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1. Introduction

We will consider stochastic differential games for the system governed by
stochastic partial differential equation (1.1),

(1.1) dX(8) = (AX () + B(X(2), Y (t), Z(t))dt + dM(t), 0<t<T,

with initial condition X(0)=n (€ H),

where A is a uniformly elliptic differential operator, M a noise and Y and Z are
admissible controls of players. The pay-off J is given by (1.2),

(1.2) J(t,m;Y,Z) = E/t h(X(s),Y (s), Z(s))ds + q(X(t)), 0<t<T.

In our game, player I controls Y and wishes to maximize J and. player II
controls Z and tries to minimize J. Using upper and lower semi-discrete approxi-
mations, we showed in [7] that their limit functions provided the unique viscosity
solutions of associated Isaacs equations respectively. But it was a problem whether
these limit functions coincide with the upper and lower value functions of game
respectively.  The aim of this paper is to prove that the value functions are also
unique viscosity solutions of associated Isaacs equations (see Theorem 4.2). So the
upper (resp. lower) value function coincides with the upper (resp. lower) limit
function.

Let Wy, k=1,2,..., be independent 1-dimensional Brownian motions. D
denotes a bounded and convex open domain of R™ with smooth boundary. Let
Y and Z be compact convex subsets of L2(D, RL) and L?(D, RM) respectively.
A process taking values in Y (resp.Z) is called an admissible control of player I
(resp. II), if it is F;-progressively measurable and right.continuous paths with left
limits, where F} is the o-field generated by { Wi(s), s<t, k = 1,2,-- }.  Let us
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put H* = HE(D), ||- | = its norm and H = H%(= L¥(D)), ||- || = || - lo for
simplicity.

When players I and II apply admissible controls Y and Z respectively, the
system X evolves according to the stochastic differential equation (1.1) on H and
the pay-off J is given by (1.2).  We assume

0 n . o
AC z” . aw zJ(«'l') a:f + 21:1 rl(:L') aai _ C(.’L‘)C, Ce Hl,

B: HxY xZ — H, and dM(t) is an H valued colored noise having
the form,  dM(t) = Y ;o v/mrerdWi(t), with Y mi(=m put) < oco and
an orthonormal base e (¢ C§°(D)), k=1,2,---. Precise formulations and
assumptions are given in Section 2.

Y (resp.Z) denotes the set of admissible controls of player I (resp. II). We
call a non-anticipative mapping a: Z — Y (resp.y : Y — Z) an admissible
strategy of player I (resp. II). Denoting by A (resp. R) the set of admissible
strategies of player I (resp. II), we define upper and lower value functions ( in
Elliott-Kalton sense) as follows,

(1.3)  upper value function: U(t,n) = sup me J(t,n;aZ,72),
aEA

(1.4) lower wvalue function: u(t,n)= inf sup J(¢t,7n;Y,7Y).

YER vey
Thus our main step is to show that these value functions are unique viscosity
solutions of the associated Isaacs equations (1.5) and (1.6) respectively (Theorem
4.2), employing similar arguments as [4], with B-norm (see (2.1)).

%—Itj(t,n) —(A*oU(t,n),m) — igg sup ((OU(t,m),B(n,y,2)) + h(n,y, 2))
2 yeY

1
(1.5) - §trace S8*U(t,n) =0, 0<t<T, ne€eH,
with initial condition U@ =gq
Ou « .
= (&m) — (A*Ou(t,n),n) — sup inf ((Ou(t,n),B(n,y,2)) + h(n,y,2))
1
(1.6) - §trace So*u(t,n) =0, 0<t<T, ne€H,

with initial condition u(0) =gq
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where A*= adjoint operator of A, S = linear operator on H defined by Se, =
mrer, k = 1,2,---, O = Fréchet derivative on H and (-,-) = duality pair
between H~! and H'.

As an application of our results, we will study small noise asymptotics of value
functions of risk sensitive control. Regarding a controller as player II, we consider
the following system £° and the exponential criterion [J¢,

des (t) = (AE°(t) +6(£°(2), Z(t))dt +VedM(t), 0<t<T,
with initial condition &) =q
and .
(i 2) = Besa [ 1) ds)

The value function W¢ and its logarithmic transformation v* are defined by
€ —_ 4 € .
Wet,n) = juf J°(tn;2),

and
ve(t,m) = elogWe(t,m).

Then, v¢ is the unique viscosity solution of Isaacs equation (1.7), by the Legendre
transformation,

% tm) — (40v(tm),m) — ind (Ow(t,m), n,2)) — )

~ sup((3v(t,m), S¢) — 1(S¢,0)) — Etrace S8w(t,n) =0,
CeH 2 2

(1.7) 0<t<T, neH,

with initial condition v(0) =0.

In [6] we proved that the small noise limit of v° exists and its limit v becomes the
unique viscosity solution of (1.7) with e=0. Moreover it coincides with the value
function of deterministic differential game on H. In this paper, we will construct
the associated game of (1.7) without passing to small noise limit, using our results.
So we can characterize v° as the upper value of the stochastic differential game
on H (Theorem 5.2). This yields the speed of convergence of v°, as ¢ tends to
0,(Theorem 5.3),

|ve(t,n) — v(t,n)| < const.\/e.

The paper is organized as follows. Section 2 is preliminaries, where we give
precise formulations and assumptions and also recall some results on stochastic
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differential equations on H, for the later use. Sectin 3 is devoted to study
the properties of value functions. The relations between value functions and
Isaacs equations are investigated in Section 4, using the notion of viscosity solution.
Section 5 deals with risk sensitive control from the point of view of stochastic
differential games.

2. Preliminaries

Let (Q,F,Fy,P) be a canonical coodinate space with a standard Wiener
measure P, namely § is the path space {w € C([0,T'], RN), w(0) = 0} endowed
with the usual product topology, where N denotes the set of natural numbers.
Hence it follows that the coordinate functions Wi (t,w) = wk(t), k = 1,2,---,
are independent 1-dimensional Brownian motions on 2.  Fy denotes the o-field
generated by {wi(s),s <0, k =1,2,---} and F = Fr. Ocasionally we use
the probability space (Q, F, Fy, P;), replacing T by t.  Using the stopped path
w; () = w(s), s € [0,t], and the shifted path w; (s) = w(s +t) — w(t),s €
[0,T —t], we can identify Q@ = Q x Qr_, and P = P, x Pr_, by the
mapping II; : Q= Q x Qr_, i(w) = (w;,w;).

Let us assume the conditions (A1)~(A3) on A,

(A1).  a¥ and r® are bounded and continuous up to third derivatives
(A2). nxn matrix (a¥(z)) is uniformly positive definite, say

' AT @)tity > Mot for t=(t,-tn), with >0
ij=
(A3). ¢(-) is non-negative and continuous.

Then, from (A2) and (A3), it follows that —A is coercive, say

L

(A C) > A[ClIF = liCl?,  with a positive X.

The operator B: H — H? defined by

_ n ;0 -1 .
(21) B=[I-(A- Zi:l T Bxi) ] with boundary value 0,

is a compact operator on H and satisfies the structural condition

(~A"B4, ) > S II6l> ~ pl 91

with a constant p > 0, where | - |p is called B-norm given by |¢|% = (B¢, ¢).
When H carries B-norm, we denote H by Hp. We will prove the strucural
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condition. Putting

n .0 B
L:A—Zizlra—xi and ¢ = Bg,

we have P
(~A"Bo,¢) = I8l — (615 +3__ (5—("¥),¢)

and 1
| the 3rd term | < 5“(}5“2 + k|[¥||3, with a constant k.

Since (A2) and (A3) derive
1615 = (¥, (I = L)) 2 [[9I1* + XollO¥l* > min.(1,20)[I¥I]3,

we can conclude the structural condition.
Moreover we assume (A4) ~ (A6), besides (A1) ~ (A3), putting | - |; = norm
of Y and |- |2 = norm of Z.

(A4). B is bounded and Lipshitz continuous, say
B= sup I8¢y, 2)ll and (18(C,,2) =BGy, )l < LUIC—Cll+ T =y +] 2= 2]2)
Yz

(A5). h is bounded and Lipshitz continuous, say

h=sup|h((,y,2)| and |h((,§,2) —h(C,y,2) | SLIC—Cll+1F—yh+2—2]2)

Cyz

(A6). q is bounded and B-Lipshitz continuous, say

q= sgplq(é) | and |q({) - q(¢)| < &)I¢ —¢ll5-

Denoting by M?2(0,T; H') the subset of L?((0,T) x Q; H') consisting of F;
-progressively measurable processes, we will define a solution of (1.1).

DEFINITION 2.1. X € M? (0,T;H") is called a solution of (1.1), if X €
C([0,T]; H) a.s. and for any t and smooth function ¢ with support in D,

(X(t),0) = (n,¢)+/0 (AX(s),¢) + (B(X(s),Y(s), Z(5)), p)ds + (M (t), p),

with probability 1.

Now we have
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Proposition 2.1. There is a unique solution X (-;7,Y, Z) of (1.1) having
the following properties

T
E(fggllX(t;n,Y, Z)||2‘+/ X (s;m,Y, 2)ll3ds) < K1(llnl* + 1)
< 0
and
T
E(fgng(t;n,Y, 2) |5 +/ 1X(s5m,Y, Z)|Pds) < Ki(In |5 +1)
< 0
where K is independent of Y and Z.

Proof.  Since we can see the first inequality in [8, Theorem 4 of Section 3],
we will only show the second one. Putting X (t) = X (t;n,Y, Z), we have, by the
structural condition,

d| X (1) 5 2BX(1),dX (1)) +|dX (?) [}

(“IX®OIF + @2p+ 1| X (@) [5 + k)dt + 2(BX (1), dM (1)),

IN

where k = m + 2. Hence integrating from 0 to ¢, we get the following three

evaluations,
Ee~ PN X (1) 5 < |n % + Kt

t t )
/ BIIX(s)|2ds < |05 + Kt + (2p+ 1) / B| X(s) [4ds
0 0
and

t 0
sup | X(6)[3 < |03 +kt + (2p + 1) / | X(s) 4ds + 2sup / (BX(s), dM(s)).
6<t 0 <t Jo

Recalling the definition of dM and noting

E / (BX (), dM(s))* < m / " BIBX(5)|ds, < m / " BIX(s) s,

we see, from a martingale inequality
9
Esup [ (BX(:),dM() < k(1 + |nls) < k(2 + [n[})
<t Jo

Combining the above calculations together, we can conclude the second inequality.
O

Since the dynamics of X (¢;n,Y, Z) — X (¢;#,Y, Z) is independent of M(-), we
see
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Proposition 2.2. (see Propositions 2.2 and 2.3 in [7]). With probability
1, (2.2),(2.3) and (2.4) hold,

T
sup|| X (t;n,Y,2Z) — X(t;7,Y, Z)|)? +/ X (t;n,Y,2) - X(t;5,Y,2)|3 ds
t<T 0

(2.2) < Kalln — 7l)*

T
SuplX(t”%Y,Z)-X(t;ﬁaYaZ) |23+/ ”X(t;T],Y,Z)"X(t;ﬁ,Y,Z)“2d3
t<T 0

(2.3) < Ka|n—1jl%,
with K5 independent of Y, Z and w € Q,

| X(t;n,Y,2) - X(t;n,Y,2) |5 < | X(t;n,Y,2) - X(t;n,Y,2)|

t
(2.4) < Ks / (Y (s) = V(5) 2+ Z(s) — Z(s) [2) ds,
0
with K3 independent of , t and w € Q.

For the continuity w.r.to time, we need finer calculations using structural
condition.

Proposition 2.3.

(25  E(X(@;nY,2) - X(s;n,Y,2) [5) < Ka(1+[nl*)| ¢ — 5|

(26)  E(sup|IX(t;n,Y,2) —nll*) < Ka(sup |le** n —n]|* +6),
<6 <6
where K4 is independent of n, Y and Z.

Proof.  Since we see (2.5) in Proposition 2.4 in [7], we will only prove (2.6).
Putting X (t) = X (¢;n,Y, Z) and &(t) = X (t) — e*“n, we have

dé(t) = (AE(t) + B(X (), Y (¢), Z(t))dt + dM (1), for 0<t<T,
with initial condition £(0) = 0.

From the coercive condition, we see

dli¢@®l® 2(€(1), de(t)) + lld(2)]?
Q2(r + DIEDI® + k)dt + 2(E(t), dM (1)),

IN
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with a constant k. Hence we get
Ee 2D |g()|)* < kt

and
t
sup e~ 2+ ¢(6)|? < K8 + 2sup / 2D (¢(s), dM (5)).
<o t<o Jo

Taking the square of both sides, we obtain

t
Esupe™ U tDY£(4)||* < 2k%6% + 8E(sup / e~ 2D (¢(5), dM (s)))2.
t<6 t<6 Jo

Since a martingale inequality derives

E(sup / e g(e), dM(s) < 4y " miE / e 1D (g(s), ei)?ds

0
t<6 Jo 0

0
<am [ B¢,
0
the above calculations yield

Esupe U@ < ki6°,  for 0<6<T.
t<0
Now we complete the proof of (2.6), recalling the definition of (). |

Setting 7(7n,d) = exit time from the ball of radius d centered at 7, and fixing
small 6(n,d) such that

(2.7) 6 < d(38supIe* 1)~ and supllettn -1l < %l,
t<T t<6

where I-I means the operator norm, we get (2.8), by (2.6),
(2.8) P(7(n,d) < s) < Kss*d™* whenever s < 0(n,d),

where K is independent of , d, Y and Z.
3. Value functions
First of all, we define strategies of players.
DEFINITION 3.1. An admissible strategy o (resp. ) of player I (resp. II)

isamappinga: Z—) (resp.y: Y — Z), whichis (B[0,T] x F,B(Y))-—
measurable and non-anticipative, namely

if P(Z(s)=2Z(s)=1 for s<t, then P(aZ(t)=aZ(t)) =1.
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(resp. if P(Y(s)=Y(s))=1 for s<t, then P(Y(t)=~Y(t)) =1).

A (resp. R) denotes the set of admissible strategies of player I (resp.
). Putting w™ = w; and w' = w for simplicity and Z,-(8,wt) =
Z@+t,(w,wt)) for 8 €[0,T—1t], we note that Z,- can be regarded as an
admissible control of player II on Qr_¢, for almost all w™ € Q;. But, it is a
ploblem whether a(Z,-)(f,w™) is measurable w.r.to (f,w™,w™), as Fleming and
Souganidis pointed out [4]. Therefore we introduce some restrictive class where
the measurability holds.

DEFINITION 3.2. ([4]). When a(& A) satisfies the following additional
property (R), we call a an r-strategy of player L.
(R). Forany t€ (0,7) and Z € Z, the mapping: (0,w) — a(Z,-)(8,w™),
is (B[0,T —t] x F,B(Y))-measurable.

A denotes the set of r-strategies of player I. Similarly, we define r-strategy
of player II with their collection denoted by R. Replacing A and R in the
definitions (1.3) and (1.4) by A and R respectively, we define r-value functions.

DEFINITION 3.3.
r-upper value function U(t,n) =sup,ca infzez J(t,n; 0, Z)
r-lower value function u(t,n) =inf,crsupycy J(¢,n;Y,7)
where J(t,m;a,Z) = J(t,n;aZ,Z) and J(t,n;Y,y) = J(t,n;Y,7Y).

From (2.3) and (2.5), we can easily see

Proposition 3.1.

(3.1) | J(t,mY,Z)| < AT+

(3.2) | J(t,m;Y, Z2) — J(s,(;Y, Z2) | < Ke[In — (s + (L +[nl) V]t — 5]

where K is independent of Y and Z.
Hence, both of U(t,n) and wu(t,n) also satisfy (3.1) and (3.2).

Proposition 3.2.
Upper-optimality dynamic programming principle

(3.3)
sup inf E| ’ h(X(s;n,0,Z),0Z(s),Z(s))ds + U(t — 0,X(6;n,0,2))] < U(t,n)
acA ZezZ 0
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Sub-optimality dynamic programming principle
(3.4)

9
inf sup E[/ h(X(s;m,Y,7),Y(s),7Y (s))ds +u(t — 6, X (6;n,Y,7))] > u(t,n)
Y€ERyecy 0

Proof. Using B-norm, we can apply the standard method because of condition
(R). So, we only give an outline for (3.3), since (3.4) is proved in a similar way.

We set W (t,n) = the right hand side of (3.3). For € >0, thereis & € A
such that

W(t,n) < E[/Oe h(X(s;n, &, Z),aZ(s), Z(s))ds + U(t - 0, X (0;n,4,2)) | + ¢

(3.5) for any Z € Z,
On the other hand, there is a¢ € A such that
- < i . ; .
U(t-6,¢) < eréfZJ(t 0, sa¢,2) +¢€

Dividing H = J;2, 4; with B-diam.(4;) < %~ and choosing (; € 4;
arbitrarily, we define o* by

o™ (2)(5,w) = &(2)(s,0)Tj0.0) (5 +ZIA (0:1, 6, Z,07))0;(Zu-)(s — 0, w")

where a; = a¢,, I4 = indicator of set A and w™ = w,, wt = w.

and «; are r-strategies, o* is also r-strategy. Moreover, (3.2) yields

Since &

(36) U(t—97€)SZIEEJ(t_oafia]7z)+3€ fOTfEAJ,
Hence, from (3.5) and (3.6), we see for Z € Z

W(t,n) < E[/Oe hX(s;n,a, Z),0"Z(s), Z(s)) ds

+Y Ia;(X(6;m,07, 2))I(t - 6,X(05m,0", Z);0", Z)] + 5¢
=1

= J(t,p;a*, Z) + 5e.

Since Z is arbitrary,

W(t,n) < jnf J(t,n;0%, Z) +5e <U(t,n) + Se.
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This completes the proof of (3.3). a
4. Isaacs equations

We recall the definition of viscosity solution of Isaacs equations [2], putting

Ft(n,p,Q) = - inf sup[(p, B(n,y,2)) + h(n,y,2)] = %tmce(SQ)
z yeY

and
F~(n,p,Q) = —sup inf [(p, B(n,y,2)) + h(n,y,2)] - 1t?‘ace(SQ)
yeY 2€Z 2

where p € H and @ € L(H) (=the Banach space of bounded linear operators
equipped with the operator norm I-T).

® € C'2((0,T) x H) is called a test function, if
(7). ® is weakly lower semi-continuous and bounded from below, and
(i1). O®(t,n) € H? and both of 8% and A*&® are continuous.

g € C*(H) is called radial, if g(n) = g(||n||]) with § € C?[0,0) increasing
from 0 to oo.

By virtue of (A1)~(A3), there is a constant g > 0 such that

(=AGC) +pllKI? >0 for (e H'.

Hence, —A = —A+ ul is dissipative.  Putting B(n,y,2) = B(n,y,2) + un,
we can replace A and [ in the Isaacs equations (1.5) and (1.6) by A and 3
respectively. Moreover noting

—(A*9%(t,n),n) — inf sup(D(® + g)(t,n), B(n,,2))
z yeY

= —(A*0%(t,n),n) — inf sup(9(® + g)(t,n), B(n,y,2)) — u(dg(n),n),
Z yeyY

we have the definition 4.1, according to [2].

DEFINITION 4.1. V € C([0,T] x H) is called a sub-solution (resp. super-
solution) of (1.5), if V(0,n) = q(n) and the following condition (1) (resp.(2)) holds
for any test function ® and radial function g,

(1). If V —&—g has alocal maximum at (,7) € (0,T) x H, then

;oA

5¢ () — (A"0®(E,9),9) + F (5, 0(2 + 9)(&,9),0*(@ + 9)(t, 7)) < g (Il lnl-

(2). If V+®&+g has alocal minimum at (£,%) € (0,T) x H, then

=57 b )+H(A" O, 0), M)+ FF (1, ~0(2+9) (F, ), —0* (@+9) (£, 1) 2 —nug (A1) lIn]l
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V is called a viscosity solution, if it is both a sub- and super-solution.

Replacing F* by F~, we define a viscosity solution of (1.6). Since our
value functions are B-continuous, local maximum (resp.minimum) can be replaced
by strictly local maximum (resp. minimum) in Definition 4.1,[3].

Theorem 4.1.
(i). U is a super-solution of (1.5), and (ii). u is a sub-solution of (1.6).

Proof. We only prove (i), because (ii) follows in a similar way.

Appealing to the super-optimality (3.3), we employ a routine method.  So,
we only show the outline of proof.

Supose U+ @ +g has a local minimum at (£,7), say

(4.1)

U(E,7) + @(E0) + 9(7) < U(t, ) + @(t,m) +g(n), for [t—1|,|In—7ll <.
For é >0, thereis & >0, such that if |t —#| <& and |[p—7| <& then
(4.2) | ft,n) = FE,9)| <&,

where f=&,g, 22, 0%, 9g, A*0®, 0@, 0%g and |- | means their own norms.

Let us set & = min(4,8) and 7 =exit time form the closed ball of radius &
centered at 1. Putting

)= %_‘f( ) — (A*0®(%,7), ) — %trace S8*(® + g)(¢,7) — u(d9(n),7)

and using (2.8), (4.1), (4.2) and It6’s formula, we obtain
E[U(t - 6,X(8;9,,2)) = U(#,7); 7> 6]

(4.3)

> A6 — B / (@ + 9)(,7), B3, aZ(s), Z(s)))ds] — k1 VB 672 — kalé + 69,

for 9 < 6(A,6), (see (2.7)), where k; and ks, areindependent of  and Z. On
the other hand, (2.8) yields

(4.4)
E[U({-6,X(6;1,a,2)) —Ut,9);7 < 0] > —2(hT + §)P(r < 8) > —k3826~%.

Now, (4.3) and (4.4) together with the super-optimality dynamic programming
principle yield

(4.5)

0 > sup inf E[/ aZ Z(s))ds] + X0 — k4\/_ 672 — ks(é + )0,
€A ZEZ
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where
F(y,z) = h(n,y,2) = (0(® + 9)(¢,9), B(1, y, 2))-
Assume that there is a positive ¢ such that

A+ inf sup F(y,z) > c.
2€Zyey

From Lipshitz continuity of A and (3, it follows that there is A > 0, such that

” Cc . ”
sup | F(y,2) — F(y,2)| < 5, if |2=2|<A.
yeY

Thus dividing Z = U}_,Z; with diam.(Z;) < A and fixing z; € Z; arbitrarily,

we can take y; such that
F(yj,zj) >c— A, j=12,---N.

Let us define é: Z - )Y by

N

azZ(t,w) =Y yilz,(Z(t,w)).

Jj=1

Then, & € A and
9
mfﬂ/nF@Z@ﬁﬂQMﬂz(%—M&
0

ZeZ

Noting (4.5), we thus get

(4.8) ozg—m¢%4-m@+&.
For &, 6 < g and small §, (4.7) contradicts to ¢ > 0. Hence Theorem 4.1,(i)

holds. O

In [7], we constructed the unique viscosity solutions V (resp.v) of (1.5)
(resp. (1.6)), as follows. Putting A =2"NT, N =1,2,---, we call Z(€ Z) a A-step
control, if Z(t) = z for t € [0,A) and Z(t) = Z(kA) for t € [kA,(k + 1)A).
Zn denotes the set of A-step controls of player II. (€ R) is called A-step,
if 7Y € Zy and 4Y(t), t € [0,A), does not depend on Y. Rp denotes their
collection.  Let us define

Vn(t,n) = inf sup J(¢t,n;Y,7y).
YERN YEY
Then, Vy is decreasing and satisfies the evaluations (3.1) and (3.2). Moreover,
the limit function, V(t,n) = limn_o VN (¢, 1), is the unique viscosity solution of
(1.5).  Therefore from the comparison theorem [9], it follows that

U(t,n) > U(t,n) > V(t,n).
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Next we will show the opposite inequality, U(t,n) < V(t,n). Since, for any
a€A and v € Ry, thereexist Y €Y and Z € Zy such that aZ =Y
and 7Y = Z, (see (2.5) in [4]), we get

sup J(t,m;Y,y) > J(t,n;Y,y) = J(t,m e, Z) > inf J(t,m; 0, Z).
Yey ZezZ

Hence, for aﬁy a € A, we have
> i ; .
Vn(t,n) Znelf J(t,n;,2)

Taking supremum w.r.to « and letting /V tend to co, we get the opposite inequality
U(t,n) < V(t,n), which yields U(t,n) = V(t,n). O

Consequently, we obtain the main theorem,

Theorem 4.2. The upper value function U (resp. lower value function
u) is the unique viscosity solution of (1.5) (resp. (1.6)), in Cb([0,T] x Hw) (=
the set of bounded weakly continuous functions).

Collary. Under Isaacs condition, our stochastic differential game has the
value.

Recalling the definitions of value functions, we see

= 1 = i 'Y, > .
Ul(t,n) I}gnwVN(t,n) Velgsz sup, J(t,m;Y,y) > u(t,n)

Hence, if U(t,n) — u(t,n) (= c put) > 0, then for any step strategy (€
U?VOZIRN)7

sup J(t,m;Y,y) > u(t,n) +c.

Yey

Namely, v can not be nearly optimal.
5. Application to sensitive control

Regarding a controller as player II, we will consider the following stochastic
control. For ¢ > 0, when a controller applies an admissible control Z, the
system &° and the pay-off J¢ are given by (5.1) and (5.2) respectively,

(5.1)  dee(t) = (AE5(t) + O(E°(t), Z(t))) dt + JedM(t), 0<t<T,

with initial condition  €°(0) =n (€ H),
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and

(52) Tt 2) = Blexo ;[ 64 d)

where d and f are bounded and Lipshitz continuous.
Let us define the value vunction W€ by

€ —_— 1 € .
We(t,n) = jnf T°(t,m; 2).
Then W¢€ is the unique viscosity solution of Hamilton-Jacobi-Bellman equation
(5.3),

() — (AOW (t,m),m) — inf (OW (1,m), 6(n,2)) — = J ()W (t,7)

(5.3 —Etrace S8*W (t,n) =0, 0<t<T, n€H,
2

with initial condition wW(0)=1.

Hence its logarithmic transformation »°
ve(t,n) = elogWe(t,n)

is the unique viscosity solution of (5.4) in Cy([0,T'] X Hw),

2 t,m) — (A" Bwt, ), ) — ing (Bw(t,m), (0, 2) — ()

(5.4)
—%(Sau(t,n),au(t,n)) - —;—trace S0%v(t,n) =0, 0<t<T, neH,

with initial condition v(0) = 0.

But, (5.4) turns out to be the Isaacs equation (1.7) by Legendre transformation.
Moreover, we showed [6] that the small noise limit of v¢, say v, exists and turns
out to be the unique viscosity solution of (1.7) with € =0, which coincides with
the value function of deterministic differential game on H.

Since H is not compact, we will introduce admissible controls and strategies
of stochastic differential game associated with (1.7) as follows. Putting A =
VS, weset Yy ={AC€ H; |[¢[| < N}. Then Yy is compact.

Replacing Y in previous sections by Yy, we denote the set of admissible
controls and strategies by Yy and An respectively. Let us set

Y=UYN, y=U37N, A=UAN,

N=1 N=1 N=1
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Bn,v,2) = 6n,2) + Ay, k() = ) — Syl

When players I and II apply admissible controls Y and Z respectively, the system
X¢ evolves according to stochastic differential equation,

dXe(t) = (AXE(t) + B(XE(t),Y (t), Z(t))) dt + \VedM(t), 0<t<T,

with initial condition  X°(0) =n (€ H),
and the pay-off J¢ is defined by

t
FtnY.2) =B [ X (50,Y,2),Y(5)ds.
0
Using similar notations as before, we define

Uy (t,n) = sup 1nf J(t, 0, 2)
aG.ANZ

uy(t,n) = inf sup J(t,m;Y,7)
YERYeYN

Then, we have

U®(t,n) = sup 1nf Jo(t,na,Z) = l1m Uy (t,n)
a€AZ

u(t,n) = inf sup Tt m;Y,y) 2 Jm iy (t,7).

From Theorem 4.2, it follows that Uj = uf and they are unique viscosity
solutions of the following Isaacs equation,

2 (t,m) ~ (4°0U (t,m),m) — i (U t,m), 6(n,2)) — £ )

~trace S°U(t,m) — sup ((9U(t,), A<>——||<n) 0, 0<t<T,
CEYN

with initial condition U(0) = 0.
Proposition 5.1. Putting f = supcey | £(C) |, wehave |Ux(t,n)| < ft.

Proof. Since the strategy 0 belongs to An,

€ > i € . —
UN(tan)_Zné%J (t»U,O,Z)Z ft

holds. Noting h(-) < f, we complete the proof. a
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Proposition 5.2.
|U16\7(t)77) _UIE\T(SaC)l §C|77—C|B+f|t—3|

with a constant c, independent of N and e.
Proof. In a similar way as (2.3), we get
T
I en v, 2) - x40, 2P ds < aln - i
0
with ¢; independent of Y, Z, N, ¢ and w € Q. Hence we have
(5.5) fgglva(t,n) = Uxn(t, Q)| <cln—(lz.

Next we evaluate the continuity w.r.to t, using similar arguments as in [1].
For & >0, taking a* = a*(s,n,€) € Ax such that

Ux(s,n) < 21ng JE(s,m; %, Z) + €,
and defining & € Ay by
azZ(0) =a*Z(0) for 6€]0,s), =0 for 0€lsT],
we have

(5.6)
€ _r7€ > i € A — € “ A _AS _f(f — <) — &
UN(t777) UN(Sv'r]) = ZHEIfZJ (tﬂ),a,z) ZHGIfZJ (S,H,G,Z) € Z f(t 3) €.

Choosing & = a(t,n,6) € Ay and Z € Z such that

€ M € P-4 =
UN(t,n) S Zlgfzj (t7n7a7Z) +¢&,

and
. £ L~ € R _z
nf J*(t,m; &, 2) 2 J°(t,m; 4, Z) =€,
we have
€ _ € < : € - 3 € - ~
Un(t,n) — Ux(s,m) < jnf J (t,m; &, Z) Jnf J(s,m;&, 2) + €
(5.7) < JE(t,m; @, Z) — JE(s,m; &, Z) + 26 < flt - 8) + 2€.

Now, Proposition 5.2 follows from (5.5),(5.6) and (5.7).
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Since Ug(t,m) is increasing to U(t,n), as N — oo, Propositions 5.1 and
5.2 yield the following theorem,

Theorem 5.1. As N — oo, Uy isincreasing to U® uniformly on any
bounded set of [0,T'] x H. Moreover, U*® is bounded and B-coninuous and
the unique viscosity solution of (1.7) in Cy([0,T] x Hw).

Recalling that v° is the unique viscosity solution of (1.7), we have

Theorem 5.2. v®* has a min-max expression

£ — : (3 . — €
ve(t,m) = 21€ngII€leJ (t,m, Z) (= U*(t,m)).

For € =0, we define X° J° and U° in a similar way. Then we get by
standard arguments

sup E(||X¢(t;n,Y, Z) — X°(t;m,Y, 2)|1?) < cse
¢<T

with a constant ¢z independent of 7, Y and Z. So, we have

(5.8) |U*(t,n) = U°(t,n) | < ca/e

with a constant ¢4 independent of ¢ and 7. Therefore U® converges to
U° uniformly, as & — 0. Form this fact, it follows that U° is the unique
viscosity solution of (1.7) with & = 0. Consequently U° = v. Now,
(5.8) yields the speed of convergence of v°.

Theorem 5.3. There is a constant ¢ independent of ¢ and 7, such
that
|2 (t,m) — v(t,n)| < cve.
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