have

only to prove the first formula.

To do this, we first observe that, since Hlλ~ — {0}, for each finite linearly indepen-

dent system (Λΐ) i e / in H there is a system (Λί) ί e / in H1 parametrised with the same

family of indices, such that H' — (£ (^ΐ)ie/) ® ̂  (^Oίe/ Here, C (Λ<i)ie/ means the

linear span of (hi)iel. It follows that dimΣ > codimΣ-1, and so it remains to prove

the reverse inequality.

Consider the natural mapping Σ — )• Homc(H//Σ-L,C) given by h ι-> T^, where

^ ( Λ ' + Σ-1) = {Λ',fe), for Λ 'e fΓ '

From Hf± — {0} we deduce that the mapping h ι-> Th is injective. Combining this

with the fact that codim Σ1- < oo, we derive

codimΣ-1 =

= dim Home (H7Σ-SC)

> dimΣ,

as required.

Lemma 5.7. Under the second pairing of (4.3), we have

( ~\L

( im A) = ker A! .
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Proof. By definition, ker^ 7 consists of all sections g G L'(δ~l,A'} such that
A'g — 0 in M \ supp δ. On the other hand, im A contains all sections of the form An,

with u G #° ° ' 7 (M, V) supported away from supp£. Combining this with Lemma 5.4,
we arrive at the desired conclusion. Q

Proofs of Theorems 3.1 and 4.5. Lemmas 5.6 and 5.7 imply

(5.12) irnA C ( k e r i Λ ,

(5.13) codimimA > dim ker A7,

and so we are left with the task of showing that both the inclusion and the inequality

are actually equalities.
/ „ x-L

By (5.11), dim ker 4̂7 = codim (ker AM , hence equality in (5.13) implies equal-

ity in (5.12). Since codimimA = dimcokerA, we only need to show that

(5.14) dim coker A = dim ker A7.

For this purpose, we invoke the remark after Lemma 5.3 and (5.13) to see that

dim ker A = ind A + deg δ + dim coker A

> ind A -h deg δ + dim ker A7.

We now apply this argument again, with A replaced by A' and δ replaced by ί"1, to

obtain

dim ker A' > ind A' + deg δ~l + dim ker A

= —ind A — deg δ + dim ker A.

Combining these opposite inequalities yields

ind A + deg δ + dim coker A = ind A + deg δ + dim ker A7,

which is equivalent to (5.14). This completes the proofs of Theorems 3.1 and 4.5.

π

6. Contributions of Singular Points

The case where the support of a divisor δ is allowed to meet the set of singular

points of M presents a much more delicate problem. The reason is that a solution
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u to Au — 0 in a punctured neighbourhood of a point p G singM need not have
an expansion like (0.2). Hence the question arises of rinding a proper substitute of
solutions with ord (u,p) > —m as well as of specifying the degree of a divisor δ with
supp δ Π sing M ^ 0.

By private communication M. Gromov informed us that the contributions of con-
ical points p G supp δ can be evaluated by expanding solutions as series in Bessel
functions. But our approach is based on quite different ideas from the analysis on a
manifold with conical points.

We begin with an equivalent description of the order (of "zero") of a solution
at a point p G M \ sing M in terms of the weighted Sobolev spaces. In order to
get asymptotic results, it is necessary to impose some restrictions on the order of A.
Namely, we assume that a < n.

Let u be a solution of Au = 0 in O \ {p}, where O is a coordinate neighbourhood
of p on the smooth part of M. If O is sufficiently small, then A has a fundamental
solution Φ G Φ~ a(V|o, V|o) in O. Since a < n, the kernel of Φ bears the estimates

(6.1) D«Dξ,Φ(y,yf) = 0(\y-y'\a-n-W-W), for all α,/3eZ£,

uniformly on compact subsets of O x O. Combining this with (0.2) yields the following
assertion.

Lemma 6.1. Let m G Z. In order that ord (u, p) > —m it is necessary and
sufficient that

u e # £ Γ m ~ ° ( 0 , n for m < 0 ;
u G # ^ α - n + 1 - m - ° ( 0 , F ) , for m > 0 .

Note that by H^(O,V) we mean the weighted Sobolev spaces as above, con-
structed as if p be an artificial conical point of M. The lemma is still true if we
replace the exponent s = oo by s = 0, for u is a solution of Au — 0 away from p.

Proof. Indeed, from (0.2) and (6.1) it follows that ord (u, p) > - m if and only if

\y-p\-9+m+ou G Lfoc(0,V), for m < 0 ;
\y-p\-a+9-l+m+Qu G Lfoc(0,V), for m > 0,

the space Z|O C(O, V) being defined with respect to the volume form dy on O. Since in
the polar coordinates with centre at p we have dy = rn~ldrdx, where r = \y - p and
dx is the area form on the unit sphere Sn~l, the lemma follows. Π

As described in Lemma 6.1, the notion of the order can be extended .also to the
singular points of M. The obvious asymmetry in m in the above two conditions is
explained by the fact that, for m > 0, the "weakest" singularity of u at p is due to the
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term Φ(y,p)cG, i.e., O(\y-p\a~n). While the definition of ord(u,p) > - m for m < 0

is irrelevant to the concrete differential operator A and agrees with the heuristic concept

of the multiplicity of a zero, the definition of ord (u, p) > - m for m > 0 invokes A

and differs from the heuristic concept unless a = n — 1. On the other hand, a solution

u G Hι£(O, V) to Au = 0 in a punctured neighbourhood O \ {υ} of a conical point υ

is known to bear asymptotics of the form

M jμ

(6.2) u(r,x)=ω(r)ΣΣriz»(\ogrγcμj(x) mod H~?+l(O,V}
μ=lj=0

close to v, where ω G C™mp(O) is a cut-off function for the point v, zμ G C are

non-bijectivity points of the conormal symbol 0>ιCA)(v, z) lying in the strip —7 —

I < ^sz < - 7 , with / > 0, and cμj are functions of finite-dimensional subspaces Έμ

of C°°(XV) ® Vυ on the base Xυ. Hence the "orders" of such solutions can fill in

the interval (α — n,0), too. For this reason we choose in favour of the definition of

ord (u, p) > — m for m < 0, thus removing the asymmetry in m G Z.

DEFINITION 6.2. Let p G M and m G R. For a solution u to Au = 0 in O \ {p},

we write ord (u, p) > m if u G H^^1 * (O, V).

The correction | in the exponent is chosen by purely aesthetic reasons. What we

do in the case p $ sing M is actually that we regard p as an artificial conical point of

M by blowing up M at p.

The point divisors δ we have to deal with under this definition of ord (u, p) are still

elements of a free abelian group generated by points of the manifold M. These are of

the form δ = p™1 ...p^N, now with raι,...,raτv real numbers. Under Definition

6.2, the inverse divisor occurring in (0.4) and (3.3) should be δ~l = p-™ι+n-l-a . . .

p-mjv+n-i-α^ ^ j ^ p r o m p t s us a group operation in the set of all point divisors.

Namely, for δ' = p™1 . . P^N and δ" — p™1 . . .p^N, we set

r/r// _ πιl

 L-\-ml—(n — l — a) mN+mN — (n—l—a)

o o — pl . . . pN ,

depending on the dimension of the underlying manifold M and the order of the differ-

ential operator A. This agrees with the usual operation in case A is of order α = n — 1,

as is the case for the Cauchy-Riemann operator on a Riemann surface.

A divisor δ = p™1 . . . p^N is said to be non-characteristic for A if, for each z/,

either pv 0 singM or pv G singM and OM(&)(PV> z) is invertible on the line Γ m ^ + ι .

We are now in a position to extend Theorem 3.1 to the case of point divisors

meeting the set of singular points. For a point divisor δ = p™1 . . . p^N , we consider

two spaces

):Au = ̂  ord(u,Pl/) > -m,},

L(δ-\A') = {g G H^(M\suppδ,V'): A'g - 0, ord(g,Pl/) > m.-n+l+a}.
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Theorem 6.3. Let A be a differential operator on M elliptic with respect to a
weight tuple 7 €E R7. Assume that δ is a point divisor on M non-characteristic for A.

Then,

(6.3) dime L(δ, A) = ind A + degί + dim c L^Γ 1 , A')

Just as in (0.3) the degree of δ occurring in (6.3) is made up of contributions of

the points pv, i.e., degί = Σ ί L i degp™".

To describe the contributions of the points pv lying on the smooth part of M,

denote by [ra] the integral part of m £ R, i.e., the largest of the integers not exceeding

m. Then,

, if l—πij,—ijl>—1;
n JJ 2

0, if α — n < [—πιv—|] < — 1;

/-[-m.-^-lλλ n2 J )), if [ - m I / - f ] < α - n
V n //

(cf. (0.3)).

To evaluate the contributions of points pv € sing M we need more information on
the conormal symbol σj^(A). Pick a conical point υ of M. The spectrum of σχ(A)

at v is said to consist of all points z G C such that σM(A)(υ,z) fails to be an iso-

morphism HS(XV) (g) K -» # s ~ a ( X v ) (g) K for some s e R. Recall that Xυ stands

for a cross-section of X close to v, being a compact smooth closed manifold. We

denote by specσ^(A)(v, •) the spectrum of σjw(A) at v. From the invertibility of

the (compressed) principal symbol of A over the set of singular points of M it fol-

lows that σj^i(A)(v,z) is a holomorphic family of elliptic differential operators over

Xv parametrised by z G C. Moreover, the restriction of this family to each horizon-

tal line is an elliptic operator on Xv with the parameter z. Hence we deduce that the

spectrum of σj^(A) at v is a discrete set in the complex plane, whose intersection

with each horizontal strip of finite width is finite. Away from the spectrum the inverse

σχ(^4)(t',^)~1 is well known to be a holomorphic family of pseudodifferential oper-

ators in Φ~a(Xv) (g) Homc(Vv, Vv). A further observation is that σj^i(A)(υ,z)~l is

actually a meromorphic family over the complex plane, with poles of a finite rank at

the points of specσ>ι(A)(v, •). This means that, for each zμ G speca>t(A)(v, •), we

can write

order za

(6.4) σ

where Sμj(υ) are smoothing operators of finite rank over Xυ and Rμ(z) is holomor-

phic in a neighbourhood of z = zμ. It follows immediately that the singular range of
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v,z)~l at zμ, i.e., the space

order zu

Σ
.7=1

is finite-dimensional. The dimension of this space is known as the rank of the pole zμ

and is denoted by rankz μ (following the notation in Melrose [10, 5.2]).

Now, for PJ, = Vi a conical point of M, we have

A rn ( 1 \ V -ι f l * \ l fίf^Cf Tί QCΓTΊ I TΎΊ — I— Λ/ I > T C i ' π l r r 7\*J.JJ Llt/g ^ / ^ — ^fe^-1 I A A AV I r» ' Π I / IclllJVZi,

the sum in the right-hand side being 0 if mv + \ + 7; = 0. Note that the lines Γ_ 7 i

and Γm^_(_ι are, by assumption, free of the points of the spectrum of σM(A)(pl>^ •).

A particular case of Theorem 6.3 is the Relative Index Theorem of Melrose and

Mendoza [9] (cf. also [17, 2.2.3], [10, 6.2]), which corresponds to the case suppί =

sing M.

Proof of Theorem 6.3. We are going to deduce Theorem 6.3 from Theorem 3.1

and the Relative Index Theorem cited above.

To this end, we denote by Ap, for β E M7, the operator A regarded as mapping

Hsβ(M, V) -»• Hs~a^-a(M, V), the exponent s being immaterial in the sequel. If A

is elliptic with respect to a weight tuple w, then indA^ — dim ker A^ — dim ker A^

where both ker Aβ and ker A'β are independent of 5. Here, we abbreviate (Aβ)r to A'β.

Consider a weight tuple 7' = (7ι, ,7/) in R7 defined as follows. Pick i =

1, . . . , / . If Vi 0 suppί, then 7̂  = %. If Vi — pv for some v — 1, . . . , TV, then

^ = —mv — | . Since 5 is non-characteristic for A, we conclude that the differential

operator A is elliptic with respect to 7'.

We next reduce the divisor δ = p™1 . . . p^N to its part δf supported away from the

set of singular points. Namely, pick v — 1, . . . , TV. If pv £ singM, then we allow pv

to occur in the new divisor δ' with just the same weight πιυ. If pv G singM, then we

assign the weight 0 to pv, thus omitting pv as part of δ' . The divisor δ' so obtained

does not meet the set sing M.

Now, a trivial verification shows that the space L(ί, A) referring to the operator

A — AΊ coincides with the space L(δ' , AΊ>], the operator A here being AΊ>. Thus,

L(δ,A) =
(δ~\A) =

The operator AΊ> and the divisor δ1 fulfill the condition of Theorem 3.1, hence
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(3.3) yields

(6.6) dime L(δ, A) = ind Ay + degtf' + d i m c L ^ " 1 , A').

On the other hand, we can assert, by the Relative Index Theorem (cf. ibid), that

I

(6.7) ind A7/ = ind A 4- ̂  sgn (7i - 7 )̂ ^ rank z.
i=l z€specσ.Λ/f(A)(vi, )

Combining (6.6), (6.7) and Lemma 6.1, we arrive at equality (6.3), as required.

D

From Theorem 0.1 and Lemma 3.2, one may conjecture that formula (6.5) is still

true for the points pv lying on the smooth part of M, now with 7̂  any number in the

interval (α — f , f )• We postpone this discussion until Section 8.

7. Rigged Divisors

In this section we extend Theorem 6.3 to point divisors δ carrying information on

asymptotics of solutions at the points occurring in δ. Since asymptotic expansions like

(0.2) near points p lying on the smooth part of M are very special cases of those at

singular points and since each point p G M \ sing M can be thought of as an artifi-

cial conical point, we will restrict our attention to the divisors δ supported on the set

sing M.

As described in Section 6., a solution u G HS^(M, V) of the equation An — 0

bears asymptotics of the form (6.2) close to .a conical point v G M. The sum in (6.2)

is over all points zμ of the spectrum of the conormal symbol σj^(A)(v^ •), which lie

in the strip —7 — / < $sz < —7, while j μ + 1 is the order of the pole zμ of the inverse

symbol (cf. (6.4)). Thus, the number (jμ + 1) dime Σ μ is in fact equal to the rank of

the pole zμ.

A divisor δ = p™λ . . . p^N specifies only the strips in the complex plane, in which

asymptotics at pv are allowed. As for the spaces Σ μ at each point pv, they depend

on the particular splitting of coordinates close to pv. Indeed, the representation of a

solution in the form (6.2) depends on the choice of coordinates. It follows that in order

to specify the spaces Σ^ at the points occurring in the divisor we have to fix cylindrical

structures near these points. When specifying the spaces Σ^, we arrive at what Gromov

and Shubin [7] called the rigged divisors.

Let us recall the concept of an asymptotic type which is relevant to our theory

(cf. Schulze [17, 1.2.1]). Pick a conical point υ G M. A weight datum at v is a

pair w = (7, [— /,0)) consisting of a number 7 G R and a finite interval [— /,0), / >

0, on the real axis. By an asymptotic type associated with the weight datum w is
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meant any collection as = ( z μ J μ , Σ μ ) μ = 1 M , where zμ are complex numbers in the
strip — 7 - I < ζsz < —7, j μ are non-negative integers, and Σ μ are finite-dimensional
subspaces of C°°(XV) 0 Vv. For simplicity we ignore the dependence of 'as' on the
vector bundle V, e.g. in notation.

DEFINITION 7.1. The rank of an asymptotic type as = ( z μ , j μ , Σ μ ) .,_ M is
defined to be

M

rank as = ^ (jμ + 1) dim c Σ μ .
μ=l

If u is a section of V in a punctured neighbourhood of the point v, then we write
as(u,v) € as if u - J]JLi ΣJ4o ^ ( l o g r ^ ' c ^ ί x ) modulo Hs^l(O, V), for some
c^j G Σ^ and some neighbourhood O of υ. To deal with such sections, we invoke
a concept of weighted Sobolev spaces with asymptotics on a manifold with conical
points.

Given an asymptotic type as = ( z μ , j μ , Σ μ ) .,_ M , we denote by Aas the finite-
dimensional space spanned by the functions

with cμj G Σ μ and ω a cut-off function for the point v. We can certainly assume that ω
is supported in a sufficiently small neighbourhood O of υ, and so *4as can be identified
within the space H™£p(O,V). Obviously, the dimension of ΛBS is equal to the rank
of the asymptotic type 'as'.

Now, we assign a weight datum Wi = (7$, [— /i,0)) to every conical point v^ ί —
1, . . . ,/ . Let asi be an asymptotic type associated with Wi and let as = (asi, . . . , asj).
For every i — 1, . . . ,/ , we fix a cut-off function ωι close to v^ such that supply/ Π
supply// — 0 unless i' — i" . Then, the sum Λas = Λasι Θ . . . Θ v4aSι is direct because
the spaces involved are supported by disjoint sets, the space ^4aSi relying on u^. We set

(7.1) Hξ«(M, V) = H°«+l(M, V) Θ As,

where / = (/i, . . . , //). We endow H^Ί(M, V) with the topology of the direct sum of
two normed spaces.

This definition of a space with asymptotics is slightly different from that in the
cone theory (cf. Schulze [18, 1.1.2]). However, (7.1) seems to suit better the purposes
of the present paper.

An elliptic differential operator A G Diffa(V,V) is known to behave properly in
the spaces with asymptotics. Namely, suppose A is elliptic with respect to a weight
tuple 7 G R7 and let as - (asi, . . . , asN) be a tuple of asymptotic types, asi being as-
sociated with a weight datum Wi - (7*, [-/», 0)). Then, there exists a unique tuple as =
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(asi, . . . , asjv) of asymptotic types associated with weight data ύ)i = (7; - α, [— k, 0)),

now for the bundle V, such that the operator A : H^(M, V) ->. Hs~~a'Ί~a(M, V) is

Fredholm and, moreover, u G / P ' 7 ( M , V) and as(Au,Vi) G asi imply as(u,vι) 6 asj.

For more details we refer the reader to Schulze [18, 1.2.2].

The point divisors we consider are of the form δ = p™1 . . . p ^ N , where pv E

singM and as, is an asymptotic type at pv associated with a weight datum wv —

(Cίi — \v>> [— ii/, 0)), the number i being defined by pv — Vi. They are no longer elements

of any natural group generated by points of M.

A divisor δ is said to be non-characteristic for A if σj^(A)(p^^ z) is invertible on

the line i χ _ 7 . , for each v = 1, . . . , N. If such is the case, we define the degree of δ

to be

N

deg δ = VJ (rank as, — rank as,) ,
v=l

as, being chosen for as, as described above.

As mentioned, asymptotic expansion (6.2) is a good substitute for (0.2) in the case

where p is a singular point of M. It is worth pointing out that the definition of deg δ

in this section agrees with (0.3).

We now proceed as we did before. For a point divisor δ = p±Sl . . . p^N , we

introduce two spaces

L(δ,A)={u G tf^7(M\supp<$,V): Au - 0, as(u,p,) G as,},

L(δ-\A')={g e F^c'
α^(M\supp5,V'): A'g - 0,ord(g,p ί /)>l I /-7 i+|+a},

Όrd ' being as in Definition 6.2.

Theorem 7.2. Suppose A is a differential operator on M elliptic "with respect

to a "weight tuple 7 G M7. Then, for each point divisor δ supported on singM and

non-characteristic for A, we have

(7.2) dime L(δ, A) = ind A + deg δ + dimc L(δ~l,Af).

The proof of Theorem 7.2 is completely independent of Theorem 3.1; in fact it is

even simpler in this generality.

Proof. Let the weight tuple 7' = (7^, . . . ,7^) be defined as follows. Pick i =

1, . . . , / . If Vi G supp δ, i.e., Vi = pv for some v = 1, . . . , N, then 7̂  = 7* — lv. If

Vi £ supp (5, then 7̂  = 7 .̂

In a similar way we define the tuple as' = (as'l5 . . . ,as'N) of asymptotic types.

Namely, if Vi = pv for some v = 1, . . . , TV, then as( — as,. Otherwise we put asj = 0,

the corresponding weight interval being empty.
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Set

H! = #a

s;7'(M,n
H* = H£a''1'-a(M,V)

and denote by T the operator HI — »• #2 induced by A.

Since 5 is non-characteristic for A, the operator A is elliptic with respect to the
weight tuple 7'. Hence it follows that T is a Fredholm operator, and so indT —
dim ker T — dim coker T is finite.

It is clear from the definition of the space L(5, A) that L(ί, A) — ker T. Moreover,
a simple verification shows that L(δ~l,Af) coincides with the kernel of the operator
A' : ff-8+α'-^+α(M, V') -> H~S^'(M, V).

We next claim that dim coker T = dimL(5~1, A7). To prove this, it is sufficient to
show, by a familiar argument from functional analysis, that a section / G H^ belongs
to the range of T if and only if / is "orthogonal" to L(δ~l , A') under the pairing

H-8+a-ιf+a(M,V') x Hs-a^'-a(M, V) -> C.

Indeed, let f = Au for some u G H\. Choose a sequence (^ι/)1/=1 2, ^n ^ S m p ( ^

\ singM, V), such that it,, — »• u in the norm of HS'Ί (M, F) . Then,

, /} = (

= lim (0,
—If —»00

= lim {
V —>>00

- 0

for all ^ G # - s + α ' - 7 / + α ( M , F7) satisfying A'g = 0. Hence / is "orthogonal" to

On the other hand, suppose / G H 2 is "orthogonal" to L(δ x, A'). By the above,

L(δ~l,A') coincides with the annihilator of the range of the operator A: HS'Ί (M, V)

-> Hs~a'Ί'-a(M,V). Hence we can assert that there is a section u G H8*(M,V)

such that Aw = /. However, as(f,vι) G as- implies as(u, vi) G as , showing u G HI,

as required.

We have thus proved that dime L(ί, A) — dime ( δ " 1 , A7) — indT. What is left is

to show that ind T = ind A 4- deg δ.

Since

/
deg δ = y ^ (rank as( — rank as7.)

dim ^4as/ - ^ dim ^4ώ/,
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we shall have established the desired equality if we prove the following:

(7.3) ind T = ind A + (dim Aas> - dim A&).

To this end, write

TT TT

H2 = ti

and let

T =
T2ι T 2 2

be the corresponding splitting of the operator T. Obviously, T U = A Moreover,
T2ι = 0 since the restriction of T to HS^'(M, V) operates to Hs-a^'~a(M, V).

Were T i 2 zero, this allow us to conclude immediately that

(7.4) indT = indTn + indT 2 2 ,

which is just (7.3) because the index of T 2 2 : Aas

f —>• Aas

f is equal to the difference
dim Aas> — d im Aas

f -
To derive equality (7.4) in the general case, we make use of the fact that T U = A

is an elliptic, and consequently Fredholm, operator. Fix a parametrix Tj^1 for T U , i.e.,
the inverse modulo compact operators. Then

0 \ m ( 1 -Γf^Γia \ = / T U 0
I I r\ m m rτ — , -

11 ^121 \ 0 1 \ 0 T22- T2lTΰlTl

holds modulo compact operators. As the first and the third factors on the left are
isomorphisms, (7.4) follows (cf. Proposition 1.2.32 in Schulze [19]). This completes
the proof. Π

8. Spectrum of the Conormal Symbol at a Regular Point

When comparing (6.5) and (0.3), one may ask whether the spectrum of the conor-
mal symbol of A at an artificial conical point is of a particular structure. The program
be to identify the artificial conical points, via the spectrum of the conormal symbol,
within a larger class of conical points which still bear the same property of the spec-
trum. Rather than discuss this in full generality, let us look at the spectrum of the
conormal symbol of geometric differential operators.

Suppose that M is a two-dimensional manifold with conical singularities and A G
Diff1(V, V) is an elliptic differential operator of geometric nature on M. Let p be a
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point on the smooth part of M. We will restrict our attention to a coordinate neigh-

bourhood O of p over which both V and V are trivial. Hence, we can identify A with

a matrix of scalar partial differential operators in O, namely A = Σ ι α | < ι Aa(y)Da,

where Aa are matrices of smooth functions in O. We blow up M at p by introducing

polar coordinates y — π(r, φ) with centre at p, i.e., π(r, φ) = p + r (cos φ, sin φ), where

r E [0,ε), φ G [0,2π). The pull-back of the differential operator A under this change

of coordinates is

π^A = y^ π* Aa I cos u?Z)r sin φD^ } ( sin φDr -\— cos φD^ \
*-^ \ r J \ r ψ I

|α|<l V / ^ /

whence

H=ι

, (— sin φ, cos </?)) Z)^ + σ}p(A) (p, (cos <p, sin φ)) z,

for z G C

The spectrum of the conormal symbol at the point p is easily seen to consist of all

z £ C such that the operator σM(A)(p,z) : C°°(§l)k -» C00^1)* is not invertible, fe

being the rank of V. Here, we identify C°°($l) with the space of all C°° functions on

the real axis, periodic with period 2π. Since the transpose is induced by the differential

operator

(σM(A)(p,z))'u

= -Dφ (σj:(A) (p, (- sin φ, cos φ)) u) + σ^(A) (p, (cos φ, sin φ)) zu

= -σ]p(A} (p, (- sin φ, cos φ)) Dφ + σ^(A) (p, (cos φ, sin φ)) (z - ϊ)u

we are reduced to looking for complex values z such that the problem

(8.1)

{ σ ^ , (— sin φ, cos φ]) Dφu = —z σ^(A) (p, (cos y?, sin y?)) w, y? G R,

u(<£ + 2π) = w(y?), φ GR

has a non-trivial solution in C 0 0 ^ 1 ) * ' .

To do this, we make use of the ellipticity of A at the point p, which enables us to

conclude that the matrix σ^(A) (p,η) is invertible on the unit circle in the cotangent

plane T*M. Set

, (cos y?, sin y?));
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it follows that M(φ) is a (k x /c)-matrix of C°° functions on R, periodic with period π.

If each two values of M(φ) on the interval (0, π) commute, then the general solution

of the differential equation in (8.1) is known to be

We next substitute this solution u into the periodicity condition of (8.1). As

this gives

for all φ G R, Ik being the identity (k x /c)-matrix. In particular, we deduce that 1 is

an eigenvalue of the matrix

( 8.2) e-*z

for we require non-trivial solutions to (8.1).

Conversely, if 1 is an eigenvalue of matrix (8.2) and each two values of M(φ) on

the interval (0,π) commute, then problem (8.1) has non-trivial solutions.

We now proceed with the study of matrix (8.2). The following properties of the

matrix M(φ) are straightforward:

M(φ+ϊ)M(ψ) = -4,
M'(φ) =

It follows from any one of these properties that M(φ) is constant, i.e., independent of

φ, if and only if it satisfies (M(φ))2 = -Ik. Such is the case for classical differential

operators associated to a Riemannian metric.

Indeed, notice that the principal symbol of a geometric differential operator A sat-

isfies

(σ1r(A)(p,η)}*σ1r(A)(p,η) = \η\2Ik, η € T M,

which is equivalent to the system of equalities

(Aa(p))* Aβ(p) + (A0(p))f Aa(p) = 2δa0Ik, \a\ = \β\ = 1,

δaβ being the Kronecker delta. In particular, the inverse of a^p(A)(p, η) coincides with

the adjoint (σ^(A)(p, 77))*, for η G S1. Now, an easy computation shows that

M(φ) = (Ao,ι(p))* Aι,o(p), Ψ € R,



THE RIEMANN-ROCH THEOREM 1043

as required.

Returning to (8.2), we expand the exponential function of a matrix as power series.

Since M is independent of φ and satisfies M 2 — — 7^, we obtain

2 + 1 M

= cos(—2πίz) Ik + sin(—2πiz) M,

for φ G M. Consequently, in order that 1 be an eigenvalue of matrix (8.2), it is neces-

sary and sufficient that z = 0, ±z,

We have thus proved that specσχ(A)(p, •) = iZ which is symmetric relative to

each line δ z = i or ^sz — i + | , where i G Z.

In the general case the spectrum of a>t(yl)(p, •) is among the roots of the charac-

teristic equality

(8.3) d

Our last example demonstrates rather strikingly that even in the general case it is

to be expected that the spectrum coincides with the set of all integers on the imaginary

axis.

EXAMPLE 8.1. Suppose A is a scalar elliptic differential operator of order 1, i.e.,

k = 1. Then, σ]^(A)(p, η) — ηι +cηz up to a non-zero complex factor, where c — a + ib

is a complex number with b / 0. It follows that

__, x cosφ + csiuφ
M(φ) = — sin φ + c cos φ

which is no longer constant in φ. We write this as M(φ) — 3lM(φ) + i^sM(φ), with

(α2 + b2 - 1) sin 2φ + 2α cos 2y?
5p M ( . _

(Ψ) ~ _ _
(α2 + 62 - 1) cosϊφ - 2asm2φ + (a2 + 62 -f 1) '

Γ\Ί

(α2 + b2 - 1) cos2<^ - 2asm2φ + (α2 + 62 + 1) '

Since

-j r\

= - - — log ((α2 + 62 - 1) cos2<^ - 2asm2φ + (α2 + b2 + 1))
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and the expression under the 'log' sign is positive for all φ € [0,π], we conclude that

/ ^M(θ)dθ = 0.
Jo

On the other hand,

/»τ

J0

i r\A\

(rι2ι I f\2ι 1 \ r»/-vo A) OΓί CJTΠ /(n —I— I ΠHi |^ L/ Λ. i v^UO Y/ ZiLt o l l l Δiψ |^ I Lt/

0 0 - 6 d ί

/ - o c ( * - α ) 2 + &2

= — sgnb π,

as is easy to check. Thus, the integral of M(φ) is an integer multiple of πi while the

matrix M(ψ) itself is of rather general nature. Therefore, equation (8.3) becomes

e~2πsgnbz _ ^ _ Q

showing specσ>ί(A)(p, -) = iZ. Π

9. Applications

We will touch only a direct consequence of Theorems 3.1, 6.3 and 7.2 along the

classical line.

Corollary 9.1 (Riemann inequality).

(9.1) dime L(δ, A) > ind A + deg δ.

In particular, if ind A -f degδ > 0, then the space L(δ,A) is non-trivial. So this

space will be always non-trivial if we fix the orders of "zeros" and allow "poles" of

sufficiently high order to make the degree deg δ sufficiently large. For example, in

the setting of Section 6, we can fix any set of points p i , . . . ,PN-I and any weights

m i , . . . , mτv-1, but take THN sufficiently large to arrive at dime L(ί, A) > 0.

In case A bears a unique continuation property, even the equality in (9.1) can be

claimed if one has a sufficiently large number of "poles."

We finish the paper by showing a particular case of the Riemann-Roch Theorem

for geometric differential operators on a two-dimensional manifold with conical points.

Close to a conical point υ, such an operator takes the form

A = - (αι(r, φ) rDr + α0,ι(r, φ) Dφ + α0,o(r, φ))
r
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in polar coordinates (r, φ) G [0, 1) x S1 with centre υ, the coefficients being smooth up

to r = 0 (cf. (3.1)). Moreover, the higher-order coefficients fulfil the 'Dirac quantisa-

tion' relations α j " 1 ^ , ! = —a^\aι at the conical point (i.e., for r = 0). For simplicity,

we impose an additional condition that the lower-order term αo,o vanishes at v. Then

just in the same way as in Section 8 we arrive at the equality specσjvί(A)(v, •) = iZ,

for each conical point υ G M. Since the rank of any pole z in the spectrum of

(vj -) is equal to fc, k being the rank of the bundle V, formula (6.5) becomes

= sgn nv + - +

1

= fcsgn m l/ + - + 7 i N

if pv — Vi, where N is the number of integers in the interval (— 7i,ra,, + | ) . We next

observe that both — 7̂  and mv + \ are not integer by assumption, since otherwise either

of Γ_ 7 ί and Γ m ι / + ι meets the spectrum of σ^(A)(vi, •). Therefore, TV coincides with

the absolute value of \mv + ^] — [—7*]. In what follows we assume that 7$ G (—1,0)

whence

= fc[m,/ + - ] .

This coincides with the contribution of pv given after Theorem 6.3 as if pv were a point

on the smooth part of M. Thus, in the case of geometric operators the contributions

of the points pv G supp δ lying on the smooth part and on the singular part of M are

evaluated by the same formula. Hence it follows that, for any divisor δ = p™1 . . . p™N

on M, the degree of δ is equal to

N

Moreover, the index of the operator A: HS^(M,V] —» Hs 1 ) 7 l(M,V) is indepen-

dent of 7 G R7, provided that 7; G (-1,0) (cf. Lemma 3.2). It fact, it is given by

indA = / AS (A),

where 5*M is the cosphere bundle of M and AS (A) is the Atiyah-Singer form of

A suitably interpreted (see the work of Fedosov and the authors [4] for more details).
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Thus, we arrive at the following consequence of Theorem 6.3. Set

u = 0, ord(u,P l /) > - m , } ,

,V'): A'g - 0, ord(g,p,) > m j .

Corollary 9.2. Let Abe a geometric operator as above and let 7 £ E1 be such
that 7i 6 (-1, 0). 77ίέ?n, /or eαc/z pomί ώ'vwβr 5 = p™1 . . .p™N with m^ g Z + ±, we
have

dimcL(δ,A)= ί AS (A) + degtf + dimcLOΓ1, A'),
JS*M

deg<5 being given by (9.2).

It is worth mentioning that this corollary is the most immediate generalisation of
the classical Riemann-Roch Theorem to the case of surfaces with singularities.

For a deeper discussion of applications of the Riemann-Roch Theorem we refer
the reader to Gromov and Shubin [6].
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