STRUCTURE OF A CLASS OF POLYNOMIAL MAPS WITH INVARIANT FACTORS

Zhi-Xiong WEN and Zhi-Ying WEN

(Received May 23, 1996)

Let $\mathbf{R}\left[x_{1}, \cdots, x_{n}\right]$ be a ring of polynomials of $n(n \geq 3)$ indeterminates with coefficients in \mathbf{R}.

Let $\phi=\left(\phi_{1}, \ldots, \phi_{n}\right) \in\left(\mathbf{R}\left[x_{1}, \cdots, x_{n}\right]\right)^{n}$ be a polynomial map from \mathbf{R}^{n} to \mathbf{R}^{n}. Let $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and define

$$
\lambda_{n, a}(x):=\sum_{i=1}^{n} x_{i}^{2}-a \prod_{i=1}^{n} x_{i} \in \mathbf{R}\left[x_{1}, x_{2}, \ldots, x_{n}\right]
$$

where $a(\neq 0) \in \mathbf{R}$. We will write λ in stead of $\lambda_{n, a}$ if no confusion happens. $\lambda_{n, a}$ is called an invariant factor of ϕ if

$$
\begin{equation*}
\lambda_{n, a} \circ \phi=\lambda_{n, a} . \tag{1}
\end{equation*}
$$

Now let

$$
G_{n, a}=\left\{\phi ; \phi \in\left(\mathbf{R}\left[x_{1}, \ldots, x_{n}\right]\right)^{n}, \lambda_{n, a} \circ \phi=\lambda_{n, a}\right\},
$$

that is, $G_{n, a}$ is the set of polynomial maps of which invariant factor is $\lambda_{n, a}$. The main aim of this note is to determine the structure of $G_{n, a}$.

Let $\Omega_{n, a}=\left\{x \in \mathbf{R} ; \lambda_{n, a}(x)=0\right\}$. Then by the equality (1), for any $n \in \mathbf{N}$,

$$
\phi^{n}\left(\Omega_{n, a}\right) \subset \Omega_{n, a},
$$

that is, $\Omega_{n, a}$ is an invariant variety of ϕ^{n}, where ϕ^{n} denotes $n-$ th iteration of ϕ (see [3]). By using this property, we may investigate the asymptotic dynamical behaviours of iterations of $\phi([1,2,3])$. We are led naturally to study the structure of $G_{n, a}$. In fact, we will prove first that $G_{n, a}$ is a group, then we will determine the generators of the group.

In the case $n=3$, we have showed the following:
Theorem 1 ([2]). With the notations above, $G_{3,1}=\left\langle\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}\right\rangle$ is a group generated by $\tau_{1}(x, y, z)=(y, x, z), \tau_{2}(x, y, z)=(z, y, x), \tau_{3}(x, y, z)=(-x,-y, z)$, $\tau_{4}(x, y, z)=(x, y, x y-z)$.

The proof of Theorem 1 depends strongly on the reducibility of polynomial $u^{2}+v^{2}-a u v$, but when $n \geq 4$, the corresponding polynomial that we have to treat is irreducible, thus the method for $n=3$ is failed.

Let $p \in \mathbf{R}\left[x_{1}, \ldots, x_{n}\right], \phi \in\left(\mathbf{R}\left[x_{1}, \ldots, x_{n}\right]\right)^{n}$, we denote by $\operatorname{deg} p$ the degree of the polynomial p, and define the degree of ϕ as $\operatorname{deg} \phi=\sum_{i=1}^{n} \operatorname{deg} \phi_{i}$.

Let S_{n} be the symmetric group on n letters, we have

$$
\mathcal{S}_{n}:=\left\{\left(x_{\pi(1)}, x_{\pi(2)}, \ldots, x_{\pi(n)}\right) ; \pi \in S_{n}\right\} \simeq S_{n}
$$

So we can denote by π the permutation $\left(x_{\pi(1)}, x_{\pi(2)}, \ldots, x_{\pi(n)}\right)$.
Lemma 1. Let $n \geq 3, a \neq 0, c$ is a constant, then $\lambda_{n, a}+c$ is irreducible.
Proof. If the conclusion of the lemma is not true, then $\lambda_{n, a}+c$ is reducible, i.e. we have the non-trivial factorization of $\lambda_{n, a}+c$

$$
\begin{equation*}
\lambda_{n, a}+c=p_{1} p_{2} . \tag{*}
\end{equation*}
$$

Thus if we consider $\lambda_{n, a}+c$ as a polynomial of x_{n} with degree 2 , then we have either

$$
\begin{aligned}
& p_{1}=f_{1}\left(x_{1}, \ldots, x_{n-1}\right) x_{n}+g_{1}\left(x_{1}, \ldots, x_{n-1}\right), \\
& p_{2}=f_{2}\left(x_{1}, \ldots, x_{n-1}\right) x_{n}+g_{2}\left(x_{1}, \ldots, x_{n-1}\right)
\end{aligned}
$$

or

$$
\begin{aligned}
& p_{1}=f_{1}\left(x_{1}, \ldots, x_{n-1}\right) x_{n}^{2}+g_{1}\left(x_{1}, \ldots, x_{n-1}\right) x_{n}+h_{2}\left(x_{1}, \ldots, x_{n-1}\right), \\
& p_{2}=f_{2}\left(x_{1}, \ldots, x_{n-1}\right) .
\end{aligned}
$$

From the hypothesis $n \geq 3$ and by comparing the degree of two sides of the equality $(*)$, it is easy to see that the factorizations above are impossible for both cases. This proves the lemma.

Now define $\psi=\left(x_{1}, x_{2}, \ldots, x_{n-1}, a \prod_{i=1}^{n-1} x_{i}-x_{n}\right)$, which will play an important role in the studies of this note. By a direct calculation, we see immediately $\psi \in G_{n, a}$.

Lemma 2. Let $\phi \in G_{n, a}$. If $\operatorname{deg} \phi>n$, then there exists $\pi \in \mathcal{S}_{n}$, such that $\operatorname{deg}(\psi \circ \pi \circ \phi)<\operatorname{deg} \phi$.

Proof. Because we can find a permutation π, such that

$$
\operatorname{deg} \phi_{\pi(1)} \leq \operatorname{deg} \phi_{\pi(2)} \leq \cdots \leq \operatorname{deg} \phi_{\pi(n)}
$$

we can assume that

$$
\begin{equation*}
\operatorname{deg} \phi_{n} \geq \operatorname{deg} \phi_{n-1} \geq \cdots \geq \operatorname{deg} \phi_{1} \tag{2}
\end{equation*}
$$

Since $\operatorname{deg} \phi>n$, we have $\operatorname{deg} \phi_{n} \geq 2$. From the equality (1),

$$
\begin{equation*}
\left(\phi_{n}-a \prod_{i=1}^{n-1} \phi_{i}\right) \phi_{n}+\sum_{i=1}^{n-1} \phi_{i}^{2}=\sum_{i=1}^{n} x_{i}^{2}-a \prod_{i=1}^{n} x_{i} \tag{3}
\end{equation*}
$$

1. If $\operatorname{deg} \phi_{n} \neq \operatorname{deg}\left(a \prod_{i=1}^{n-1} \phi_{i}\right)$, then

$$
\operatorname{deg}\left(\phi_{n}-a \prod_{i=1}^{n-1} \phi_{i}\right)=\sup \left\{\operatorname{deg} \phi_{n}, \operatorname{deg}\left(a \prod_{i=1}^{n-1} \phi_{i}\right)\right\} .
$$

Thus by (2) and (3), we have

$$
\operatorname{deg} \lambda_{n, a}=n=\sup \left\{\operatorname{deg} \phi_{n}, \operatorname{deg}\left(a \prod_{i=1}^{n-1} \phi_{i}\right)\right\}+\operatorname{deg} \phi_{n} \geq \sum_{i=1}^{n} \operatorname{deg} \phi_{i}=\operatorname{deg} \phi>n
$$

This contradiction follows that

$$
\begin{equation*}
\operatorname{deg} \phi_{n}=\operatorname{deg}\left(\phi_{1} \cdots \phi_{n-1}\right) \tag{4}
\end{equation*}
$$

2. If $\operatorname{deg} \phi_{n}=\operatorname{deg} \phi_{n-1}$, then by (4), we have $\operatorname{deg} \phi_{i}=0,1 \leq i \leq n-2$. Thus from the equality (3), there exists constants c_{1} and c_{2}, such that

$$
\phi_{n}^{2}+\phi_{n-1}^{2}-a c_{1} \phi_{n} \phi_{n-1}=\sum_{i=1}^{n} x_{i}^{2}-a \prod_{i=1}^{n} x_{i}+c_{2}
$$

Notice that the left member of the equality above is reducible, but by Lemma 1, the right member of the equality above is irreducible, this contraction yields that

$$
\begin{equation*}
\operatorname{deg} \phi_{n}>\operatorname{deg} \phi_{n-1} . \tag{5}
\end{equation*}
$$

3. If $\operatorname{deg}\left(a \prod_{i=1}^{n-1} \phi_{i}-\phi_{n}\right)=\operatorname{deg} \phi_{n}$, then
(6)

$$
\operatorname{deg}\left(\prod_{i=1}^{n-1} \phi_{i}\right) \leq \operatorname{deg} \phi_{n}
$$

Using (5), (6) and using the analyses similar to the case 1 , we have

$$
n=\operatorname{deg} \lambda=\operatorname{deg} \lambda \circ \phi=2 \operatorname{deg} \phi_{n} \geq \sum_{i=1}^{n} \operatorname{deg} \phi_{i}=\operatorname{deg} \phi>n
$$

This contradiction implies that $\operatorname{deg}\left(a \prod_{i=1}^{n-1} \phi_{i}-\phi_{n}\right) \neq \operatorname{deg} \phi_{n}$, thus from (4), we have $\operatorname{deg}\left(a \prod_{i=1}^{n-1} \phi_{i}-\phi_{n}\right)<\operatorname{deg} \phi_{n}$. By the definition of ψ, we obtain finally

$$
\operatorname{deg}(\psi \circ \pi \circ \phi)<\operatorname{deg} \phi
$$

Now, define $\rho=\left(-x_{1},-x_{2}, x_{3}, \ldots, x_{n}\right)$.
Lemma 3. Let $\mathcal{L}_{n}=\left\{\phi \in G_{n} ; \operatorname{deg} \phi_{i}=1,1 \leq i \leq n\right\}$, then \mathcal{L}_{n} is a group generated by \mathcal{S}_{n} and ρ.

Proof. Since $\operatorname{deg} \phi_{i}=1$, we can write $\phi_{i}:=\phi_{i}\left(x_{1}, \ldots, x_{n}\right)=h_{i}\left(x_{1}, \ldots, x_{n}\right)+$ c_{i}, where h_{i} are homogeneous linear polynomials of x_{1}, \ldots, x_{n}, and $c_{i} \in \mathbf{R}$ are constants. By the equality (1),

$$
\begin{equation*}
\sum_{i=1}^{n}\left(h_{i}+c_{i}\right)^{2}-a \prod_{i=1}^{n}\left(h_{i}+c_{i}\right)=\sum_{i=1}^{n} x_{i}^{2}-a \prod_{i=1}^{n} x_{i} . \tag{7}
\end{equation*}
$$

By comparing the coefficients of the terms of degree n of the two sides of (7), we have $h_{i}=d_{i} x_{\pi(i)}$, where $d_{i} \in \mathbf{R}, \pi \in S_{n}$. By comparing the coefficients of the terms of degree $n-1$, we have $c_{i}=0$. By comparing the coefficients of the square terms, we have $d_{i}^{2}=1,1 \leq i \leq n$. Finally notice that $\left|\left\{i ; d_{i}=-1,1 \leq i \leq n\right\}\right| \in 2 \mathbf{N}$ and notice the role of the action of ρ, we obtain this lemma.

Lemma 4. Let $\phi \in G_{n, a}$. Then for any $i, 1 \leq i \leq n$, we have $\operatorname{deg} \phi_{i} \geq 1$. Moreover, there exists $\varphi \in\left\langle\psi, \mathcal{S}_{n}\right\rangle$, such that

$$
\operatorname{deg}(\varphi \circ \phi)_{1}=\cdots=\operatorname{deg}(\varphi \circ \phi)_{n}=1
$$

Proof. We prove the lemma by induction. By Theorem 4 of $\S 3$ of [1], the lemma holds for $n=3$. Now suppose that the conclusions of the lemma are true for the positive integers less than $n(n \geq 4)$.

If $\operatorname{deg} \phi>n$, by using Lemma 2 repeatedly, we can decrease the degree of ϕ by using ψ and a suitable $\pi \in S_{n}$, and the degree of each component of ϕ does not increase. Thus we can assume that $\operatorname{deg} \phi \leq n$.

If the conclusion of the lemma is not true, then there exists some ϕ_{i}, being ϕ_{n} without loosing generality, such that $\phi_{n} \equiv c$, where c is a constant. If $c=0$, by the
equality (1),

$$
\begin{equation*}
\phi_{1}^{2}+\cdots+\phi_{n-1}^{2}=x_{1}^{2}+\cdots+x_{n}^{2}-a x_{1} x_{2} \cdots x_{n} \tag{8}
\end{equation*}
$$

Notice that the left member of the equality (8) is always non-negative. But for $n \geq 3$, we can choose x_{1}, \ldots, x_{n}, such that the right member of the equality (8) is strictly negative. thus $c \neq 0$.

Now let $\phi=\left(\phi_{1}, \ldots, \phi_{n-1}, c\right), c \neq 0$. Define

$$
\begin{aligned}
\phi_{i}^{(j)}\left(x_{1}, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{n}\right) & := \\
\phi_{i}\left(x_{1}, \ldots, x_{j-1}, c, x_{j+1}, \ldots, x_{n}\right) & \in \mathbf{R}\left[x_{1}, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{n}\right] \\
\phi^{(j)}\left(x_{1}, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{n}\right) & := \\
\left(\phi_{1}^{(j)}, \ldots, \phi_{n-1}^{(j)}\right) & \in\left(\mathbf{R}\left[x_{1}, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{n}\right]\right)^{n-1} .
\end{aligned}
$$

where $1 \leq j \leq n$.
From (1) and $\phi_{n} \equiv c$, we check directly for any $j, 1 \leq j \leq n$

$$
\begin{equation*}
\lambda_{n-1, c a} \circ \phi^{(j)}=\lambda_{n-1, c a} . \tag{9}
\end{equation*}
$$

Since $\operatorname{deg} \phi \leq n$, we have $\operatorname{deg} \phi^{(j)} \leq n, 1 \leq j \leq n$.

1. Suppose that $\operatorname{deg} \phi^{(j)}=n$.

By Lemma 2, there exists $\pi \in \mathcal{S}_{n-1}\{1, \ldots, j-1, j+1, \ldots, n\}$ such that

$$
\begin{equation*}
\operatorname{deg} \psi^{(j)} \circ \pi \circ \phi^{(j)}<\operatorname{deg} \phi^{(j)}=n, \tag{10}
\end{equation*}
$$

where

$$
\begin{aligned}
& \psi^{(j)}\left(x_{1}, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{n}\right) \\
& =\left(x_{1}, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{n-1}, \text { acx } x_{1} \cdots x_{j-1} x_{j+1} \ldots x_{n-1}-x_{n}\right)
\end{aligned}
$$

From (9) and the induction hypothesis, we have

$$
\psi^{(j)} \circ \pi \circ \phi^{(j)}=\left(\varepsilon_{1}^{(j)} x_{\tau^{(j)}(1)}, \ldots, \varepsilon_{j-1}^{(j)} x_{\tau^{(j)}(j-1)}, \varepsilon_{j+1}^{(j)} x_{\tau^{(j)}(j+1)}, \ldots, \varepsilon_{n}^{(j)} x_{\tau^{(j)}(n)}\right),
$$

where $\tau^{(j)} \in \mathcal{S}_{n-1}\{1, \ldots, j-1, j+1, \ldots, n\}, \varepsilon_{i}^{(j)}= \pm 1$.
Since $\left(\psi^{(j)}\right)^{2}=i d$, we have

$$
\begin{equation*}
\phi^{(j)}=\pi^{-1} \circ\left(\varepsilon_{1}^{(j)} x_{\tau^{(j)}(1)}, \ldots, \varepsilon_{j-1}^{(j)} x_{\tau^{(j)}(j-1)}, \varepsilon_{j+1}^{(j)} x_{\tau^{(j)}(j+1)}, \ldots,\right. \tag{11}
\end{equation*}
$$

$$
\left.a c \varepsilon_{1}^{(j)} x_{\tau^{(j)}(1)} \cdots \varepsilon_{j-1}^{(j)} x_{\tau^{(j)}(j-1)} \varepsilon_{j+1}^{(j)} x_{\tau^{(j)}(j+1)} \cdots \varepsilon_{n-1}^{(j)} x_{\tau^{(j)}(n-1)}-\varepsilon_{n}^{(j)} x_{\tau^{(j)}(n)}\right)
$$

Since $\phi^{(j)}=\left.\left(\phi_{1}, \ldots, \phi_{n-1}\right)\right|_{x_{j}=c}$ for any c and ϕ is a polynomial in x_{1}, \ldots, x_{n}, it follows from (11) that

$$
\begin{aligned}
& \left(\phi_{1}, \ldots, \phi_{n-1}\right)=\pi^{-1} \circ\left(\varepsilon_{1}^{(j)} x_{\tau^{(j)}(1)}, \ldots, \varepsilon_{j-1}^{(j)} x_{\tau^{(j)}(j-1)}, \varepsilon_{j+1}^{(j)} x_{\tau^{(j)}(j+1)}, \ldots,\right. \\
& \left.a x_{j} \varepsilon_{1}^{(j)} x_{\tau^{(j)}(1)} \cdots \varepsilon_{j-1}^{(j)} x_{\tau^{(j)}(j-1)} \varepsilon_{j+1}^{(j)} x_{\tau^{(j)}(j+1)} \cdots \varepsilon_{n-1}^{(j)} x_{\tau^{(j)}(n-1)}-\varepsilon_{n}^{(j)} x_{\tau^{(j)}(n)}\right) .
\end{aligned}
$$

for some π and τ. Therefore,

$$
n \geq \operatorname{deg} \phi=2 n-3
$$

which contradicts with $n \geq 4$.
2. Now suppose that $\operatorname{deg} \phi^{(j)} \leq n-1$ for $j=1, \ldots, n$.

From (9) and by the induction hypothesis, we have

$$
\begin{equation*}
\phi^{(j)}=\left(\varepsilon_{1}^{(j)} x_{\tau^{(j)}(1)}, \ldots, \varepsilon_{j-1}^{(j)} x_{\tau^{(j)}(j-1)}, \varepsilon_{j+1}^{(j)} x_{\tau^{(j)}(j+1)}, \ldots, \varepsilon_{n}^{(j)} x_{\tau^{(j)}(n)}\right) . \tag{12}
\end{equation*}
$$

for any c, where $\tau^{(j)} \in \mathcal{S}_{n-1}\{1, \ldots, j-1, j+1, \ldots, n\}, \varepsilon_{i}^{(j)}= \pm 1$ and they may depend on c. Since $\phi^{(j)}=\left.\left(\phi_{1}, \ldots, \phi_{n-1}\right)\right|_{x_{j}=c}$ for any c and ϕ is a polynomial in x_{1}, \ldots, x_{n}, it follows from (12) that $\left(\phi_{1}, \ldots, \phi_{n-1}\right)$ is independent of x_{j} for any $j=1, \ldots, n$. Thus, $\operatorname{deg} \phi=0$, which is absurd since $\phi \in G_{n, a}$.

These contradictions come from the hypothesis that $\phi_{i} \equiv c$ for some i, so we have $\operatorname{deg} \phi_{i} \geq 1$ for $i=1, \ldots, n$. Since $\operatorname{deg} \phi \leq n$, this implies that

$$
\operatorname{deg} \phi_{1}=\cdots=\operatorname{deg} \phi_{n}=1
$$

which completes the proof of Lemma 4.

Corollary 1. Suppose that $\phi \in G_{n, a}$. Then there exists $\varphi \in G_{n, a}$, such that

$$
\varphi \circ \phi=\left(d_{1} x_{\pi(1)}, \ldots, d_{n} x_{\pi(n)}\right) .
$$

Proof. It follows immediately from Lemma 3 and Lemma 4.
The foregoing results complete the proof of the following
Theorem 2. $\quad G_{n, a}$ is a group generated by \mathcal{S}_{n}, ρ and ψ.

References

[1] J. Peyrière, Z.-X. Wen and Z.-Y. Wen: On the dynamic behaviours of the iterations of the trace map associated with substitutive sequences, Nonlinear problems in engineering and science, ed. S. Xiao and X.-C. Hu, Science Press, Beijing, (1992), 259-266.
[2] J. Peyrière, Z.-Y. Wen et Z.-X. Wen: Polynômes associés aux endomorphismes de groupes libres, L'Enseignement Mathématique, 39 (1993), 153-175.
[3] J. Roberts and M. Baake: Trace maps as 3D reversible dynamical systems with an invariant, J. Stat. Phys. 74-3/4 (1994), 829-888.

Z.-X. Wen
Department of Physics
Wuhan University
Wuhan 430072, P. R. of China

Z.-Y. Wen
Department of Mathematics
Wuhan University
Wuhan 430072, P. R. of China

