Kawata, S. Osaka J. Math. **34** (1997), 681–688

ON AUSLANDER-REITEN COMPONENTS AND SIMPLE MODULES FOR FINITE GROUP ALGEBRAS

SHIGETO KAWATA

(Received June 11, 1996)

Introduction

Let G be a finite group, k a field of characteristic p > 0 and B a block of the group algebra kG. Let Θ be a connected component (AR-component for short) of the stable Auslander-Reiten quiver of B. Erdmann showed that if B is a wild block of kG, then the tree class of Θ is A_{∞} [6]. In this note we investigate where simple modules lie in the Auslander-Reiten quiver of B. Let Λ be a symmetric algebra and M a simple Λ -module. Then the Auslander-Reiten sequence $\mathcal{A}(\Omega^{-1}M)$ terminating in $\Omega^{-1}M$ is of the form $0 \to \Omega M \to H_M \oplus P_M \to \Omega^{-1}M \to 0$, where Ω is the Heller operator, P_M is the projective cover of M and H_M is the heart $\operatorname{Rad} P_M/\operatorname{Soc} P_M$ of P_M (see [1, Proposition 4.11]), and sequences of this type will be called standard sequences. Therefore if the tree class of the AR-component Θ containing M is A_{∞} , then M lies at the end of Θ if and only if H_M is indecomposable.

In Section 1, we consider for general symmetric algebras what happens if some AR-component with tree class A_{∞} contains a simple module not lying at the end of its AR-component. In Section 2 we give certain conditions which imply that all simple modules in B lie at the ends of AR-components.

The notation is almost standard. All the modules considered here are finite dimensional over k. Concerning some basic facts and terminologies used here, we refer to [2] and [5].

1. AR-components of symmetric algebras and simple modules

In the case of general symmetric algebras, Jost gave some conditions which imply that all simple modules contained in an AR-component with tree class A_{∞} lie at the end of this component [7, Theorem 3.3]. Now we consider what happens if some simple module does not lie at the end of an AR-component with tree class A_{∞} . In this section, let Λ be a symmetric algebra and Θ an AR-component with tree class A_{∞} of the stable Auslander-Reiten quiver of Λ , and suppose that Θ contains some simple Λ -module not lying at the end of Θ . Under this assumption Θ is of the form $\mathbb{Z}A_{\infty}$ or $(\mathbb{Z}/m)A_{\infty}$ (so called an *m*-tube), and we may assume that Θ or $\Omega\Theta$ contains some simple module S not lying at the end and that the wing $\mathcal{W}(S)$ spanned by S:

with $\Omega^{2i}X_n$ $(0 \le i \le n)$ lying at the end, satisfies the condition that

(*) there are no projectives in $\mathcal{A}(\Omega^{2i}X_j)$ for $0 \le i \le j < n$. Indeed, if this is not the case, then the AR-sequence $\mathcal{A}(\Omega^{2i}X_j)$ terminating in $\Omega^{2i}X_j$ is standard for some $1 \le j \le n-1$ and some $0 \le i \le j$ because standard ones are only those which involve projectives. Thus, $\Omega^{2i}X_j$ is isomorphic to $\Omega^{-1}S'$ for some simple module S', and S' does not lie at the end. Hence we start with S' instead of S, and therefore we finally get a wing with the above property (*).

In the above situation, we shall see that the AR-sequences $\mathcal{A}(\Omega^{2i}X_n)$ terminating in $\Omega^{2i}X_n$ ($0 \le i \le n-1$) are standard. Also in the case where Θ is an infinite *m*-tube, we shall see that n+1 < m, i.e., $X_n \not\cong \Omega^{2i}X_n$ for $0 < i \le n$.

First we recall the following easy result (see, e.g., the argument in [3, Section 3]), which will be used repeatedly.

Lemma 1.1. Let $\mathcal{A}(U) : 0 \to X \to Y \oplus Z \to U \to 0$ with Y and Z nonprojective be an AR-sequence terminating in U. Assume that the irreducible map $\alpha : Y \to U$ is a monomorphism. Then the irreducible map $\alpha' : X \to Z$ is also a monomorphism and $\operatorname{Coker} \alpha \cong \operatorname{Coker} \alpha'$. Dually, if the irreducible map $\alpha' : X \to Z$ is an epimorphism, then the irreducible map $\alpha : Y \to U$ is also an epimorphism and $\operatorname{Ker} \alpha \cong \operatorname{Ker} \alpha'$.

Now we give attention to the modules X_1 , $\Omega^2 X_1$ and $\Omega^2 X_2$.

Lemma 1.2. X_1 , $\Omega^2 X_1$ and $\Omega^2 X_2$ are uniserial and their Loewy series are as follows for some simple Λ -modules T_1 and T_n :

682

$$X_1: igg(rac{T_1}{S} igg), \quad \Omega^2 X_1: igg(rac{S}{T_n} igg), \quad \Omega^2 X_2: igg(rac{T_1}{S} \igg).$$

Proof. Since S is simple, the irreducible map $\beta_1 : \Omega^2 X_1 \to S$ is an epimorphism and the irreducible map $\alpha_1 : S \to X_1$ is a monomorphism. By the property(*) and Lemma 1.1, it follows that $\mathcal{A}(X_n)$ and $\mathcal{A}(\Omega^{2(n-1)}X_n)$ are standard, i.e., $\Omega^{2(n-1)}X_n \cong \Omega^{-1}T_1$ and $X_n \cong \Omega^{-1}T_n$ for some simple Λ -modules T_1 and T_n . Also, Lemma 1.1 yields that $\operatorname{Coker} \alpha_1 \cong T_1$ and $\operatorname{Ker} \beta_1 \cong T_n$.

Next we consider the modules X_i $(1 \le i \le n)$.

Lemma 1.3. For the modules X_i and the irreducible maps $\alpha_i : X_{i-1} \to X_i$ $(1 \le i \le n)$, the following hold.

- (1) The irreducible maps α_i are monomorphisms.
- (2) $\Omega^{2(n-i)}X_n \cong \Omega^{-1}T_i$ for some simple Λ -module $T_i(1 \le i \le n)$.
- (3) T_i appears in the head of X_i and the composition factors of X_i , from the head, are given by $\{T_i, T_{i-1}, \dots, T_1, S\}$.
- (4) The socle of X_i is isomorphic to S.

Proof. In the case i = 1, the statements follow by Lemma 1.2. Assume that the statements hold for $X_j(1 \le j \le i-1)$. Note that the AR-sequences $\mathcal{A}(X_i)(1 \le i \le n-1)$ are not standard. We consider the following mesh:

- Assume contrary that α_i is an epimorphism. Since the socle of X_{i-1} is simple and isomorphic to S, the socle of Kerα_i is isomorphic to S and S does not appear as a composition factor of X_i. Since the irreducible map β : Ω²X_{i+1} → X_i is an epimorphism and Kerβ ≅ T_n, S does not appear as a composition factor of Ω²X_{i+1}. Now we see that Ω²X₁ =
 ^S(T_n) ⊂ Ω²X_i by induction. However, since S lies in the head of Ω²X₁, we have Ω²X₁ ⊂ Kerα, where α is the irreducible map from Ω²X_i to Ω²X_{i+1}, but this contradicts that Kerα_i ≅ Kerα.
- (2) Note that the statement (1) above, Lemma 1.1 and the property (*) imply that $\mathcal{A}(\Omega^{2(n-i)}X_n)$ is standard. Hence we have $\Omega^{2(n-i)}X_n \cong \Omega^{-1}T_i$ for some simple Λ -module T_i .

S. KAWATA

- (3) This follows since $\operatorname{Coker} \alpha_i \cong T_i$ by (2).
- (4) By the inductive hypothesis, we have SocX_{i-1} ≅ S. Since X_{i-1} is a maximal submodule of X_i and X_i is indecomposable, we have SocX_{i-1} = SocX_i.

Proposition 1.4. Using the same notation as in Lemma 1.3, the wing W(S) spanned by S is as follows.

In particular, all modules in W(S) are uniserial.

Proof. We continue to use the notation in Lemma 1.3. From Lemma 1.3(2) and the property (*), the irreducible maps $\Omega^{2s}X_i \to \Omega^{2s}X_{i+1}$ are monomorphisms and the irreducible maps $\Omega^{2(s+1)}X_{i+1} \to \Omega^{2s}X_i$ are epimorphisms for $1 \le i \le n-1$ and $0 \le s \le i$. Therefore X_i is a homomorphic image of $\Omega^{-1}T_i$ and the head of X_i is isomorphic to T_i . Thus X_i $(1 \le i \le n)$ are uniserial. In particular X_{n-1} (=the heart of the projective cover of T_n) is uniserial and so is $\Omega^2 X_n (\cong \Omega T_n)$. Since

684

 $\Omega^2 X_i$ $(1 \le i \le n)$ are submodules of $\Omega^2 X_n$, they are uniserial. Using this argument repeatedly, we see that all modules in $\mathcal{W}(S)$ are uniserial.

From Lemma 1.3 and Proposition 1.4, we have the following immediately.

Theorem 1.5. Let Λ be a symmetric algebra and Θ an AR-component of Λ with tree class A_{∞} . Suppose that Θ contains some simple module not lying at the end of Θ . Then for some simple Λ -modules S, T_1, \dots, T_n the projective covers P_{T_i} of T_i $(1 \le i \le n)$ are uniserial and the Loewy series are as follows:

$$P_{T_{1}}:\begin{pmatrix} T_{1} \\ S \\ T_{n} \\ T_{n-1} \\ \vdots \\ \vdots \\ T_{2} \\ T_{1} \end{pmatrix}, P_{T_{2}}:\begin{pmatrix} T_{2} \\ T_{1} \\ S \\ T_{n} \\ T_{n-1} \\ \vdots \\ T_{n-$$

Proof. By Lemma 1.3(2), the AR-sequences $\mathcal{A}(\Omega^{2(n-i)}X_n)$ are standard and $\Omega^{2(n-i)}X_n \cong \Omega^{-1}T_i$ for some simple Λ -modules $T_i(1 \le i \le n)$. Also by Proposition 1.4, the hearts $\Omega^{2(n-i)}X_{n-1}$ of P_{T_i} are uniserial and their Loewy series, from the head, are given by $T_{i-1}, T_{i-2}, \dots, T_1, S, T_n, T_{n-1}, \dots, T_{i+1}$. We claim that $T_i \not\cong T_j$ if $i \ne j$. Indeed, since S appears only in the (i+1)th head of P_{T_i} , we have $P_{T_i} \not\cong P_{T_j}$ if $i \ne j$.

REMARK 1.6. Under the same notation as in Proposition 1.4, suppose that Θ is an infinite *m*-tube. Then it follows that n+1 < m since $\Omega^{-1}T_i \not\cong \Omega^{-1}T_j$ if $i \neq j$.

S. KAWATA

2. AR-components of group algebras and simple modules

In this section, we show that under certain conditions all simple modules in a wild block B of the group algebra kG lie at the ends of the AR-components.

Theorem 2.1. Let B be a wild block of kG. Suppose that G has a non-trivial normal p-subgroup and k is algebraically closed. Then all simple modules in B lie at the ends of the AR-components.

Proof. Let Q be a non-trivial normal *p*-subgroup of *G*. Assume contrary that some simple module in *B* does not lie at the end. Then for some simple modules S, T_1, \dots, T_n , the projective covers P_{T_i} of T_i $(1 \le i \le n)$ are uniserial and the Loewy series are as in Theorem 1.5. In particular the Cartan integers $c_{T_iT_i} = 2$.

CLAIM 1. n = 1, i.e., for some simple modules S and T, the Loewy series of the projective cover P_T of T is given by T, S, T.

Proof of the Claim 1. From the result of Tsushima [10, Lemma 3], T_i are projective as k(G/Q)-modules, i.e., $vx(T_i) = Q$ and the trivial kQ-module k_Q is a source of T_i . Now assume contrary that $n \ge 2$. Since $T_1 \cong \Omega^2 T_2$, it follows that $k_Q \cong \Omega^2 k_Q$ and Q is cyclic. However, by the result of Erdmann [4, Theorem] T_i belong to a block with a cyclic defect group, a contradiction.

CLAIM 2. We have p = 2 and Q is the Klein four group.

Proof of the Claim 2. Since $T \downarrow_Q$ and $S \downarrow_Q$ are direct sums of copies of k_Q , the length of Loewy series of $P_T \downarrow_Q$ is at most 3. Hence Q is the Klein four group by the result of Okuyama [9].

Let H_S be the heart of the projective cover P_S of S and Θ the AR-component containing ΩS . Then $H_S \cong T \oplus X$ for some indecomposable non-projective module X. We consider the wing spanned by X:

CLAIM 3. $vx(X) \geqq Q$.

Proof of the Claim 3. Assume contrary that vx(X) = Q. Note that the AR-component containing S is not a tube, since $k_Q|S\downarrow_Q$ and k_Q is not a periodic

module. Since vx(T) = Q, from the result of Okuyama and Uno [8, Theorem], all the indecomposable modules in Θ have the same vertex Q. Since Θ is of the form $\mathbb{Z}A_{\infty}$, the class of the Q-sources of the indecomposable modules in Θ consists of infinitely many Ω^2 -orbits. However this would be impossible because non-periodic indecomposable kQ-modules are the syzygies of the trivial module k_Q only (see, e.g., [2]).

Now we consider the following two cases.

CASE 1. $\operatorname{vx}(\Omega^{-1}S) \geqq \mathcal{Q}$. The AR-sequence $\mathcal{A}(\Omega^{-1}S) \downarrow_{\mathcal{Q}}$ restricted to \mathcal{Q} splits [2, Proposition 4.12.10]. However, $\Omega^{-1}S \downarrow_{\mathcal{Q}}$ (resp. $\Omega S \downarrow_{\mathcal{Q}}$) is a direct sum of copies of $\Omega^{-1}k_{\mathcal{Q}}$ (resp. $\Omega k_{\mathcal{Q}}$) but $T \downarrow_{\mathcal{Q}}$ is a direct sum of copies of $k_{\mathcal{Q}}$, a contradiction.

CASE 2. $\operatorname{vx}(\Omega^{-1}S) = \mathcal{Q}, \operatorname{vx}(X) \geqq \mathcal{Q}$. The AR-sequence $\mathcal{A}(\Omega^{-1}S) \downarrow_{\mathcal{Q}}$ restricted to \mathcal{Q} is a direct sum of split sequences and m copies of AR-sequence $\mathcal{A}(\Omega^{-1}k_{\mathcal{Q}})$ for some m. Since $S \downarrow_{\mathcal{Q}} \cong (\dim S)k_{\mathcal{Q}}$ and $\Omega^{-1}S \downarrow_{\mathcal{Q}} \cong (\dim S)\Omega k_{\mathcal{Q}}$, we have $m \leq \dim S$. On the other hand, since $\dim(\operatorname{Soc}(P_S \downarrow_{\mathcal{Q}})) \geq \dim S$ and $(\dim S)k\mathcal{Q}|P_S \downarrow_{\mathcal{Q}}$, we have $m \geq \dim S$. Therefore $m = \dim S$. This means that the AR-sequence $\mathcal{A}(\Omega^{-1}S) \downarrow_{\mathcal{Q}}$ restricted to \mathcal{Q} is a direct sum of $(\dim S)$ copies of the AR-sequence $\mathcal{A}(\Omega^{-1}k_{\mathcal{Q}})$ and $X \downarrow_{\mathcal{Q}}$ is a direct sum of copies of $k_{\mathcal{Q}}$. Since $\operatorname{vx}(X) \geqq \mathcal{Q}$, the AR-sequence $\mathcal{A}(X) \downarrow_{\mathcal{Q}}$ restricted to \mathcal{Q} splits. However $\Omega k_{\mathcal{Q}}$ is a direct summand of $\Omega S \downarrow_{\mathcal{Q}}$, which is a direct summand of the middle term of $\mathcal{A}(X) \downarrow_{\mathcal{Q}}$, a contradiction.

Corollary 2.2. Let B a wild block of kG. Suppose that G is p-solvable and k is algebraically closed. Then all simple modules in B lie at the ends of the AR-components.

Proof. Assume that some simple module does not lie at the end. Then by Theorem 1.5 and the result of Tsushima [10, Theorem], there is a finite group H with normal *p*-subgroup such that B and kH are Morita equivalent. However by Theorem 2.1 all simple kH-modules lie at the ends of the AR-components, a contradiction.

References

^[1] M. Auslander and I. Reiten: Representations of Artin algebras, IV: Invariants given by almost split sequences, Comm. Algebra, 5 (1977), 443-518.

^[2] D.J. Benson: Representations and cohomology I, Cambridge Studies in Advanced Mathematics 30, Cambridge Univ. Press, Cambridge, 1991.

^[3] C. Bessenrodt: Modular representation theory for blocks with cyclic defect groups via the Auslander-Reiten quiver, J. Algebra, 140 (1991), 247-262.

S. KAWATA

- [4] K. Erdmann: Blocks and simple modules with cyclic vertices, Bull. London Math. Soc. 9 (1977), 216–218.
- [5] K. Erdmann: Blocks of Tame Representation Type and Related Algebras, Lecture Note in Mathematics 1428, Springer-Verlag, Berlin/New York, 1990.
- [6] K. Erdmann: On Auslander-Reiten components for group algebras, J. Pure Appl. Algebra, 104 (1995), 149–160.
- [7] T. Jost: On Specht modules in the Auslander-Reiten quiver, J. Algebra, 173 (1995), 281-301.
- [8] T. Okuyama and K. Uno: On the vertices of modules in the Auslander-Reiten quiver II, Math. Z. 217 (1994), 121–141.
- [9] T. Okuyama: On blocks of finite groups with radical cube zero, Osaka J. Math. 23 (1986), 461-465.
- [10] Y. Tsushima: A note on Cartan integers for p-solvable groups, Osaka J. Math. 20 (1983), 675-679.

Department of Mathematics Osaka City University Sugimoto, Sumiyoshi-ku Osaka 558, Japan

688