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1. Introduction

For a transient Brownian motion (Bt,Px) in Rd (d > 3) and the Lebesgue
measure m(dx) = dx on Rd, under the σ-finite measure P m = / dxPx, F. Spitzer
[12] gave the asymptotic expansion of order 2 for Pm(0 < TA < t) as t —> oo related
with the first hitting time TA for a compact subset A of Rd involving the capacity
C{A). Since {Bt} is stationary under P m , this result introduces limit theorems for
an equilibrium process, which is a stationary independent Markov particle system,
related with the number of particles hitting the compact set A. Moreover similar
results were obtained by R.K. Getoor [2] for rotation invariant α-stable processes
in Rd and by S.C. Port and C.J. Stone [11] for general Levy processes. The higher
order expansions were obtained by Le Gall [8] for Brownian motion in Rd (d > 3)
and by S.C. Port [9], [10] for general α-stable processes in Rd.

In general for a Markov process which does not have an invariant measure, it is
possible to realize a stationary Markov process with the same transition probability
by extending the probability space and considering new paths which are born at
random time ([1], [3] and [4]). The distribution (which may not be a probability
measure in general) is called a Kuznetsov measure [7]. By using this measure we
can construct a stationary Markov particle system, which is called an equilibrium
process with immigration. This process is also constructed by letting new particles
immigrate according to a Poisson random measure (see [5]).

In our previous paper [5] for the absorbing Brownian motion {B^(t)} in a half
space H = Rd~1 x (0, oo), we considered the same type problem under the Kuznetsov
measure which has the Lebesgue measure dx on H as the invariant measure. We gave
the asymptotic behavior of the hitting rate for a compact subset of H. Moreover by
applying the obtained result to the equilibrium process with immigration, we also
gave limit theorems for the particle system.

We want to extend the above results for absorbing stable processes in a half
space H. However there are a few kind of absorbing stable processes in H. For
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instance, one could imagine the killed process just before the original stable process
in Rd starting from a point x e H jumps into the other half space Hc, or consider
the case that components are independent and d-th component is the killed process,
and so on.

In the present paper we consider the another one, which seems to be more
natural in the analytic sense. Let 0 < a < 2. The process is the time changed process
w~>a(t) = B°(ya/2(t)) of an absorbing Brownian motion B°(t) in H starting from
x by an increasing stable process ya^2(t) in (0, oo) starting from 0 with exponent
α/2, which are independent. We denote the distribution of the process {w~'a(t)} by
P^'a. This process is called "absorbing stable motion (w~>Oί(t), P^~'a) with exponent

a in a half space H". We usually omit the super-script "α"; (w~,P~) and simply
call absorbing a-stable motion in H. One can easily see that the transition density
p^~(x,y) =p^'Cί(x1y) is given by the following :

pϊ(χ,y) =Pt(y-χ) -p?((y,-yd)-χ)

where y = (y, yd) G H and pf (x) is a density of a distribution of a rotation invariant
α-stable process in Rd at time t > 0, whose characteristic function φt(z) is given as

φt(z) = ί eiz

jRd

with some constant c > 0. Since p"(x) is rotation invariant and C°° in x G Rd, one
can write

Pt(χ,y) = p?(y-χ) -pΐ(y- (χ,-χd))
rXd

= - ddp?((y-x,yd + υ))dv
J -Xd

and also write

p7(χ>y) = -

'-yd

where dd denotes the partial differential operator in d-th component.

In order to define a Kuznetsov measure associated with (w~(t), P~)9 we need an
entrance law (vt)t>o which is a family of σ-finite measures satisfying that vsP^~_s =
vt for s <t9 where (Pf)t>o is the transition semi-group of (w~(t), Pχ) The density
of an entrance law at a boundary point x G dH = Rd~λ is defined as

v%{y) = ddpϊ((x,xd),y)\Xd=0+ = -2ddp?((y - x,y<ι))>

For a σ-finite measure μ on dH, the density of an entrance law at the boundary is
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defined as

and moreover set

(y)=m»>a(y)= / v?
Jo

m(y) =

which will become the density of the invariant measure for the Kuznetsov measure,
of course, if they are well-defined.

We shall investigate the case that μ(dx) = dx is the uniform measure. In this

case ut(y) = vfx(y) is independent of y, so we can write

ι/t(y) = vt(yd) = -2 / ddpt((x,yd))dx.

Moreover this z^(yd) satisfies the scaling property

because ddpf\x) = t " ( d + 1 ) / α a d p f ( ί " 1 / ^ ) holds by the scaling property ofpf(x) =
t~d/Oίpf(t~1/Oίx). Hence the density of the invariant measure is also independent of
y, i.e., m(y) = m(yd), which is given as

m(yd) = ma(yd) = cay%-2

with a positive constant

ca = a u1~avι(u)du = — 2a / duu1~a / ddpι(v,u)dv.
Jo Jo JR.*-1

Note that this integral is finite because there exists a constant C > 0 such that

\ddPι(x)\ < C(l /\xd/\ xd\x\~2~d~a) for all xe H.

In fact if we set qa/2(u) be a density of the distribution of yα/ 2(l), then

pUx) = Jo qa/2(u)(2πu)-d/2exp [-|^J du.

One can see that

/

°° Γ Iτl21

gα/2(n)(27r)-<ί/2n-d/2-1xdexp ^-i |- j du.
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Thus by using a well-known result qa/2(u) < C Ί ^ " 1 " " / 2 Λ exp[-C2/uC3]) for
u > 0 with some constants CΊ, C2, C3 > 0, the above estimate is obtained.

We define the entrance law vt(dy) = vt(yd)dy and set m(dy) = m(yd)dy. For a
fixed extra point Δ ^ H, set HA = H U Δ. We introduce a path space W, the set
of all maps w : R-> HA such that there is a nonempty open interval (a(w),β(w))
on which w is iί-valued right continuous and has left-hand limit, with w(t) = A if
t < a(w) or t > β(w), and a constant map [Δ], i.e., [Δ](ί) = Δ for all ί. On this
path space the excursion law Q° and the Kuznetsov measure Qm are defined by the
following :

/

OO /»OO

i/t(ώr)P-, Q r o = / θ_s(Q°)ds.
J -oo

Then (κ;(ί),Qm) is a stationary Markov process with the invariant measure m and
the same transition probability as the absorbing stable motion (w~(t),P~).

The equilibrium process with immigration (Xt,P) associated with (w(t),Qm)
is defined by the following :

Ω is the space of counting measures ω = Σn δWrι, wn € W, ,
Xt{ω) = ω(t)\H for ω <E Ω, ,
T = σ(Xs : s < oo), Tt = σ(Xs : s < t) ,
P is the <2m-Poisson measure on Ω,

i.e., the distribution of the Poisson random measure with intensity Q m . Then (Xt,P)
is a stationary Markov process such that

E [exp{-(Xt, /)}] = exp [-(m, 1 - e"'>]

for some positive measurable functions / (for the general definition about equilib-
rium processes with immigration, see [5]).

In §2 we state our main results, that is, asymptotic behavior of Qm(0 < σ# < t)
as t —• oo associated with a hitting time σB = inϊ{t > 0 : w(t) G B} (= oo (if
{.} = 0) for a compact subset B of iί, and limit theorems for (Xt, P).

In §3 we give the outline of the proofs. The basic manner is the same as in
our previous paper [5]. However estimates are slightly difficult, so we need several
techniques for the calculus.

In §4 we give some additional information about the absorbing stable motion
in a half space, that is, the potential kernel and the generator. This section is inde-
pendent of §2 and §3. It's just our own curiosity.

2. Main Results

We always fix 0 < a < 2 and usually omit the super-script "α".
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Let B be a compact subset of H and πB(dx) be the capacitary measure of B

with respect to the Lebesgue measure dx on H, i.e., πB is supported by B and

satisfies that

P-(TB < oo) = Jg-(x,y)πB(dy),

with the potential kernel

g~(x,y) = / pΐ(x,y)dt.
Jo

With respect to the measure m{dx) — m(xd)dx (m(u) = ma(u) = cau
a~2), we have

the following : The transition density p™(x,y) — p^(x,y)/m(x), the capacitary

measure π^ (dx) = m(x)πB(dx), the capacity Crn(B) = π m ( l ) , the co-capacitary

measure π^ (dx) = Qm(w(τB) G dx : 0 < τ# < 1) = Q°(w(σB) G dx : σB < oo)

and the co-capacity Crn{B) = Qm(0 < τ# < 1) = Q 0 (σ β < oo), where T B (W) =

inf{ί G ϋ : w{t) G #}(= oo if {•} = 0). In this case w~ is not symmetric relative to

m, thus in general Crn{B) φ Crn{B) (see §3.3 and §3.4 in [5]).

We shall use a symbol Q°[ ] as the integral by the measure Q°.

Our main result is the following :

Theorem 1. Let B be a compact subset ofH with a positive co-capacity. Then

it holds that

Qm(0<σB<t) = tCm(B) + f(t)

with

( CaΦ(B)t2~3/a + o(ί 2" 3/-) if d = 1, 3/2 < a < 2,

f(t)= I Φ(B) log t + o(log t) if d = 1, a = 3/2,

[ O(l) if d = 1,0 < a < 3/2 or d > 2

<zs £ —• oo, where

Ca = 1 + 3 ~ α (3/2 < α < 2)

= / x7rBydx)Q \w((jB) : crB < oo] (3/2 < ck < 2)

ϊ/d = l.

Furthermore we also have the following : Set P^ = fHm(dx)P~.
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Theorem 2. Let B be a compact subset ofH with a positive co-capacity. Then

3 / α + O(l) (3/2 < a < 2)

p-(τB<t) =

a2

(3-α)(2α-3)
(α = 3/2)

O(l) (0 < a < 3/2)

as t —* oo,

Φ(£) = -2

a if d = 1,3/2 < α < 2,
3 — o:

α

3 — a otherwise.

Let ({Xt}teR,P) be the equilibrium process associated with (w(t),Qm). Set

AΓt

β = {w e W : 0 < σB(w) < t}. Then X{Nf) is the number of particles hitting

B during time interval [0,t). Now we have the following result :

Theorem 3. Let B be a compact subset of H with a positive co-capacity. Then

V t ) _^ cm(B) P-a.s. and in Lλ(P)

iV(0,Cm(£)) in law

t

as t —> oo. Moreover

X(Nt

B)-tdrn(B)

Vt
as t —• oo.

3. Proofs

Proof of Theorem 1. By the same computations as in [5] we see that the

following :

Qm(0<σB<t)-tdm(B)

= P~(TB <t)-t Q°(t < σB < oo) - Q°[σB : σB < t}.
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Moreover

P-(TB <t) = f m(dx) ί πB(dy) ί pj(x,y)ds + P~(TB <t,TBoθt< oo),
JH JB JO

Q°(t < σB < oo) = Q°(σB o θt < oo) - Q°(σ β <t,σBoθt< oo)

and

<20[σβ : σ β < ί] = lim / i/u(dx) / πB(dy) / s p~(x,y)ds + g(t)
ui° JH JB JO

with

#(t) = Q°[σβ : σ β < t] - lim / z/u(dx) / πB(dy) / s p~{x,y)ds.
uί° JH JB JO

Furthermore

/ m(dx) / πB(d2/) / p~(x,y)ds
JH JB JO

= / πB(dy) < t / vu(yd)du+ / u vu(yd)du \ ,

(3°(σjB o θt < oo) = / πB(dy) / vu(yd)du
JB Jt

and

lim / i/u(dx) / πB(dy) / s p~(x,y)ds= / πB(dy) / s us(yd)ds
UI°JH JB JO JB JO

Therefore we have

= P^(TB <t,TBoθt<oo)+t Q°(σB <t,σBoθt< oo) - g(t).

Moreover we can show that

( o / t 2 - 4 / α 1 t\ if d = i 3/2 < α < 2,

O ( t " 1 / α ) otherwise

= o(l)

and

(3.2) Q°(σβ <t,σBoθt < oc)

_ ί Φ(B)/ί3/«-i + odyί3/*- 1) ifd = 1,3/2 < a < 2,

1 O(£~3/α) otherwise
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as t —• oo. By further computations it can be shown that

3 - α

2α-3
(3.3) g(t) = {

as t —> oo. Hence our claim follows.

+ o(t2-3/a) (d = 1, 3/2 < a < 2),

(d = 1, ex = 3/2),

(otherwise)

D

To prove the above equations (3.1), (3.2) and (3.3) we need several lemmas.
Recall that

\ddP?(x)\ < C(1Λ

< C(1Λ

xd\A\xd\\x\-2-d-a)
- 1 — d—a>\

< -l d a^ for all x = (x,Xd) G JRd.

It can be seen that

Lemma 1. For each fixed h > 0, fHph(x,y)m(dx) = fHph(x,y)x°[ 2dx is
bounded in y G H and JH P~ {Tβ < K)x^dx is finite.

Proof. By ddp%(x) = h

\ddPh(x)\ <

<

for some suitable constant Ch > 0. Hence

^x) we have

ί
{Q<xd<i}

= ί dx ί dxdx
a

d~
2 Γ (-

JR*-1 JO J-xd

< 2 / dxdx«-2 ί d dv ί
Jo J-χd JRd~λ

< 2Ch [ dxdx™-1 [ (1 Λ |
Jo JRd-1

< oo

and

/ ph(x,y)x™ 2dx < / ph(x,y)dx
J{χd>i} JH

< / Ph{y-χ)dχ

JH
< 1.
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Thus the first claim follows. Moreover since w~(t) is bounded on a finite time
interval, for each h > 0, there is a bounded set Kh in H such that for all x G B,

P-(TB <h)< 2P-(w-(h) e Kh) = 2 / Pϊ(x,y)dy.
Jκh

Therefore

/ P-(TB < h)xddx < 2 / dy [ xdp-(xiy)dx
H JKh JH

r rVd r ΛOO

= -2 dy dv dx xdddp^{{x -y,xd + v))dxd

Jκh J-yd JR*-1 JO

Γ ίyd ί ί00 ~
= 2 / dy / dv dx p%((x - y,xd + v))dxd

JKh J-yd JRd-1 JO

/ /
Kh J-yd JRd-1 JO

(by integration-by-parts)

= 2 1 dy I dv ί pl{{Έ,xd

Jκh J-yd JH

< 4 / yddy < oo D
Jκh

From this lemma one can get the following estimates :

Lemma 2. For each fixed h > 0, there is a constant Ch > 0 such that

P^(t<TB<t^h)<Cht-^a and Q°(t < σB < t +h) < Cht-
3/a

for all t > 0.

Proof. Since

/ PΪ{y,z)dy = - dv dy ddp?((y - z,yd + v))dyd

JH J-zd JR*-1 JO

= dv dyp™{(y-z,v))
J-zd JR*-1

= ί~1/α ί d dv ί dvp^{{v,Γllθίv))
J-zd JR*-I

< t-1'" ί d dv f dυpi((υ,0))
J-zd JR*-1

we have
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< TB < t + h) < [ P-(TB oθt< h)m{dx)
JH

= ί m(dx) ί dyp-(x,y)p-(TB < h)
JH JH

< 2 dy dzp~(y,z) / m(dx)p-(x,y)
JH Jκh JH

= 2 dz m(dx)p-+h(x,z)
J Kh J H

= 2 dz dyp~(y,z) / m(dx)pjι(x,y)
Jκh JH JH

< C'h \ dz p^~(y,z)dy by Lemma 1
Jκh JH

< Cht'1^ by the above inequality,

where Kh is the same compact set as in the proof of the previous lemma. Further-

more it is easy to see that v\ (yd) < Cyd for some constant C > 0 (cf. see the next

lemma). Hence

Q°{t <σB <t + h) < Q°(σB o θt < h)

= [ ut(dx)p-(TB<h)
JH

= t~2^ [ dxu1(t-1^xd)P-(TB < h)
JH

< * ~ 3 / α / xdP~(TB <h)dx.
JH

By the previous lemma our claim follows. D

REMARK 1. From this lemma we see that P^(TB < t) = O(ί 1 ~ 1 / α Λl) if a φ 1,

= O(logί) if a = 1 as t —• oo.

Note that

and

for some h G (0,1). Thus we can see the following lemma :
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Lemma 3. There exist suitable constants C\, C2 > 0 such that

< Cxxd{xd + 2yd)t-(d+2Va for aU t > 0,

Pt (*,») I 2 ^ ? ( ( ^ O ) ) ^ - ^ 2 ) / " + O(ί-(d+4)/") as ί - oo,

where the O{t~^d+A^a)-constant is finite whenever (x,y) is bounded, and

{ < C2ydt~3/a for all t > 0,

= -2 / Sjpf ((v, O ) ) ^ * " 3 / " + O(*"5/e) as t -^ oo,
wAβr̂  Â̂  O(ί~5/α)-constant is finite whenever (x,y) is bounded.

From these lemmas one can establish the equations (3.1), (3.2) and (3.3) as
follows:

P~(TB <t,TBoθt<oo)

< P-(TB < [t] - 1,TB O θt < oo) + p-([t] - 1 < TB < t)

= f m(dx) I P-(w~(TB) edy:TB< [t] - 1)P~(TB < oo) + O(l/t^a)
JH JH

by Lemma 2

= / πB(dz) I m(dx) f ί dsP~(w~\TB) G dυ : TB < s) ί p~(υ,z)du
JB JH JveB Jo Jt-s

By Lemma 3 the first term is equal or less than

C ί m(dx) ί [ dsp-(w-(TB) edv:TB< s)(t - 8γ
JH JveB Jo

= C / m{dx) / (t- sf-^^^p-^B e ds)
JH JO

l t{d+2)/a-l

By Lemma 2 the first term is equal to O(t 2-(d + 3)/Q) if 1 < a < 2, O(t-d-χ logί)
if a = 1 and O ^ 1 - ^ 2 ) / " ) if 0 < α < 1 (see Remark 1). The second term is equal
to O(ί2-(d + 3)/αlogί) ((d + 2)/2 < a < 2) and O^-1/") (0 < a < (d + 2)/2) as
ί -^ oo. In fact, if (d+2)/2 < α < 2, i.e., d = 1, 3/2 < α < 2, then 1/2 < 3 / α - l < 1
and

/•W-i
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= o I tι~z'a

If 0 < α < (d + 2)/2, then (d + 2)/α - 1 > 1 and

•W-i

i(*f2)/α-l

fe—1

-of- (iL-ίw* [t/2 du
/.t-l

Λ/2 (ί - It

Therefore we have (3.1). Moreover by Lemma 3

v-(v z)du -

2adjpf((z-ΰ,0))zdvd

(d + 2-α) ^(ί_s)(d+2)/α-i t{d+2)/a-i

as ί —> oo. Hence if we set

= ~ 9 ̂ Γ / / ddPi(& - V, O))xdyd*B(dx)Q°(w(aB) edy:σB< oo),
2 + d-aJBJB

then by a similar way to [5] we can get

Q°(σB <t,σBoθt<oo)-

IΓ
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+ Clim / vJdx) I It - s)1"
"WJH JO
[*]-!

G ώ) +

B e ds)

+ C
Λ[*]-I

/ (t - s J ^
7o

G dβ) + O(t" 3 / α ),

where C is a finite constant. As in case of P m we can see that the first term of the
right hand side is equal to O(ί2"6/αlogt) = oO1"3/") (d = 1,3/2 < a < 2) and
O(ί~3/α) (otherwise) as t —• oo. Hence we have (3.2).

In order to prove (3.3) it is enough to show the following: For each h > 0,

g{t + h)- g(t) =

hO

if d= 1,3/2 < a < 2,

otherwise

as t —• ex).
By the same manner as in [5] we have

S(ί + h) - g(t)

< t {Q°(σB <t + h,σBo θt+h < oo) - Q°(σB <t,σBoθt<oo)}

+ hQ°(t<σB <t + h)

- ^ ^ 1 if.d= 1,3/2 < α < 2,

otherwise

as ί >̂ oo by Lemma 2 and equations (3.1), (3.2). A lower estimate is also given by
the same way :

g(t + h) - g(t)

> t{Q°(σB <t + h,σB ° θt+h < oo) - Q°(σB <t,σBoθt< oo)}

- h {Q°(σB oθt<oo)- Q°(σB o θt+h < oo)}

t3/o
otherwise

as t —• oo. Therefore the equation (3.3) follows.
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Proof of Theorem 2. Form the above computations we have

= J τrB(dy) It j vu(yd)du + J uuu{yd)du\ + P~(TB <t,TBoθt< oo),

and

Q°(t < σB < oo) = / πB(dy) / vu{yd)du - Q°(σB <t,σBoθt< oo)
JB Jt

Moreover by Lemma 3 we see that

jB*B{dy) J vu{yd)du = ^ 5 7 — T ^—-

and that since Jo svs{yd)ds is bounded in y G B,

/ πB(dy) I siss(yd)ds =
JB JO

ΔOί — O
(3/2 < a < 2)

(α = 3/2)

(0 < a < 3/2)

as oo. Hence the desired result follows. D

Proof of Theorem 3. This result immediately follows from Theorem 1. The

proof is the same as in [5]. It is a routine work. So we don't describe it in this

paper.

4. About absorbing stable motion in a half space

In this final section we give some additional information about absorbing te-

stable motion (w~(t),P~) in a half space H.

Let (w°(t), P°) - (w°'α(ί), P°>a) be the killed α-stable process in H just before

the original α-stable process in Rd, which is rotation invariant, jumps into Hc. Of

course it has a transition density Pt(x,y) such that P®(w°(t) G dy) = Pt(x,y)dy.

Then it holds that

p~(x,y) < p ° (x ,y) for all t>0,x,y e H.

That is, paths w~ are killed more than w°, because before the stable process jumps

into Hc, the absorbing Brownian motion could be killed.

Note that

(x, y) = / αu^t (u)
Jo J-χd
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where q^'2 is the density of the distribution of ya^2(t) the increasing α/2-stable

process in [0, oc) starting from 0. The Laplace transform of ya^2(t) is given as

exp[—c'ίW2] for r > 0 with some constant d > 0 and the potential density is

Jo
Γ q?/2(u)dt = —λ—u"'2-1 for u > 0,
o cT(α/2)

because the Laplace transforms coincide, where Γ is the gamma function. From

these results one can easily see that the potential kernel g~(x,y) of (w~(t),P~) is

given as

pOO

g~{χ,y) = / pΓ(χ,y)dt
Jo

x + y
i,i log

x-y
(d = α = 1)

x,d \ \y — z\a d — (\y — χ\2 + (yd + xd)
2) \ (otherwise),

where

*/2 2,^^d~a^2Ty( (d -4-2 Q ) / 2 )
Cj i — — , c α d

 z= (d "φ- 1 or Oί φ 1).

Fix d < p < d + α. We define a function space D p = DP(H) on i ί by the

following : f e Dp^ f e C2(H), \f(x)\, \djf(x)\ < C(l ΛxdΛ |a;|-P), and other

partial derivatives are bounded by C(lA\x\~p) with some constant C > 0. Moreover

for / G £>p, we define a function / on # d as

f{x) (xd > 0),

(x) = \ /(ϊ,0+) = 0 (αd = 0),

-f(x,-xd) (xd < 0).

Then the generator L~ on £)p of (w~(t),P~) is given by the following:

dy

_ f, \-\_dUd_

Λ

 dVd

with a suitable constant c > 0. We can also write that if 0 < α < 1, then

[JW) J\X)\ I _ ^Id+α
I ί/ I
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and that if 1 < a < 2, then

L-f(x) = c ί \J(y) - J(x) - v/(χ) (y - χ)lu, (y-χ)] • _dy

id+a
JRd \y χ\

= cf dyί Γ [f(y) - f(x) - V/(x) (y - x)IUχ (y - x)] K(x, y)dyd
J Rd-λ

 VJQ

+ ί [-2f{x) + Vf(x) (y + x)IVl (y + *)

— vf(x) - (y + x, -yd + aJd)-fc/i (u/ + ^, ~2/d + χd))\ r^r^ f ,
y + χ\ )

where V/ = (dλf, , Sd/), t/ i-{xet f : \x\ < 1} and

1 1
K(X) y) = ~ — —

I?/— x|^^"α \{y — x,yd

In fact if set

pt-f(x) = Pt-'af(χ) = ί Pt{χ,
JH

and (Pt) = (Pt

α) be the transition semi-group of a rotation invariant α-stable process
in Rd, then Pt~/(x) = Ptf(x) and of course (Pt~) satisfies semi-group property.
Hence we have L~f(x) = Lf(x) for / e D p, where L = La is the generator of the
rotation invariant α-stable process in Rd
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