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1. Introduction

In this paper, we will study the relationship between infinite dimensional
stochastic differential games (SDG in short) and Isaacs equations on Hilbert spaces.
We deal with SDG for systems governed by some special stochastic partial differen-
tial equations (1.1). We define upper and lower semi-discrete approximations and,
using a negative norm, show that their limits satisfy the dynamic programming
principle [Theorems 3.2 and 3.3] and turn out to be unique viscosity solutions of
associated Isaacs equations [ Theorem 4.1].

For finite dimensional SDG, Fleming and Souganidis [3] proved that lower
and upper value functions, in Elliott-Kalton sense, are unique viscosity solutions
of associated Isaacs equations. Moreover, limit functions of upper and lower semi-
discrete approximations coincide with upper and lower value functions reapectively.
Since in our SDG the relationship between limit functions and value functions is
still open, our results are partial extensions of [3] into an infinite dimensional one.

Let Wi, k=1, 2, --- be independent 1 dimensional Brownian motions, defined
on a probability space (£, F, P), F; denotes the o-field generated by {W(s),s <
t,k = 1,2,---}. Let D be a bounded open domain of R™ with smooth boundary.
We put H = L?(D), || || = its norm and

"9 Y. N
A¢ = 'Zl Fr (a”(m)%) + Z r’(:c)aai —c(z)¢.
1,J=

4,j=1

Let Y and Z be compact convex subsets of L2(D,RY) and L?(D,RM) respec-
tively. Processes taking vales in Y and Z are called admissible controls of players
I and II respectively, if they are Fi-progressively measurable and right continuous
processes with left limits. ) (resp. Z) denotes the set of admissible controls of player
I (resp. IT).

When players I and II apply admissible controls Y (o) and Z(o) respectively,
the system X (o) evolves according to the following stochastic partial differential



16 M. Nisio

equation on a fixed time interval [0, T,

(1.1) dX(t,z) = (AX(t,z) + b(z, X (t,z),Y (¢, z), Z(t,z)))dt + dM (¢, )
0<t<T, z€D,
with intial condition X(0,z) = n(z)
and boundary condition X(t,z) =0, =z € bdy(D)

where a random force M is an H-valued colored noise of the form

M(t,z) =) mier(@)Wilt)
k=1

with a finite sum Y my (= 7 put) and a smooth orthonormal base {ex, k = 1,2,---}
of H. Defining 8;H xY x Z — H by

(1.2) B(¢ y, 2)(x) = b(z, ((2), y(2), 2(x)),

we can regard (1.1) as the stochastic differential equation (1.3) on the Hilbert space

H 2], [5], [7].

(1.3) dX(t) = (AX(t)+ B(X(t),Y (), Z(t)))dt + dM(t), 0<t<T
X(0) =n.

Let us define the pay-off by

J(t,mq,Y,Z) = E / h(X(s), Y (s), Z(5))ds + a(X (£))

where X is a solution of (1.3), (see Definition 2.1).

In our game, player I controls (Y o) and wishes to maximize J(o). On the other
hand, player II controls Z(o) and tries to minimize J(o). L(H) denotes the space of
continuous linear transformations on H with the usual norm (put | |). Defining S €
L(H) by Sex, = mypeg, k = 1,2,---, and introducing semi-discrete approximations,
from above and below,we will show that their limites, V and v, turn out to be
unique viscosity solutions of Isaacs equations (1.4) and (1.5) respectively.

av
z yeY

1
+ h(n,y,2)) — EtraceSGZV(t7 n) =0, 0<t<T, n€H,
V(0)=gq.
ov

5 (hn) = {A%0v(t,m),m) — sup zirelg((av(tm),ﬂ(n, Y,2))

(1.5)
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1
+ h(n,y,2)) — §trace562v(t, n) =0, 0<t<T, neH,
v(0) = gq.

where 8 = Fréchet derivative, A* = adjoint of A and (, ) = duality pair between
H~! and H}(D).

Section 2 is devoted to study of properties of solutions of (1.3). In section
3, we introduce semi-discrete approximation and show the dynamic programming
principle for limit functions. Isaacs equations will be treated in section 4.

2. Preliminaries

Let us assume the following conditions (A1)~ (A6),
(Al)  a¥ and ¢ are in C3(D)
(A2)  n xn matrix (a¥/(z)) is uniformly positive definite, say,

n
> af(z)tit; > Noft]?  for t = (t1,+-,tn) €R", with o > 0
i,j=1

(A3) c(o) is in C(D)

(Ad)  infacpe(z) > S0, sup,cp [r(2)] /4%

(AS) b; D x R x RY x RM — R! is bounded and Lipschitz continuous
(A6) h;H x Y x Z — R* is bounded and Lipshitz continuous, say

h = sup |h(¢,y,2)| and |h(¢,y, 2) — h(C,§, 2)| < £{JIC = ¢l + [y — Gl + |2 — 2|2}

Cyz

where | |; and | |, are norms in Y and Z respectively. Put H* = Sobolev space
HE(D) and || ||, = its norm. The operator A can be regarded as a linear mapping
H' — H~1 satisfying the coercive condition,

@1 (—A¢,¢) 2 All¢ll,* >0 for ¢ e H!

with a positive constant A\, by (A2) and (A4). Moreover 3 of (1.2) is bounded and
Lipshitz continuous, by (AS5) say

B = sup “ﬂ(C,yﬁz)“

Cyz

and [8(¢,y,2) = B9, ) < p{lI¢ = Cll + |y — Gl + |2 — 2|2}

Denoting by M?(0,T; H') the subset of L%([0,7] x §; H') consisting of F-
progressively measurable processes, we will define a solution of (1.3).

DEFINITION 2.1. X € M?(0,T; H') is called a solution of (1.3), if X €
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C([0,T); H) a.s. and, for any t and smooth function ¢ with support in D,

(X(t),0) = (TI,¢>+/0<AX(8)»¢>+(ﬂ(X(S),Y(S),Z(S))@)dSJr<M(t)7¢>» a.s.

Let us show the outline of proof of unique existence of solution, using the usual
successive approximation. Since M(t) is a continuous martingale ([2, Proposition
3.5]), we can get the unique solution X,, n = 1,2,---, of the following stochastic
differential equation on H, putting Xo(t) = 0,

dXn(t) = (AX,(t) + B(Xne1(t), Y (£), Z()))dt +dM(t), 0<t<T
X,(0)=n (€H)

with the following evaluation
2 T 2 2, A
B (sup a0l + [ 1Xa(ly dt ) < Kol + BT + mT)
< 0

where K is independent of n ([7, Theorem 4 in § 3.1]). On the other hand, (2.1) and
Lipshitz continuity of 3 derive

const.

I Xns1(t) = X (@)l < 1% (8)1®

n!

and

s const. [*°
| 1) = Xate)l e < 2 [ 10,2

Therefore we have
oo T
Z (SUP [ Xn+1(t) — Xn(O)]l +/ [Xn41(t) = Xn(@)ll, dt | <oo aus.
n=1 t<T 0

So, X,(t) converges uniformly in t and its limit X (¢) turns out to be a solution.
The uniqueness is also proved by the routine.

Proposition 2.1. There is a unique solution X( ;n,Y,Z) of (1.3) having the
following property

T
(2.2) E (supllX(t;n, Y, 2)| +/ X (s;m, Y, 2)||, dS)
t<T 0

< Ki(lnll* + B°T% + mT) (< Ka(lInl* + 1) say)
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where K1 and K, are independent of Y and Z.
The operator B; H — H? defined by

n -1
B=|I- (A — Zri (,ﬁ ):l with boundary value 0
i=1 g

is a compact operator on H. Moreover, A*B is a bounded operator on H and the
following structural condition holds,

" 1
(~4"Bg,¢) > 5 4] —plgl5’
with a constant p > 0, where IqﬁlB2 = (B¢, ¢).
Since the dynamics of X (t;n,Y,Z) — X (¢;7,Y,Z) does not depend on the
random noise M (o), we can see the following propositions, employing standard
arguments.

Proposition 2.2 ([6, Theorems 1 and 2]).  With probability 1

(2.3) sup 1X(t;n,Y,Z2) - X(t;7,Y,Z)|| < Ks|n— 17|

T
(2.4) sup|X(5m,Y, Z) - X(6:,Y, Z)} + / 1X(5:0, Y, 2) — X (s;7,Y, 2)|” ds
t<T 0
< Kyn-— 77|)32

hold, where K3 and K, are independent of Y, Z and w € Q). Moreover the solution
depends on admissible controls continuously.

Proposition 2.3. With probability 1
L. 2 L2
@5 |XtnY,2)- X0V, 2)| < |X@n.Y,2) - X(t0.¥.2)|
t - 2 . 2
< K5/ 'Y(s) - Y(S)L + ‘Z(s) - Z(s))2 ds
0
holds, with a constant Ky independent of n,t and w € Q.

Next we will study the continuity w.r.to time of X (t) = X(¢;7,Y, Z). For fixed
s, we have

41X (1) ~ X ()] = dX(0), BEX(2) — X(s)) + 5 [4X(0) 5”
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= ((X(t) — X(s), A"B(X(t) — X(s))) + (X(s), A"B(X(t) — X(s)))

HBOXW, Y (0), 2)), BX (1) = X () + 5 Yo |e432) dt
+Y_ Vmyle, dB(X(t) — X(s)))dWi(t).
Therefore, the structural condition yields

Proposition 2.4. There are two constants K¢ and K, independent of s, n, Y
and Z, such that

E(IX(tn,Y,Z) — X(s;n,Y, Z)|g*/Fs) < Ke(| X (5;m,Y, 2)|? + 1)t — 5]
E(X(t;n,Y,2) - X(s;n,Y, Z)|5%) < K7(nll* + 1)|t — s].

We need a finer evaluation in the case of s = 0. Let us divide (1.3) into two
parts, (2.6) and (2.7)

(2.6) dE(t) = AE(t)dt +dM(t),  £(0) =0
27 d(t) = (AC(t) + B(X (), Y (¢), Z(2))dt,  ¢(0) =n.

Since X (t) is a known process, both equations have unique solutions. Moreover we
have

cw=ctn+ [ =94 B(X (s), Y (s), Z(s))ds.

0

Therefore there is a constant Kg independent of n, Y, Z and w, such that
(2.8) sup [|¢(t) — nl| < sup |le*n — nl| + Ks/36.
t<6 t<6

On the other hand, Ito’s formula says

IE@I? < mt +2 / (€(s), M (s))

by the condition (2.1). Hence

2

t
e < 2m2 +8 ([ eto)am) )
0
Now martingale inequality [4] yields

(2.9) E(sup [[£(t)||*) < Ko6°.
t<é
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Noting X (¢) = £(t) + ¢(¢), we can easily see

E(sup | X (t;1,Y, Z) — n||*) < Kio(sup [le"*n — n||* + 6%)
t<6 t<0

with Ko independent of Y and Z. S__ettirlg T(n,d) = exit time from the ball,
{¢ € H;||¢ — n|| < d}, and fixing small § = 6(n, d) such that

§<d/(30Ks) and supedn— g < %,
t<6 3

we get, by (2.8) and (2.9)

P(r(n,d) <s) = P(§1<1p 1 X(n,Y,Z)—n|| > d)

d ~
<P <sup||§(t)|| > g) < 4Kys?/d* for s<@.
t<s

Proposition 2.5.
P(1(n,d) < s) < Ky18%/d* for s< é(n,d)

with a constant Ky, independent of n, d, Y and 7.

3. Semi-discrete approximation

According to [3], we will define a semi-descretization of game with equi-
partition of [0,T]. An admissible control Y for player I is called A-step, if Y (t) =y
fort € [0,A) withy € Y and Y (s) = Y(kA) for s € [kA, (k+1)A). For A =2-NT,
the set of A-step admissible controls for player I is denoted by Vy. The A-step
admissible control for player II is defined in a similar way and their collection is
denoted by Zy. Hereafter we put A = 27 VT.

DEeFINITION 3.1.
(i)  A-step strategy for player I is a mpping o : Z — Y such that
(1)  «a(Z)(t),t € [0,A), does not depend on Z and t.
(2) if P(Z(s) = Z(s)) = 1 for s € [0,kA), then a(Z)(kA) = a(Z)(kA), as.
fork=1,2,---,2V.
(ii) a3 Z — Y is called an elementary strategy (e-strategy in short) of player I, if
(1)« is non-anticipative, namely “P(Z(s) = Z(s)) = 1 for s < t” implies
P(a(2)(t) = a(2)(t)) =1
(2) for any € > 0, there is an approximate step strategy o, such that

3.1 sup sup Ela(Z)(s) — a(Z)(s)|,® < e.
s<T Z€Z
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For player II, A-step straregy v; )Y — Zn and e-strategy ;) — Z are defined
in a similar way. Ay and A (resp. Ry and R) denote the sets of A-step strategies
and e-strategies of player I (resp. II) respectively.

Proposition 3.1 (See Proof of (2.3) in [3]). Foranyo € Aand~y € Ry, there
existY € Y and Z € Zx such that

a(Z)(t) = f’(t) and fy(f")(t) = Z(t) on [0,T].
Let us set

Q = {¢; H — R', bounded and Lipschitz continuous w. r. to | |,
say ¢=sup |q(n)| and |q(n) — q(7)| < Lg|n — 7lB}.
n

For a given q € Q, the pay-off J satisfies

|J(t,m:9,Y,Z)| < ht +q

(32) |J(t,mq,Y,Z) = J(t, 7,4, Y, Z)| < ex(1 + Lg)In — 71| B

(3.3) |J(t,m:9,Y,Z) — J(s,m¢,Y, Z)| < co(|Imll + 1 + Lg)V/[t — 5]
[J(t,m50,Y,Z) = J(t,m;4,Y, Z)|

t
<@l +LE [ (V) - VO +126) - 27,
0
where c;, i = 1, 2, 3, are independent of t, m ; q, Y and Z, by (2.3)~(2.5).

Putting J(t,m;9,Y,7) = J(t,n;¢,Y,7Y) and J(t,n;9,0,Z) = J(t,m;9,0Z, Z)
for simplicity, we define semi-discrete approximations, Vy and vy, by

Vn(t,n;q) = inf sup J(t,1;q,Y,7)
YERN YEY

un(t,m;q) = sup inf J(t,n;q,a,Z).
(t.mq) aeszez(nq )

From the definitions, we can easily see that Viy (resp. vy) is decreasing (resp.
increasing), as N — oo, and

lim Vi(t,m;q) = inf sup J(t,m;4,Y,7) (= V(t n;q) say)

N—oo YER Yey

li cq) — : . — .

i o (,7;.9) sup Jnf J(t,mq, 2, Z) (=v(t,m;q) say)
Moreover, we have, by (3.2) and (3.3),for N=1,2, ---,

(3.4) VN (t,m;9) = Vn(t,m;9)| < ca(1+ Lg)|n — il
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[V(t,m9) — V(t,7;9) < er(1+ Lg)ln —ils
(3.5) [V (t,m59) — Vv (s,m59)| < ca(lnll +1+ Lg) /|t — s
[V(t,m;9) — V(s,m;9)| < ca(lInll + 1+ Lg)v/It — s|.

Hereafter we will consider Vy and V, because vy and v are treated by similar
methods. Putting

Y(A,m;q,2) = sup J(A,nm;q,Y,2) for z€Z,
Yey

we define S = Sy;Q — @ by
(3.6) Sq(n) = inf ¥(A, 7,4, 2).

Then we have the following proposition, which is useful for the proof of dynamic
programming principle.

Proposition 3.2. For any k and a positive ¢, there exist o« € A and v € Ry
such that

(37) J(kAJI,q, Y”Y) —€ S Squ(n) S J(kA777;q7a7 Z) +e
forany Y €)Y and Ze€ Zy.

Proof. We will apply similar arguments as [3]. For ¢ > 0, we take a positive
6 = 8(c, q) such that
38 |J(Amq,Y,Z)— J(A,7;q,Y,Z)| <c, whenever |n—1|p<$é
and
|J(A,m;q,Y,2) — J(A,m;9,Y,2)| <¢, whenever |z—Z|3<$é
Dividing H = U,%, 4; and Z =J,5,C; with | |p— diam. (4;) < § and

diam. (C,) < 4, we fix n; € A; and 2, € C, arbitrarily. Since there is z* = 2*(1;q)
such that

Y(A,m39,2") < Sq(n) +c
putting z*; = 2*(7,;q), we can see, from (3.8)

(3.9) J(Am;q,Y,2%5) S P(A,n;9,2%5) < Sq(n) +3c for ne A



24 M. Nisto

Since Y is compact and convex, we can take a step admissible control Y}, = Yj¢(q),
say Yj; € Vi with N < m, such that

J(A, 434, Yje, ze) > (A, 539, 2¢) — ¢
Therefore (3.8) again yields
(3.10) J(A,m59,Yje,2) > Y(A,m;9,2) —5¢ for n€A; and z€Cy.

Putting ¢; = S'q, 2*j; = 2*(n;,q:;) and Yji = Yji(g;), we define v € Ry and
a € A as follows,

YY) (s) = ZZ*j,k—llAj (n) for s<A,

J

where 14 = indicator of A, namely v(Y)(s) = 2*; x—1 for n € A;,s < A. Using the
unique solution X (s) = X (s;n,Y,v) on [0, A], we define v(Y') on [A, 2A) by

$) = 2"ik-2la,(X(A) for se[A,20).

Since we have a unique solution X (s) = X(s;7,Y,v) on [0,2A], repeating the same
procedure, we get the following v € Ry on [0, kA).

Y(Y)(s) = I[O,A)(S)Z*p,k—l

k—1 oo
+ ZI[iA,(i+1)A)(S) (Z 2% k—ila; (X(iA))) , for neAp

=1 j=1

Next, putting wy (t) = w(t +8) —w(8) and Yju(w)(s) = Yje k—1-i(w;x ) (s —iA) for
s € [tA, (i 4+ 1)A) and using the same procedure as ~, we define a by (3.11),

(3.11) (Z)(s) = Ijo,a) (s Zyplkl (8)Ic.(Z(0))

k—1 oo L
+ > Tinirna)(8) D> Vie(s)La, (X (iA;n, o, 2))Ic, (Z(iA)),
i=1 j=1¢=1

for ne€ A,

We shall prove that o € A. For a small § = 27PT, p > N, we can take a large
m = m(n, 6), by (2.2), such that

P(X(iA;n, 0, Z))¢ F) <6 for i=1,2,---,Y €)Y, Ze2Z,
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where F' = U;nzl A;. Fixing § € Y arbitrarily, we define an approximate §-step
strategy & by

a(Z)(s) = ILio,s)(8)7 + Ii5,0)(5) ZYpek 11Ic,(Z(0))

=1 Jj=14=1

k—1 m L
+ ZI[,A (i+1)a)( [ZZ X(iAsn, a, 2))Ic, (Z(iA)),

+ilr(X(8im,0,2))]
Then we get
la(Z)(s) —a(Z)(s)lh < 26(T +1)diam.Y".

This concludes « € A.
We will now prove the inequality (3.7).

(3.12) S*q(n) = J(kA,m;4,Y,7)
k-1

= J(ZA’na Qk_i,Y,’)’) - ']((Z+ 1)A777;Qk—i—17y77)'
1=0
Using 7Y € Zx and (3.9), we have
(3.13)  J((i +1)A, 7 qk—i-1,Y;7)

TYAN
<E / R(X (), Y (5),7Y ())ds + (A, X (GA); ges—1,7Y (i)

J(iD,1; gk-i, Y, ) + 5c.
Hence (3.12) and (3.13) yield
S*q(n) — J(kA,m;9,Y,7) > —5ke.
For the right inequality of (3.7), we can see, from (3.6), (3.10) and (3.11)
(3.14) J((G+ 1A, qk—i—1, 2, Z) 2 J(iA, m5qk—i, @, Z) — 5¢
Inserting (3.14) into (3.12), we have
S*q(n) — J(kA,n;q,, Z) < 5ke.

Replacing ¢ with ¢/5k, we complete the proof of Proposition. O
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Now we get
(3.15) inf sup J(kA,n;9,Y,7) < S*q(n)
YERN YEY

< sup inf J(kA,n;q,c,Z).
acA ZeZN

Proposition 3.1 however derives, for any a € A and v € Ry,
i t,m; <Jt,mqaZ
A It mq,0,2) < I m0,0,2)

=J(t,mq,Y,7) < sup J(t,mq,Y,7)

with some Y € Y and Z € Zy. Therefore, for any q € Q,

(3.16) sup lnf J(t,m;q,,Z) < inf sup J(¢,m;q,Y,7)
acAZ YERN YEY

holds. Consequently, both inequalities of (3.15) turn out to be equalities. We have
Vv (kA m;9) = S*q(n).
that means

Theorem 3.1 (Discrete dynamic programming principle for V).

Vn((k+35)A,m;9)

kA
= inf sup E /0 h(X(s),Y(s),7Y(s))ds + Vn(§A, X (kA); q)

YERN Yey

where X (t) = X (t;1,Y,7Y).

Proposition 3.3. As N — oo, Vy( ;q) is decreasing to V( ;q) uniformly on
any bounded set of [0,T] x H.

Proof. For v € R and € > 0, we can take a step strategy 7 (€ Ry say) such
that

sup sup |J(t,n;q,Y,v) — J(t,m;q,Y,7)| < ¢
t<TYEY

by (2.6) and (3.1). Hence we have

sup J(t,m;q,Y,y) > sup J(t,m;q,Y,7) —e > Vn(t,m;q) — €.
Yey Yey
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Therefore, for any t and 7, we can take e-strategy v* = v*(¢,7) and N* = N*(¢,7)
such that

V(t,n;q) > sup J(t,1;¢,Y,7v") —e > Vn(t,m;9) — 2¢
Ye)y
whenever N > N*. Moreover, for a bounded set A of [0,T] x H, there is a finite set
{(ti,m;),%,5 = 1,2,---,m} such that, for any (t,n) € A
i V() — Vn(tanjigl <e N=1,2,--
i V(t,m ) = V(ti,nj59)| <e,

by virtue of (3.4) and (3.5). Hence, putting M = max{N*(¢;n;),7,j =1,---,m}, we
get

(317) V(t7 Ul q) > VM(taﬂ,‘I) —4e for (t’ 7]) €A

Since Vv (t,m; q) is decreasing to V (¢, m; q), (3.17) completes the proof of Proposition.
We are now ready to state the dynamic programming principle. ]

Theorem 3.2.

V(e+sma) = inf sup B [ [ rx®,¥ @700+ Vis, X 010

where X (t) = X (t;n,Y,~Y). Namely

(3.18) V(t+s,m9) =V(t,nV(s,m;9)).

Proof.  First of all, we show (¢, s)-continuity of the right hand side of (3.18).
Recalling (3.5), we have

[V (t,m;V(s,05q)) = V(t,n; V(3,05 9))|

< sup 3u13>]E|V(s,X(t);q) -V(E,X();9)| <ca(l+ Lo+ [Inl)v/Is = 3]
YE €

and

[V (t,mV(5,09)) = V(EmV(5,09)| < cs(1+ Lg + [Inll)y/ It — 2.

Hence it is enough to prove (3.18) for dense points ¢ and s, say ¢t = k2P and
s = j27P. Theorem 3.1 yields

(3.19) Vn(t+s,mq) = Vn(t,n;VN(s,m;q)) for N <p.
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Moreover Proposition 3.3 says that, for £ > 0, there is a large Ny such that

Vn(s,m0) = V(sma)l <e for [l < 2
whenever N > Ng. Therefore
E|Vn(s, X(t;n,Y,2);9) = V(s, X (t;n,Y, Z); q)|
<e+2(hT +q)P (HX(t;n, Y,Z)|| > é)
<e+23(hT + @ K2(1 +|n||>) for N > No.
So we get

(320) |VN(t7n, VN(S>O; q)) - VN(t7n7V(saO,q))|
<e+23(hT + §)Ko(1 + ||n||?>) for N > Np.

Since Vn(t,m; V(s,0;q)) is decreasing to V(t,m;V(s,0;q)), (3.19) and (3.20)
complete the proof of Theorem. ]

Employing similar arguments, we can prove

Theorem 3.3. v( ;q) satisfies the dynamic programming principle,

v(t +s,m;q) = 21613 ZneleE {/0 h(X(6),aZ(0),Z(6))d0 + v(s, X (t);q)| -

We can easily see, from (3.16), the following proposition.
Proposition 3.4. v(t,n;q) < V(t,7;q).

4. Viscosity solutions

We shall define a viscosity solution of the nonlinear equation (4.1) below,
according to Crandall and Lions [1], [8].

¢ € C'%((0,T) x H) is called a test function, if (i) ¢ is weakly lower semi-
continuous and bounded from below and (ii) d¢(t,n) € H? and both of d¢ and
A*3¢ are continuous. g € C?(H) is called radial, if g(n) = (||n||) with § € C?[0, c0)
increasing from 0 to oo.

Let us consider the following equation

ov
(41) 0= a(t, 77) - <A*6V(ta 77), 77) + F(t’ 7, V(t7 U),av(t, 77)7 82V(t7 77))
for t€(0,7), neH, V(0,n)=¥(n),
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where F;[0,T] x H xR x H x L(H) — R is uniformly continuous on any bounded
set.

DErFINITION 4.1. V' € C([0,T]x H) is called a subsolution (resp. super solution)
of (4.1), if V(0,) = ¥(n) and the following condition (i) (resp. (ii)) holds for any
test function ¢ and radial function g,

(i) IfV — ¢ — g has a local maximum at (,7) € (0,T) x H, then

o (60 = (4°06(E,7),7) + F(E,0, V (0,7), 06 + 9)(6,7), 08+ 9)(6,7) <.

(i) If V + ¢+ g has a local minimum at (£,7) € (0,T) x H, then

99 -

— S (6 0) + (A7 99(, 7). )
).~

+ F(tv (t ¢+g)(t )»_82(¢+g)(ia ﬁ)) 2 0.

V is called a viscosity solution, if it is both a subsolution and a super solution.
This section is devoted to the proof of Theorem 4.1.

Theorem 4.1. V( ;q) is the unique viscosity solution of Isaacs equation (1.4),
in the set of bounded and weakly continuous functions.

Proof. Suppose that V-¢-g has a local maximum at (£,7) € (0,T) x H, say

42 V(7)o 0) - g(@) > V(t,n) — é(t,n) —g(n) for (t,n) €A
where A = {(t,n); [t—£| < 6* and ||n—7j|| < 6*}. Moreover, for & > 0, there is 6 > 0,

such that

|fit,m) — fi(E,A)| <é  for f1=¢a%ag

[ f2(t,n) — fa(t, )| <€ for fo =8¢, A*0¢,0g
|fa(t,m) — fa(, )| <€  for fz=08%¢,d%,
whenever |t — | < 6 and || — 7| < é.
First of all, we evaluate E[V (i - 0,X(6);9) - V(t,%);q)], where X(0) =

X(0;9,Y,7Y). Let us set § = min(6*,6) and 7 = exit time from the closed ball
with center 7 and radius 6. Applying (4.2) and Ito’s formula, we get, for 8 < ¢,

(4.3) E(V(-6,X(0);q) — V(E,99);7 > 0)
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0
SE/O %t—sX( ) + (A*@q&(f—s,X(s)),X(s))

+(99(X (s)), AX (s))
+(0(¢ + 9)(t — 5,X(5)), B(X(s), Y (), 7Y (5)))

+ %tracesaz(cb +9)(t —s5,X(s)))ds; T > 0j|
>

+E

0
/ @(¢+9)(t —5,X(s)),dM(s)); T 0} :
0
where X () = X(6;7,Y,~Y). Denoting the last term by I, we have

I= E/ 8¢ + g)(E — s, X (5)), dM(s))

—-E [/0 (¢ +9)(t = 5,X(s)),dM(s)); 7 < 9]

=
e
IA
3
=

| p— |

TAO
/0 18(¢ + 9)(E — 5, X (s))|*dsP(r < 9)]

< mKu (|0(¢ + 9)(E,9)|I* +1)6°/6*
for a small 6. Hence
|I] < k1 V63 /62 for 6 € (0,6)

where k; is independent of Y and . Hereafter k; stands for a constant independent
of Y and ~. Since (2.1) yields (9¢(¢), A¢) <0,

(44) E(V(f - 07 X(9)7q) - V(iv ﬁ; Q);T > 0)

< (—%ﬁf(ﬂ )+ (A%09(F, ), ) + traceSE? (6 + g) F, fl)) 0

+ E/00<3(¢ +9)(E,9), B(A, Y (5),7Y (s)))ds + kz0 + k3V/63 /6%,
holds. Again Proposition 2.5 says
(4.5) ElV(t—0,X(0);9) = V(i,7;9);7 < 6] < kab?/8%.
Combining (4.4) with (4.5), we get

4.6) J(Y,7) =E

]
V(i —0,X(0);q) — V(i q) + / h(X(s), Y (s),7Y (s))ds
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< (—%(t: )+ (4°06(0,), ) + 5traceS0%(6 + ) i ﬁ)) 6

]
+E / (06 + 9) (E,7), B, Y (5),7Y (5))) + h(A, Y (), 7Y (5))ds
+ ksé0 + kgV03 /62, for small 6.

Let us put

F(y,2) = (8(¢ + 9)(£,9),B(A,y,2)) + h(f,y, 2).

Since a constant strategy, 7YY (s) = z for any Y and s, is in R, we see

]
(4.7) inf sup E/ F(Y(s),7Y(s))ds
1€Ryey Jo

6
< inf sup E/ F(Y(s),2)ds
zeZYey 0
0

< inf sup E/ sup F(y, z)ds < inf sup F(y, 2)6.
2€Zyey Jo yeYy 2€Z yey

For any ¢ > 0, there is 4 > 0 such that
|F(y,z) — F(§,%)| <e, whenever |y —4|; <6 and |z— %[y <8.
J m
Dividing Y = | J¥; and Z=|]J2Z, with diamY;<3$

=1 p=1
and diam.Z, < 6

respectively and fixing y; € Y; and 2, € Z, arbitrarily, we define G; Z — Y by
Gz =y for ze€ Z,
where £(p) = min.{k; max;=1,... ; F(yi, 2p) = F(yk, 2p)}. Then, for any z € Z,

(4.8) F(Gz,2) 2 F(yup), 2p) — € 2 1max F(y;,z) - 2¢
=1,

> sup F(y, z) — 3e.
yeY

Fixing a step strategy ~ arbitrarily, say v € Ry we define Y €Yy and Z € Zy
as follows. Noting 7Y (s), s € [0,A) is independent of Y and s for v € Ry, we
put Z(s) = vY(s) and Y(s) = GZ(0) for s € [0,A). For s € [A,2A), we put
Z(s) = vY(A) and Y(s) = GZ(A). Repeating this argument, we get Z € Zy and
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Y € Y such that Z = 7Y and Y = GZ. Therefore, for s € [kA, (k +1)A),

F(Y(s),7Y (s)) = F(G(YY (kA)), 1Y (kA))
> 5161};3 F(y,AY (kA)) — 3¢ > zuelg 51618 F(y,2) — 3¢

holds, by (4.8). Hence for any step strategy 7,

0 0 X
sup E | F(Y(s),7Y(s))ds > E/ F(Y(s),7Y (s))ds
Yey 0 0

> (inf sup F(y,z) — 3¢)6
zEZyey

holds. Since step strategies are dense in R, we have

[4
inf sup E/O F(Y(s),7Y (s))ds > (inf sup F(y,z) — 3¢)6.

YER Yey z€Z yey
Since ¢ is arbitrary, we get, recalling (4.7),
0
4.9 inf sup E'/ F(Y(s),7Y(s))ds = inf sup F(y, 2)0.
YER Yey 0 z2€Z yeY

Inserting (4.6) and (4.9) into (4.3) and dividing by 6, we obtain, as § — 0,

0.< ~ 22 (1,9) +{4"06(, ), ) + 5 traceSS (9 + 9)(F, )

b 77
+ inf sup((3(¢ + 9)({,7), B(A, y, 2)) + h(D, y, 2)) + éks.
2€Z yey
Since € is arbitrary, V' turns out to be a subsolution of (1.4).
Employing similar arguments, we can prove that V' is a super solution. Hence V'
is a viscosity solution. Now the uniqueness theorem [8] completes the proof, since
V is bounded and weakly continuous. O

In the same way, we can see the following theorem,

Theorem 4.2. v( ;q) is the unique viscoity solution of Isaacs equation (1.5) in
the set of bounded and weakly countinuous functions.

Hence we have
Corollary. V( ;q) =v( ;q) holds, under the following Isaacs’ condition;

sup inf (§, B(n,y, 2)) = inf sup(, B(n,y,2)), for any £ € H.
yey z€Z zEZyey
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