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Let R[z1,- -, 5] be a ring of polynomials of n (n > 3) indeterminates with
coefficients in R.

Let ¢ = (é1,.-.,¢n) € (R[z1,- -+, z,])"™ be a polynomial map from R™ to R™.
Let z = (z1,2,...,%s) and define

n n

An,a(Z) 1= fo - aHa:,- € Rzy, 22, ...,Zy).
i=1 i=1
where a (# 0) € R. We will write X in stead of A, , if no confusion happens. A, ,
is called an invariant factor of ¢ if

(l) )\n,ao¢= )‘n,a,-
Now let
Gn,a = {(;b’ ¢ € (R[wl, .. -’mn])nv )\n,a o ¢ = A'n,a,},

that is, G, o is the set of polynomial maps of which invariant factor is A, . The
main aim of this note is to determine the structure of Gy, q.
Let Q,, = {x € R; A\, 4(x) = 0}. Then by the equality (1), for any n € N,

3" (Qn,a) C Qna,

that is, 2, , is an invariant variety of ¢™, where ¢™ denotes n—th iteration of ¢
(see [3]). By using this property, we may investigate the asymptotic dynamical
behaviours of iterations of ¢ ([1, 2, 3]). We are led naturally to study the structure
of G, . In fact, we will prove first that G, , is a group, then we will determine the

generators of the group.
In the case n = 3, we have showed the following:

Theorem 1 ([2]).  With the notations above, G3 1 = (71,72, 73,7T4) iS a group
generated by T1(z,y,2) = (y,z,2), 2(z,y,2) = (2,y,x), 13(z,y,2) = (—z,—y, 2),
14(z,y,2) = (z,y, zY — 2).
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The proof of Theorem 1 depends strongly on the reducibility of polynomial
u? +v? — auv, but when n > 4, the corresponding polynomial that we have to treat
is irreducible, thus the method for n = 3 is failed.

Let p € R[zy,...,2,), ¢ € (R[z1,...,z,])", we denote by degp the degree of
the polynomial p , and define the degree of ¢ as degg =) .-, deg ¢;.

Let S,, be the symmetric group on n letters, we have

S, = {(.T,,,-(l),wﬁ(z),. - ,.’E.,r(n)); TE Sn} ~ S,.
So we can denote by 7 the permutation (Zr(1), Zr(2)s--+»Tr(n)) -
Lemma 1. Letn >3, a# 0, c is a constant, then A, , + c is irreducible.

Proof.  If the conclusion of the lemma is not true, then A, , + c is reducible,
i.e. we have the non-trivial factorization of A\, 4 + ¢

(%) A + €= p1pa.

Thus if we consider A, , + ¢ as a polynomial of z, with degree 2, then we have
either

b1 = fl(mla L] axn~1)xn +gl($l7 .. '7:1:71.—1)’

p2 = f2(.’131, .. .,.Z‘n_l).’ljn -}—gz(:l‘l, - ,$n._1)

or

P = fl(xlv .. ~axn—1)f17121 + 91(331, .. .,l‘n_l)fEn + hZ("El" .. 71‘71—1)7

P2 = fg(.’lfl, . .,.'Bn_l).

From the hypothesis n > 3 and by comparing the degree of two sides of the equality
(%), it is easy to see that the factorizations above are impossible for both cases. This
proves the lemma. O

Now define ¢ = (z1,x2,...,Tn_1,0a H?z—ll Z;—Ty), which will play an important
role in the studies of this note. By a direct calculation, we see immediately ¢ € G, 4.

Lemma 2. Let ¢ € G, ,. Ifdeg¢ > n, then there exists m € S,, such that
deg(y oo ¢) < deg ¢.

Proof. Because we can find a permutation 7, such that

deg dr(1) < degdr(z) < -+ < deg Pr(n)-
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we can assume that
2) deg ¢, > deg 1 > -+ > deg .

Since deg ¢ > n, we have deg ¢, > 2. From the equality (1),

n—1 n—1 n n
=1 =1 i=1 i=1

1. If deg ¢, # deg (a | § ¢i), then

n—1 n—1
deg (¢n -a]] @-) = sup {degasn, deg (a II @) } :
=1

i=1
Thus by (2) and (3), we have
n—1 n
degAn,q = n = sup {deg¢n, deg(a [ @)} +degn, > Y degd; = deg >,
i=1 i=1

This contradiction follows that

4 deg ¢, = deg(dy -+ dn—1).

2. If deg ¢, = deg ¢,,_1, then by (4), we have degp; =0, 1 <7 <n — 2. Thus
from the equality (3), there exists constants ¢; and cg, such that

@2 + ¢2_1 — acibppn_1 = fo - GH%‘ + ca.
i=1

i=1

Notice that the left member of the equality above is reducible, but by Lemma 1, the
right member of the equality above is irreducible, this contraction yields that

) deg ¢, > deg dn_1.

3. Ifdeg (a ]_[;;_11 b — cﬁn) = deg ¢y, then

n—1
(6) deg <H @) < deg ¢

=1
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Using (5), (6) and using the analyses similar to the case 1, we have

n=degA =deglo¢p=2dego, > Zdegq&i = deg¢o > n.

i=1

This contradiction implies that deg (a H?:_ll ¢; — q§n) # deg ¢, thus from (4), we
have deg (a H;:ll i — ¢n) < deg ¢,,. By the definition of 1, we obtain finally

deg(y o mo ¢) < deg¢.

Now, define p = (—z1, —Z2,Z3,...,Ty).

Lemma 3. Let L, = {¢ € Gp; dego; =1, 1 < i < n}, then L, is a group
generated by S,, and p.

Proof. Since deg¢; = 1, we can write ¢; := ¢;(z1,...,T,) = hi(T1,...,Zn)+
c;, where h; are homogeneous linear polynomials of zq,...,z,, and ¢; € R are
constants. By the equality (1),

n

@) Z(hi—f—ci)z —aH(hi-i-ci) = zn:xf —aﬁ:ci.
1=1 =1

=1 =1

By comparing the coefficients of the terms of degree n of the two sides of (7), we
have h; = d;z,(;), where d; € R, m € S,,. By comparing the coefficients of the terms
of degree n — 1, we have ¢; = 0. By comparing the coefficients of the square terms,
we have d? = 1, 1 <i < n. Finally notice that |{i; d; = —1, 1 <i <n}| € 2N and
notice the role of the action of p, we obtain this lemma. O

Lemma 4. Let ¢ € G . Then for any i, 1 < i < n, we have deg¢p; > 1.
Moreover, there exists ¢ € (1, S,,), such that

deg(p o)1 =--- =deg(pod)n = 1.

Proof. = We prove the lemma by induction. By Theorem 4 of §3 of [1], the
lemma holds for n = 3. Now suppose that the conclusions of the lemma are true
for the positive integers less than n (n > 4).

If deg ¢ > n, by using Lemma 2 repeatedly, we can decrease the degree of ¢ by
using 9 and a suitable 7 € S,,, and the degree of each component of ¢ does not
increase. Thus we can assume that deg¢ < n.

If the conclusion of the lemma is not true, then there exists some ¢;, being ¢,
without loosing generality, such that ¢,, = ¢, where c is a constant. If ¢ = 0, by the



A CLASS OF POLYNOMIAL MAPS 677
equality (1),

Notice that the left member of the equality (8) is always non-negative. But for n > 3,
we can choose z1,...,Zy, such that the right member of the equality (8) is strictly
negative. thus ¢ # 0.

Now let ¢ = (¢1,...,Pn_1,¢), ¢ # 0. Define

¢§])(:121,...,:Ifj_l,il)j+1,...,wn) =
Gi(T1,. ., Tj=1,C,Tj41,- .- Tn) ER[T1,...,Zj—1,Tj41,...,Tn),
¢(J)(ac1,...,:cj_l,zj+1,...,xn) =

((ﬁgj), - ,¢£ljll) € (R[CL’l, e L1, T4y e ,.’L’n])n_l.

where 1 < j <n.
From (1) and ¢, = ¢, we check directly for any j, 1<j<n

(9) )‘n—l,ca o ¢(]) = )‘n—l,ca'
Since deg ¢ < n, we have degg) <n, 1 <j <n.

1. Suppose that deg ) = n.
By Lemma 2, there exists m € S,—1{1,...,5 — 1,5 +1,...,n} such that

(10) degyp oo ) < degp) = n,
where
w(J)((Ifl, .. ,fj_1,$j+1,. .. 7$'n.)
= (131, vy Tj—1,Tj415+ -+ yTpn—1, ACT1 " Tj-1Tj41-.-Tp—1 — :rn)

From (9) and the induction hypothesis, we have
1/)(]) oo ¢(]) = (Egj)l’_r(j)(l), e 75§j_)1xr(1)(]‘—1)9 E§{21$T(1)(j+1)7 e ’Egzj)xr(j)(n)):

where 7@ € S,_1{1,...,j — 1,7 +1,...,n}, e = +1.
Since ()2 = id, we have

(1 1) ¢(J) = 7'('_1 o (egj)a:.,.(j)(l), PN ’E‘gj—)le(j)(j—l)a E;j_,zll’.r(j)(j_‘_l), ey

aCEEJ)-’ETU‘)(l) n '55']_)13570)(j—1)€§]131$r<f>(j+1) o 65321%0)(11—1) - Efzj)wr(:')(n))-
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Since ¢U) = (¢1,...,¢n-1)|, _, for any c and ¢ is a polynomial in z1,...,z,, it
=
follows from (11) that
(¢1,- pn1) =710 (ng)ﬂvf(j)(l), .- -,E§j_)1$f<j>(j_1),5;21$T<j>(j+1), cees

awﬁgj)irfm(l) e Eg-j_)lwﬂj)(j_l)fgﬁlxﬂﬂ(j+1) - 'EgZIIT(j)(n—l) - Eg)xr(ﬂ')(n))'
for some m and 7. Therefore,
n > deg¢ =2n — 3,
which contradicts with n > 4.

2. Now suppose that degp) <n—1forj=1,... n.
From (9) and by the induction hypothesis, we have

(12) (b(j) = (E(lj)xT(j)(l), cee ,E;j_)lai,,.(j)(j_l), E;leT(j)(j+1), cen ,E%j)a:.r(j)(n)).
for any ¢, where 7@ e Sp—1{l,...,5—1,j+1,...,n}, egj) = +1 and they may
depend on c. Since ¢ = (¢17--~7¢n—1)|z_=c for any ¢ and ¢ is a polynomial
in x1,...,xy,, it follows from (12) that (¢1,...,¢,—1) is independent of z; for any
j=1,...,n. Thus, deg¢ = 0, which is absurd since ¢ € G, ,.

These contradictions come from the hypothesis that ¢; = ¢ for some i, so we
have deg¢; > 1 for ¢ =1,...,n. Since deg ¢ < n, this implies that

degpy = --- = degdn =1,

which completes the proof of Lemma 4. [

Corollary 1.  Suppose that ¢ € G, o. Then there exists ¢ € G, o, Such that

® o) ¢) = (dlmw(l)’ e ,anTr(n))

Proof. It follows immediately from Lemma 3 and Lemma 4. Ol
The foregoing results complete the proof of the following

Theorem 2. G, , is a group generated by S, p and .
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