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0. Introduction

We consider the initial value problem of the vortex filament equation on R3:
Pe=YxXVxx (I7:=1) (x is the exterior product).

In this paper, we will prove the existence and the uniqueness of a classical solution
for the initial value problem, and generalize it to the case of curves in 3-dimensional
space forms. We also consider related semilinear Schrodinger equations for curves
in Kéhler manifolds. It is remarkable that we need symmetric spaces as manifolds
for infinite time existence of solutions.

More precisely, we will get the following results.

Theorem 1.5. The initial value problem y,=y.x 7., (Iy.|=1) for closed curves
in the euclidean space R® has a unique solution on — oo <t<o0.

Theorem 2.2. Let M be an oriented 3-dimensional riemannian manifold with
constant curvature c¢. The initial value problem y,=v,.xV.,y. (Iy.|=1) for closed
curves in M has a unique solution on — oo <t<oo for any initial data.

Theorem 3.5. Let M be a Kdihler manifold. The initial value problem &,=JV &,
for closed curves in M has a unique short time solution for any initial data.

Theorem 4.2. Let M be a complete locally hermitian symmetric space. The
initial value problem &,=JV . E, for closed curves has a unique all time solution
(— oo <t<oo) for any initial value.

We also get

Theorem 1.3. Hasimoto’s transformation is well defined, even when the curvature
vanishes at some point.
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We use the following notations: On a riemannian manifold, we denote by V the
covariant derivation and by R the curvature tensor. The partial derivation is
denoted by 0 or the subscript, e.g., 0,7, .. We denote by (,*) the pointwise
inner product, by {(,*) the L, inner product for x-direction, by max|*| the
sup-norm for x-direction, by ||*| the L,-norm for x-direction. We use Einstein’s
summation convention.

We mainly consider closed curves and quasi-periodic curves. When curves
are not closed, we should set some appropriate boundedness condition or boundary
condition. We only treat C®-objects.

We will frequently use standard estimations:

©.1) IVl < Collnl =PIV )l < Collinll + 1V,
max |7 < Csllnli(Ilnll + V.11,

where we denote by V. *y the k-th covariant derivative (V,)*y. For a proof of
these facts, see e.g., [4]. As in estimation (0.1), we denote by C; constants depending
only on some given data.

After this work was done, the author received a preprint [7] by T. Nishiyama
and A. Tani. They prove the existence and uniqueness of a vortex filament
equation containing y,.,, which is more general than our equation. However,
their method can be applied only on the case of R*. (Compare with Theorem 2.2).

1. Vortex filament equation in the euclidean space
Let y be a solution of the equation: y,=y, X y,,. Then we see
Oulyxl* = 207V x) = 2V Vxx X Vxx + V5 X V) =0

Thus, if the initial data y(0,x) satisfies the condition |y (0,x)|=1, then the solution
satisfies |y, (¢,x)]=1. Therefore, if we set £=y,, then ¢ becomes a family of curves
in S2. We rewrite the equation by means of ¢ and get an equation:

§t=('YX X YIX)Xzé X ﬁxx *

Using the covariant derivation V and the complex structure J on S2, this equation
is expressed as

1.1) E=JV L.,

and locally as

2
= = 1(Zsx———22).
i = o
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We transform solutions of equation (1.1) by means of ‘development of curve’,
and will get a non-linear Schrodinger equation.

DErFINITION 1.1. Let ¢ be a curve in a riemannian manifold M and F={e;}
a parallel orthonormal frame field along c. (A parallel orthonormal frame field is
given by parallel translation along ¢ of an orthonormal frame at a point of ¢c) We
call such a pair a curve ¢ with frame field F. For a curve with frame field, we
represent its velocity vector as

c'(x)=u(x)e/x)

using Einstein’s summation convention. The integral [ui(x)dx is called the
development of c¢ to the euclidean space. In this paper, we do not use the
development itself, but the differential u=(u’) of the development. 1If ¢ is a closed
curve in M (i.e., parametrized on R/Z,) there is an orthogonal matrix P such that
Plefx+1)=e(x). Then we have u(x+1)=P'u/(x). We say that u is quasi-periodic
with correction P.

Let & be a solution of (1.1). We attach to it a frame field {e;}, and seek conditions
for the differential u of its development. We fix the orientation of the frame by
Je,=e,. Since V,e;=0,

ax(eb Vlel) = (e29Verel) = (ez’ R(éxa ét)el + Vtvxel)
=(¢ne)lner)—(Exelner)
=- (ngxa‘]el)uz + (Vxﬁx’Jez)ul

1
—v2u? —ulu' = —Eax|u|2.

Thus, we can choose the frame field {e;}, so that Ve, = —(1/2)|u|%,, and
hence V,e;= —(1/2)|&,|>Je;. Then,

) . . 1 .
(1.2) u:ei=Vt(u'ei)_ulvtei=vtéx+5'u|2ul‘lei
1o 2 1o
=Vxé,+§|u| u'Je,=JV, £x+£|u| u'Je;
. | I
=J(u.'xxei+§'u| u'e).

If the curves ¢ are closed, the quasi-periodicity condition of u becomes as
follows. Let P=P(f) be the correction of period of u. Then,
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d P D=V, (P 1 J
(E Jefx+1)=V(Pefx+1)— P Vefx+1)

1 ;
=V,e(x) +5|éx|2P’,-JeJ{x +1)=0.

Therefore P is constant.
We can reverse this procedure. That is, the solutions of equation (1.1) have
one-to-one correspondence to the solutions of equation (1.2) in the following sense.

Proposition 1.2. Let £(x) be a curve in S* with frame field F°=/{e}(x)}, and
u’(x) the differential of its development.

1) Let &(t,x) be a solution of initial value problem (1.1) with initial data £°. We
extend e(x) to eft,x) along by the ODEFE:

1
V= ~_2'Iéx|2']ei .

Then, for each t,, F={e(ty,x)} is a frame field along (to,x). And, the family u(t,x)
of the differential of the development of &(t,x) is a solution of initial value problem:

1
1.3) u,=J(uxx+§|u|2u).

Moreover, if & is a family of closed curves, then the correction of period of u is constant.
2) Conversely, let u(t,x) be a solution of (1.3) with initial data u°. We extend
{&,e7} to {&(t,x),eft,x)} by the system of ODEs:

. 1
E=Jule;, V,ei=—§u2Jei.

Then &(t,x) is a solution of initial value problem (1.1). Moreover, if £° is closed and if
u is quasi-periodic with constant correction, then & yields a family of closed curves.

If we regard the R?-valued function u as a complex valued function u! +./ — 1u?,
then u satisfies a so-called non-linear Schrodinger equation:

(1.4) u=1+/—- l(ux,+%|u|2u).

This transformation of solutions coincides with a transformation found by
Hasimoto ([3]). Hasimoto’s transformation is defined by

u= xexp(\m J“L’ dx)
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where x and t are the curvature and the torsion of . However, we should note
that this expression itself is not defined when the curvature k vanishes at some
point. We can restate Proposition 1.2 as follows.

Theorem 1.3. Hasimoto’s transformation is well defined, even when the curvature
vanishes at some point.

Since equation (1.4) is well understood ([1]), we have

Theorem 1.4. The initial value problem of the semilinear Schridinger equation
(1.1) &=JV, &, for closed curves in S* has a unique solution on —oo<t<oo for
any initial data.

Theorem 1.5. The initial value problem y,=v, %7, (y.|=1) for closed curves
in the euclidean space R® has a unique solution on — oo <t< 0.

Proof. To come back to R?® from S2?, we need to check the closedness
condition §£dx=0 on R’

d
dx st

édx=f 6,dx=f JV &, dx
St st

=f éxéxxdxz '—f Cxxéxdx=0.
St St

The uniqueness follows from the ODE: y,=&x&, with respect to ¢t
Q.E.D.

REMARK 1.6. Let v=u(x) be a solutioo of the ODE:
” 1 2
(1.5) v +§|v| v=a,

where a is a real constant. Then the function u(t,x)=exp(a\/fft)v(x) is a solution
of equation (1.4). If we transform this solution to a solution &(¢,x) in S2, we have
curves moving by isometries. Moreover, the corresponding curves in R3 are elastic
curves ([2]).

2. Vortex filament equation in 3-dimensional space forms

In this section, we generalize results in Section 1 to oriented 3-dimensional
riemannian manifolds (M,g) with constant curvature c. We consider initial value
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problem:

(2.1) =7:X%XVy,  (yd=D.

Since

0ulya? =20 Vv ) =207 V7))
=205 Vil X V,2.0) =20y, 2 X V,27,) =0,

if the additional condition |y, |=1 is satisfied at =0, then it is satisfied for all
t. Therefore, y, becomes a unit vector field.

For a solution y of equation (2.1), we attach to it a frame field, and seek
conditions for the differential v of its development. We fix the orientation of the
frame {e;} by e; xe,=e;. We define w by

Viei=wie;.
Then,
Wi =04Vie,e)=(V.Vie, e)=(ROxV)es ;)
=cype)yne)—cvuedyne)
=2 X VP €0 — ey X V7 €0
Therefore,

w2, =c?03 —0302)? —c(v3vl —vlod)p!
=c{((v")* + () — (v vy +v* 3%}

= {1~ @2 =0~ P =2,

Thus we can choose {e;} so that V,e, =cv’e,—cv’es;=cv'e;xe,. That is,
Vei=cy, xe;.
Then, from
V.= Viv'e) =vie,4+v'V e, =vie, + v'y, x e;=vie;,
Vo=V X V) =1, x Viye=v'e; x vlse;,
we have
2.2) V=0 X Uy, .

Note that this equation has just same expression with the case of euclidean
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space. However, we have to count the correction of period. Let P= P(f) be the
correction of period at time ¢. Then,

(© PLJe - D=V (Phef-+ )= PV fo+1)

=V,e(x)—cPliy, xefx+1)=0.

Thus P is constant. Moreover, when we develop v to the plain, we can check
that its correction of period is constant. We summarize this transformation as:

Proposition 2.1. Let M be an oriented 3-dimensional riemannian manifold
with constant curvature c. Let y° be a curve in M with frame field F°={e}(x)},
and ° the differential of its development.

1) Let y(t,x) be a solution of initial value problem (2.1) with initial data y°. We
extend el(x) to e(t,x) along y by the ODE: V.e,=cy,xe;. Then for each t,,
F={e(to,x)} is a frame field along y(t,,x). And, the family v(t,x) of the development
of y(t,x) is a solution of initial value problem (2.2). Moreover, if y is a family of
closed curves, then the correction of period of v is constant.

2) Conversely, let v be a solution of (2.2) with initial data v°. We extend
{y%ef} to {y(1,x),e{t,x)} by the system of ODEs: y,=v'e; x vie;, V,e;=cv'e;x e;. Then
Y(t,x) is a solution of initial value problem (2.1). Moreover, if y° is a closed curve
and if v is quasi-periodic with constant correction, then y is a family of closed curves.

Theorem 2.2. Let M be an oriented 3-dimensional riemannian manifold with
constant curvature c. Initial value problem (2.1) y,=y,xV.,y. (y./=1) for closed
curves in M has a unique solution on — oo <t<oo for any initial data.

Proof. By Proposition 2.1, we can transform the equation (2.1) to equation
(1.1) in S? via equation (2.2). We solve equation (1.1) counting the correction of
period, and transform the solution to a solution of the original equation.

Q.E.D.

3. A semilinear Schrédinger equation in a Kihler manifold

The vortex filamenat equation in the euclidean space is reduced to a semilinear
Schrédinger equation in S2. We extend the result to curves in general Kihler
manifolds (M,g). We consider a PDE:

(.1 G=JVL,,

which has just same expression as in S2. Here, V is the riemannian connection
and J is the complex structure, both defined on M. This equation is locally

expressed as
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(3.2) &=/ — UE+T (9L,

using a complex coordinate system.
To show existence of solutions of (3.1), we perturb it to a parabolic
equation. We consider equation

(3.3) G=(J+eVL;,

where ¢ is a non-negative number.

Lemma 3.1. If & is a solution of initial value problem (3.3) for closed curves,
then ||&.| is non-increasing.

Proof.

d
7 182l =280 V&> =2¢&, Vilid = 2¢E,, (T +E)V,2ED

=- 2<Vxéx9 (J+ 8)Vx6x> = _28”Vxéx” 2 <0.
QED.

Lemma 3.2. For any closed curve £° in M, there exist positive numbers T and
K with the following property: Let ¢ be a real number in [0,1] and ¢ a solution of
(3.3) defined on 0<t<T with initial value £°. Then, |V, ||<K on 0<t<T.

Proof. By Lemma 3.1, the norm |&,| is bounded. We estimate ||V, &, ||.

d
p IVLell?=2¢V L, ViVLE) =2(V, Ly, RE ENE+ VLD

=- 28" szix” + 2<Vx€x9 R((J+ s)Vxéx) éx)éx)
< Cymax|E PV Eell? < CoUENIVEll + 1EDIVLELN?
S C3(1+[V.LIP).

Therefore, there exists a positive time T depending only on ||£.]] and ||V, &,|
at t=0 such that |V &,| is uniformly bounded on 0<i¢<T. Q.E.D.

Lemma 3.3. Let ¢ be a solution of initial value problem (3.3) for closed
curves. If |V,.&. || is uniformly bounded on 0 <t <T, then £ is C *-ly uniformly bounded
on 0<t<T. This estimation is independent of «.

Proof. We show that |V,"¢.|l is uniformly bounded on 0<¢<T by
induction. This holds for n=1. Suppose that it holds for n. From Lemma 3.1
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and the assumption, we know that max|V," !¢ | is bounded.

d
p IV =2V, VLD

S 2VTE, S VARG EIV ) F VT IVED
i=0

= =26V, 2L, + 2{V, 1L, Y VARELEIVLTIED)
SCUVS NI HNVLIEN+NENVLEN].

Here,
NENVEN < Comax|é | < Cy(1+ [V 2EN S Co1+ [V 1ELD.

Therefore,
d n+1 2 n+1 2
EIIV,: El* < Cs(L+ V"L,

Thus ||V ,"*1¢. |2 is estimated only by 7, |V, | and the initial value.
Q.E.D.

Proposition 3.4. [Initial value problem (3.1) &,=JV. £, for closed curves in
M has a short time solution.

Proof. For a positive number ¢, equation (3.3) becomes parabolic, hence has
a C*® (e-depending) short time solution. By Lemma 3.2 and 3.3, the solution is
C>-ly bounded independently of . Therefore, there is a convergent subsequence
when ¢ — 0, and the limit satisfies equation (3.1). Note that, when we change
time variable ¢ to —¢, the form of equation does not change. It means that
we have also a solution for negative time. Q.E.D.

Theorem 3.5. Let M be a Kihler manifold. Initial value problem (3.1) £,=JV &,
for closed curves in M has a unique short time solution for any initial data.

Proof. We have to show the uniqueness. Let £° be the initial data. Taking
a small tubular neighbourhood of £° we have an open set U of R" and a local
difftomorphism ¢ from U into M such that the image of ¢ contains the image
of &

We rewrite equation (3.1) by

34 JE+VE =0,
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and take its linearization by n=¢,:
(3.5) )=V, {JE,+ V. L} =TV + V. n+ Rmn,E )L, -
Since the coordinate expression of (3.4) is
JHE+ &+ T/ =0,
the coordinate expression of (3.5) is given by
O(n)'=J' M+ j)ﬂkf{ + e+ 2T imile 4+ (0 jik)'l"fif'; .

Let & and & be coordinate expressions of two solutions of (3.1) with initial
data #°. By Lemma 3.2 and 3.3, taking small T, we know that ¢ and & are
bounded. Note that the difference w'(t,x):=&(t,x)—&(t,x) can be regarded as a
coordinate expression of a vector field u along &.

Using the differences I'(t,x):=J (&(t,x))—J'{&(t,x)) and T}, (t,x):=T (&%)
—TI'j(&(¢,x)), we have

(J A+ T NE + )+ (Eie + 1) + (T8 + T NEL A ul) e+ 1) =0
Therefore,
J il + 2T f &Lk = O, Ty, uludh),
where O(*) means a sum of terms with a factor *. Thus we have
O(u) = O(l’,, T\, v, uisd).
In particular,
()], |V (D)) < Cy(|u] +V 4)).

Now,
d 2
E "u" = 2<u,V,u) = 2<Jus JV,u) = 2<Jua(D(u)'_ R(“s éx)éx_ Vx u>

< Co{<lub|@@)|> + lull} +2<I V.0,V )
< Cy(llull® +1V,ul1?).

Moreover,
d 2
p IVl * =2{V,,V,V,u)>=2{V,u, R({, E Ju+ V. Vu)

< Cylllull® + IV, ?) + 2TV 4,V (V1))
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Here,

IV, V(IVU)y = IV 4,V (W) — R, &) — V. 2u})
< Cs |Vl [V @) + ] + V4] + IV, 2wV Pu
< Co{llull®+ 1V, ul}.

Thus we have

d
zi—t{llu||2+ IVl 2} < Co{lull® + 1Vl

from which we can conclude that u=0. Q.E.D.

4. A semilinear Schridinger equation in a hermitian symmetric space

In a hermitian symmetric space, we can show the all-time existence of a
solution of equation (3.1). We can prove it by a way similar to the case of S2,
but we give here a proof which uses results in the previous section. Therefore,
we will give another proof for results in Section 1.

Lemma 4.1. Let M be a locally hermitian symmetric space and ¢ a solution of
equation (3.1) for closed curves. Then the quantity

@1 V.80 + 3 CRETENE TED
is constant in t.
Proof. We have
CIVEI =2V E, VT80 =2V, REEED.
On the other hand,
O R TEN T = RV ) T + ARGV T

=4CR(V £ JE ) JE >
= 4<R(£njvx€x)€x’ Jéx> - 4<R(étaJ§x)Vx§x5 Jéx)
- 4<R(€t,fo)éx9 JVxéx)
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=4CR(EJEIIV £ &> — A REpIENE TV LD
= —8(R(£pJE) 0 IV LD = =B8RIV L JEJEw &
=—8CR(:¢)E0 Vil

Thus,

d , . 1 ~
E{ ”Vxéx“ +Z<R(fxa',£x)éx9 J£x>} - 0'
QED.

Theorem 4.2. Let M be a complete locally hermitian symmetric space. Initial
value problem (3.1) &,=JV. £, for closed curves has a unique all time solution
(— 00 <t< ) for any initial value.

Proof. Let ¢ be a solution on 0<t<7. By Lemma 4.1,

IVL&all*> < Co(1 +max|E 1€ 1% < CoL+ I ENUNELN + VL)
< G(1 VL.
It means that |V &, | is time-independently bounded. Therefore, by Lemma

3.3, ¢ is uniformly C®-ly bounded, hence ¢ can be extended beyond T.
Q.E.D.

Now, we compare this with the case of S2. For this, we generalize the
transformation defined in Proposition 1.2.

Let ¢ be a solution of (3.1). We attach to it a frame field {e;}, and seek
conditions for the differential u of its development. In bellow, we use the fact
that the curvature tensor R of M is hermitian and parallel.

From V,e;=0,

0,(e;,V.e)=(e;,V,Ve)=(e;, R(¢,,E e+ V.V, e)

=(e; R IV & )e) = (e Riex, Je)e Jukud

= %ax{(eja Ry, Jet)ei)ukul}'

Here, we used the fact that (e;, R(e,,Je))e;) is symmetric with respect to k, / and is
constant with respect to x. Using freedom of {e;} for t-direction, we may put

| 1
Vie;= Eu"u’R(ek, Jeje;= ER(fx, JE e
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Then,
; ) . 1,
ue;=V,u'e)—u'Ve,=V,ZE, —Eu'u wR(ey,Je))e;
1,
= fo,—iu’u w R(ey, Je))e;
2 1 ki
=JV, éx—iu u'w' R(ey,Je))e;
. 1,
=u Je; —Eu'u wR(e,Je))e; .
For the quasi-periodicity condition of u, we replace V,e;= —(1/2)|£,|%/e; in

the case of S2? to V,e;=(1/2)R(&,,JE)e;. We can extend Lemma 1.2 as follows.

Proposition 4.3. Let M be a locally hermitian symmetric space. Let £°(x) be
a curve in M with frame field F° = {€{(x)}, and u°(x) the differential of its development.

1) Let &(t,x) be a solution of initial value problem (3.1) with initial data £°. We
extend €l(x) to eft,x) along ¢ by the ODE: V.e;=(1/2)R(&,,JE)e;. Then, for
each ty, F={e(t,,x)} is a frame field along &(ty,x). And, the family u(t,x) of the
differential of the development of &(1,x) is a solution of initial value problem:

1
4.2) u,=Ju, — ER(u, Ju)u.

Moreover, if £ is a family of closed curves, then the correction of period of u is constant.

2) Conversely, let u(t,x) be a solution of (4.2) with initial data u°. We extend
{&,e?} to {&(t,x),eft,x)} by the system of ODEs: & =Juie;, V,.e;=(1/2)R(u,Ju)e;.
Then &(t,x) is a solution of initial value problem (3.1). Moreover, if &° is closed
and if u is quasi-periodic with constant correction, then & is a family of closed
curves.

We also can construct a vortex filament type equation. This generalization
is based on the identification (R3,* x *)=(s0(3),[*,*]). Let M be a hermitian
symmetric space G/K, where G is the isometry group of M and K is the isotropy
group. We use standard decomposition g=f+m, where g (resp. ) is the Lie
algebra of G (resp. K), and the vector space m is canonically identified with the
tangent space of M at the origin.

There is an element Z of the center of f such that ad,|,,=~J, and M is locally
isomorphic to the orbit AdgZ = g. We assume that M and the orbit are isomorphic,
and identify them. Then, a curve ¢ in M is regarded as a curve in g, and we



212 N. Koiso
have JV £, =[&,€,,]. Thus we have the following

Proposition 4.4. Consider a PDE for a curve y in g

4.3) =[Vo¥xx] (x€M).

There is a one-to-one correspondence between solutions of (4.3) and solutions of (3.1)
by putting E=y,.

Now, we give exact solutions of equation (3.1) and explicitly describe them. Let
&(x) be a curve in M < g such that £0)=ZeM. We attach a frame field {e;} to
¢. Then the differential u of the development of £ can be viewed as a curve in m
by

u(x):=u'(x)e/0).

Conversely, for a given u, the curve ¢ can be reconstructed as follows. Let g(x)
be a curve in G satisfying the ODE: g~ 'g’=Ju, g(0)=1;. Then, we can represent
¢ and e; as {=Ad,Z and e;=Adge(0). In fact,

V.(Ad, €{0)) =((Ad, e,0)))" =(Ad,[g ™ 'g’,e(0)])" = Ad,[ Ju,e(0)],, =0,
(Adg ZY =Ad,[g~'g,Z] = Ad, [ Ju,Z] = Ady u=uAd, e 0),

where we denote by *T the tangential component to M in g and by *, the m
component in g.
Suppose that &(x) satisfies the ODE:

(4.4) IV L =L(S)+al,,

where L is a Killing vector field of M and a is a real constant. Then, the family
&(t,x):=(exp tLY&(x +at)) is a solution of equation (3.1). In fact,

E(t,x)=(exp tL) {L(&(x +at)) + al (x + at)}
=(exp tL) (JV L (x +al))
=JV, L (t,x).

ODE (4.4) in M c g is given by
(4.5) [£,¢"1=[X.E]1+al,

where X is an element of g which generates L, ie., ady| y=L. Using g, we rewrite
this equation to an equation for u. From

{'=Ad,u,
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&' =Ady([Ju,u] +u),

we have

[(,ET=Ad,[Z, [Ju,u]l +u']=Ad, Ju/,
[X,¢]=[X,Ad, Z]=Ad,[Ad; ' X,Z]= —Ad, J(Ad; ' X),,,
al’=aAdyu.

Therefore, we get

u'=—(Ad; ! X),,—alu.
We want to eliminate (Ad;'X),. From (Ad;'X)=—[JuAd;'X], we
have

(Adg ' X)o=—[Ju,(Adg ' X)],

(Ad; ' X)y= —[Ju,(Adg ' X), )= —[Ju, —u' —aJu] =[Ju,u'] =%[Ju,u]'.

Thus (Ad, ! X)—(1/2)[Ju,u] is a constant, which we denote by 4ef. The constant
A is given by X, —(1/2)[JV, V], where V=u(0)=¢'(0). Using A, we have

u'=—(Ad; ' X),,—aJu'=[Ju,A]+ %[Ju,[]u,u]] —aJu,

or,

1
4.6) u"+ E[[Ju,u],Ju] = —[4,Ju] —aJu,

with initial data w(0)=V, ¥'(0)= —X,,—aJV. We can easily verify that u(z,x):
=Ad,,, 4u(x +al) satisfies equation (4.2) via the formula of the curvature tensor:

R(vy,05)v3= —[[v4,02],03].
We can reverse this procedure and conclude as follows.

Proposition 4.5. Let &(x) be a solution of equation (4.5) with initial data £(0)=Z,
E)=V(em). Then, {(t,x):=Ad,,, x(&(x+al)) is a solution of equation (3.1). Let
u(x) be a solution of equation (4.6) with initial data u(0)= V(e m), u'(0)= W(em). Then,
u(t,x):=Ad.,, qu(x+at) is a solution of equation (4.2). By the procedure in
Proposition 4.3, these solutions correspond to one another with relations
A=X,—(1/2[JV,V] and W= —-X,,—alV.

ReMARK 4.6. All irreducible hermitian symmetric spaces are classified into
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four classical types and two exceptional types. Classical types are (AIII)
SUp+q)/S(U, x Uy, (DIII) SO(2n)/ U(n), (BDI) SO(n+2)/SO(n) x SO(2) and (CI)
Sp(n)/ Un). Their corresponding nonlinear Schrodinger equations are expressed
as follows, where ¢ is a real number.

(1]
[2]
(3]
(4]
[5]
(61

(7]

Type m Equation

Alll  {p xq matrices} U=/ —1(uy, + cu'itu)

DIII so(n,C) U, =1/ — (U, + cu'iiu)

BDI C" Uy =/ — 1(uy + c2Ju|*u —'uuir))

Cl  {symmetric n-matrices}  u,=./ — 1(uy, + cuiiu)
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