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0. Introduction

We will construct new nonlinear dynamical systems from linear differential
equations of second order. This method is first applied by Jacobi, in 1848 ([9]),
in the case of the equation

(0.1) x ( l - x ) - - ,
ax ax 4

A solution of (0.1) is given by the complete elliptic integral

and Jacobi found a nonlinear equation:

(0.2) OV" -15yy'y" + 30/3)2 + 32(yy" - 3/2)3 = - π 2 / °(yy" - 3/2)2,

which is satisfied by Jacobi's elliptic theta functions θ2, θ3 and 04.
Later, Halphen rewrote (0.2) as a nonlinear dynamical system ([7]):

(0.3)

Halphen showed that logarithmic derivatives of theta null values satisfy (0.3). The
structure of (0.3) is studied in [4] and [11]. Halphen also studied nonlinear systems
deduced from generic hypergeometric equations ([8]).

In this paper, we will construct nonlinear equations from general second-order
linear equations following Jacobi's idea. They are equivalent to the well-known
equation written by the Schwarzian derivative. One of the aim of this paper is

' = 2ZX.
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to rewrite the equation expressed in terms of the Schwarzian derivative into a
dynamical system. By this transformation, we can study the structure of the
equation more conveniently. For example, we will study initial value problems
and solution spaces for these systems. In section 1, we will only treat the Fuchsian
case. In section 2, we will study the case where the linear equation may have
irredular singular points.

We also calculate several examples related to some special functions in section
3. In the case of Jacobi and Halphen, solutions of nonlinear equations are given
by modular forms. If we take a Picard-Fuchs equation of a family of elliptic
curves as the starting linear equation, solutions of our nonlinear equations are
given by modular forms. Jacobi's equation (0.2) is satisfied by the logarithmic
derivatives of modular forms with level two. J. Chazy studied a differential
equation satisfied by the logarithmic derivatives of modular forms with level one
([3]). The author constructed a nonlinear equation which is satisfied by the
logarithmic derivatives of modular forms with level three ([12]). It is an interesting
problem to study nonlinear equations which are satisfied by general modular
forms. The second aim of this paper is to propose a program for finding nonlinear
holonomic systems for elliptic modular forms.

The equations above appear in many fields in mathematics. For example,
Ehrenpreis rediscovered (0.2) in his study of scattering theory ([5]). Halphen's
equation (0.3) is a specialization of self-dual Einstein equations ([6]) and is used
in the study of the geometry of monopoles ([1]). We hope that our new equations
may have some applications to other fields of mathematics.

1. Fuchsian equations and nonlinear equations

In this section we will generalize Jacobi's method and show how to construct
a dynamical system from a Fuchsian equation of second order.

We first take a Fuchsian equation:

(1.1)
dz2

If (1.1) has regular singular points at x=aua2,'- ,αm,oo, we have

where q(z) is a polynomial with at most (m — 2)-th degree. We can take (m— 1)
constants )51, ,jβm_1 such that

q(z) m ~ 1 βj
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Let u and v be two independent solutions of (1.1). We will take

v
τ = —

u

as a new independent variable. Since

υzzu-uxzv = 0,

the Wronsikian vzu — uzv is independent of z. If we set vzu — uzυ = c,

dτ_ c

Jz~V2'

If we change the variable z into τ in (1.1), we get

c die du

-2τhτ

u2 dτ[ur dτ

Therefore

(1.2) ^ -
u

We set

0 , j
U U Z — dj C

for y = 1,2, ,m. By (1.2) we get

J V m m

(1.3a) -r-*o+ Σ α/^-^o)2+ Σ
dτ j=ι j=1

and

(l 3b)
(z — aβ c z — aj

for y=l,2,- ,m.

Thus we obtain nonlinear equations for Xθ9Xu ",Xm. But (1.3) is not

independent since there are algebraic relations between unknown functions. Since

Y Y - l "2
 Y Y - a i a u l

z d c (za-dj c (z-aj)(z-ak) c
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we have
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"j-ak aι-"n <tj-an at-ak

if non-zero integers j , k, I and n are distinct each other. And if non-zero integers
j\ k and / are distinct each other, we have

(l 4b)
cij-ak

Since any four of unknown functions have a quadratic relations, the dynamical
system (1.3) is at most third order.

For any four complex numbers z0, zί9 z2 and z3, the anharmonic ratio is
defined by

{Σθ9Zί9Z2,Z3). .

(z2-zί){z3-z0)

If we set <z0 = oo, (1.4) means that

(XpXk,XhXn) = (apak9ahan),

for any j\ k, I and m.
We will define the action of the group SL(2,Q on the equation (1.3-4). For

any A = ί )eSL(2,C) and any function /(τ), we set the action p by
\r sj

(rτ+s) rτ+s

Then p is a right action on the solution sapce of (1.3-4).

Theorem 1.1. Let m is an integer such that m>2. We take nonlinear equations
on X0,XU'-,Xm

(1.5)

dX m

-r=*έ- Σ OLJ(XJ-X0)
2-

dτ

p Xk, Xl9 Xn) = (aj9 ak9 al9 an)9

for any k = 0. L .m,

for any j9 k9 /, n.
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1) The equation (1.5) can be solved in the following way. Let u and v be two

solutions of

Since vzu — vuz is independent of z, we set υzu — vuz = c. If we set τ = - ,
u

u

satisify (1.5), where we set aQ = co.

2) (SL(2,C)-symmetry) If Xfτ) (/ = 0,l, ,ιw) satisify (1.5), (p(A)'Xj){τ) also

satisfy (1.5) for any ΛeSL(2,C).

3) (initial value problem) We will solve (1.5) with the initial condition Xj(t0) = Xj

(/ = 0,l, ,m). Sϊwce ίAe second equation of (\.5) is an algebraic eqation, Xj should

satisfy the second equation of (\.5).

Let Xj, (j=0,l, "9m) be distinct complex numbers. Let u and v be independent

solutions of (1.6). Then there exists a matrix A=ί )eSL(2,C) such that
\r s)

Y(t) = X - , (j=l929-,m)
o j

y y z-aj c

w
satisfy (1.5) with the initial condition Yj(to) = xj9 where t=— and

w(z)=sv(z)-qu(z)9

y(z)=-rv(z)+pu(z).

If xk = xt for some k and l(kφt), then (m — 1) functions ofXk's coincide. Therefore

the nonlinear equation is reduced to

(1.7)

dτ

In this case, all of solutions are rational functions.

Proof. The assertion (1) is already proved and (2) can be shown by direct

calculations. We will only show (3).
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We will first define a complex number z 0 by

(x! - xo)(a t - z0) = (x2 - xo\a2 - z0).

By the second equation of (1.5), we have

(xj - xo)(cij -zo) = (xί- xo)(aί - z0),

for any y= 1,2, ,m.

We will take constants /?, q, r and s so that

(1.8) - rv(z0) +pu(z0) =

(1.10) ίφo)-?φo) =

(1.11) ps-qr=L

Since u and v are linearly independent, r and p are uniquely determined by (1.8)

and (1.9). Since the right hand side of (1.8) is not zero, — π;(zo)+/?w(zo)#0. Hence

s and q are uniquely determined by (1.10) and (1.11).

We set

w(z)=sυ(z)-qu(z),

y(z)=-rv(z)+pu{z).

w
If we will take t=—, we have

y

_v _

u rt + s

Moreover if we take

v _yt v _yt i y2

1 0 ' J j 5

y y z-a} c

Y0(t\ Yγ{t\ .., Ym(t) satisfy (1.5) as functions of t and Yj{t0) = xj for y=0, ,w.

Let A^τ) (/=0,l, ,m) be functions defined in (1). We will show Yft) are

written by Xj{τ).
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) = -\og(-rv+pu)
at

Ί — logu(-rτ+p)
(rt+sfdτ

(rt+s)2 " w (rt + s)2 -n+p

(rt+s)2 °\rt+sj rt + s

Since

1 u2

Z — Clj C

1 1 u2

~~(rt + s)2 z-cij^'

we obtain

r 1 1 M 2) 2

j rt+s (rt+s)2 z-cij c

(rt + s)2 J\rt+s) rt + s

In the case where xk=xι for some k and / (kφl\ (m — 1) of Ays coincide by the
second equation of (1.5). We will study solutions of (1.7) in the EXAMPLE 1 in
the section 3. •

REMARK. By the SL(2, C)-symmetry, we get a three-parameter family
of solutions of (1.5). This orbit gives generic solutions. •

It is well known that the quotient of any independent solutions of (1.1) satisfies
the equation

(1.12) {τ,z}

Here {τ,z} is the Schwarzian derivative



934 Y. OHYAMA

where ' means a differentiation by z. The equation (1.12) is a complicated equation

of third order. We will show that our new dynamical system (1.5) is equivalent

to (1.12).

Proposition 1.2. We can transform (1.5) to (1.12).

Proof. We set Zj = Xj-X0 fory=l,2, ,m. By (1.3a) we get

AY ™ m - 1

\l.lj) - ΛQ — > ^jZj Lu PjZJZJ + 1 *

dτ j=i ; =i

By (1.3b) we have

d
(1.14) —logz =

dτ

By the algebraic relations (1.4b) we have

zι~zk_^ Zj-zk

And by (1.4a) we have

(1.15) (zp zk, zl9 zn) = {a p ak, ah an)9

which is true for any j=0,1,2, ,m if we set zo = 0 and a0 = oo.

We define a new variable ξ by

dτ

Here bx is any complex number. By (1.15)

dτ

If we set yj = — for y' = 2,3, ,m, we have
z i

Therefore
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j - 1 yj dτ dτ

Hence we can represent yj by ξ. Integrating (1.16), we can take a constant
such that

Therefore

which means Zj= —. Since zo = 0, we should take bo = cc.
ξ-bj

Since

bj-bk
z.-zk=-ξτ:τ(ξ-bj)(ξ-bk)'

we obtain

(bj,bhbhbn) = (apakiahan%

by (1.15). Therefore there exists a linear fractional transformation T such that

for anyy = 0,l, ,m. Since a0 = b0 = oo, Tis a linear transformation. Hence there
are constants p and q such that bj—pa^q for any j= 1,2, ,m.

Since

we have

Hence

d . d Λ d Λ .
= — logzt +_logz 2 -—log(z 1 -z 2 )

ατ ατ ατ
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d

dτ

6 U
log-
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J

L

Therefore

dXo
dτ '

By (1.13) we obtain

= 1

= -2(ξτ)
2\ Y i Σ —Σ

j=i(ξ-paj-q)(ξ-paj+1-q)

pJ p

ξ-q
Therefore if we set η = , we obtain

P

{η9τ}=-2(ητ)
2Q(ηl

which is equivalent to

Thus we obtain (1.12). •

REMARK. The idea of the proof of Proposition 1.2 is due to Brioschi
([2]). Brioschi showed that Halphen's equation (0.3) is equivalent to the equation

(117) {x,τ} = - - - j - -[ — .
2 x2(ί—x)2\dτj
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It is known that ratio τ of any two particular solutions of (0.1) satisfy (1.17).

D

By Proposition 1.2, we can reconstruct a linear equations of the type (1.1) from

our dynamical system (1.5), up to a linear transformation.

2. Case of irregular singularities

In the section 1, we study the Fuchsian case. But even if the starting linear

equations may have irregular singularities, we can construct nonlinear equations.

We will study general case in this section.

We take an equation:

CO £
dz1

whose singular points are x=aua2,•• ,flm,oo. We can write

m v7- .-, vo

where Vj is a natural number and q(z) is a polynomial. Then we obtain nonlinear

equations similar to (1.5).

Theorem 2.1. 1) Let u and v be two solutions of

m

Σ

where m>2. We assume υzu — υuz — c, where c is a non-zero constant. We set

V

u
and

u u
= — h nz —

u c

, wτ 1
J u ( z - α / + 1 c

Then X]n)'s satisfy the following equations'.

^x<°)=(^0))2- Σ Σ il4xf-^-
dτ
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- Σ <χJΛW
O)-ΆoW-nOΪ)- Σ ^k(x^-

dτ dτ

for «>0,

^ Xf ^
dτ dτ

for j>0.

Moreover any four of Xjn)'s satisfy an algebraic relation.
2) (SL(29Q-symmetry) If Xf\τfs are solutions of (2.2), {p{A)-X]n\τ) also

satisfy (2.2) for any AeSL(2,C).

Proof. We can show that

(2.3) ^ Q ^
u \uj c2

in the same way as (1.2). The equation (2.3) can be written as

^xp=(rtΎ- Σ Σ tjjUJφ-v-mψ-
dτ j=ι fc=2

- Σ «JΛ(ψ-now-nor)- Σ a0Λχi!ί)-

We have

dτ J ° ^ (z-aj)" + 2c2 ( z - α / + 1 c u

=(n + l)(Xjn) - X^Xj0) - X}>0)) + 2(Xf -f

And in the same way

^(χ
dτ

Let X, Y9 Z and W be any for functions of Xf\ Since the difference of any two
functions has the form
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X—Y W—Y
for a rational function /(z), both A= and B — are rational functions

x-z w-z

of z. Hence there is an algebraic relation between A and B:

(2.4)
By direct calculations we can show (2.2) is invariant under SL(2, C)-action on

Xjn). Since A and B are invariant under SL(2, C)-action in (2.4), the algebraic relation

(2.4) is also invariant. , •

3. Examples

We will show some examples of Jacobi's method for several Fuchsian equations.

EXAMPLE 1: the case of two singularities

The simplest case is that the singularities of the starting equation are 0 and

oo. In this case the linear equation is as follows:

If aΦ — , solutions of (3.1) are
4

where α and β are distinct solutions of

If a= — , solutions of (3.1) are
4

M = z1 / 2, ι; = z1 / 2logz.

v
In any case, we set τ = - and

u

u u z dτ

Then the deduced nonlinear equations are
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dτ

(3.2)

dτ

which is a second-order equation.

Proposition 3.1. If aφ—, the solution space of (3.2) is P\C)xP\C). If
4

a = — , the solution space of'(3.2) is the line bundle of degree two on PX(C). Therefore
4

the solution space is compact in the former case, and is non-compact in the latter

case.

Proof. We set

Q = βX+(xY.

Then we have

(3.3) i-p=p2> τQ=Q2'
dτ dτ

Hence if a φ — , (3.2) is equivalent to (3.3). If a = — , P=Q and (3.2) is equivalent
4 4

to

(3.4) — = P\ ~ = 2

dτ dτ

The general solutions of (3.3) are given by

cτ + d

Hence the solution space is P\C) x P\C).

The general solutions of (3.4) are given by

X=- P

cτ + d (cτ-\-d)2 cτ + d
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Since p can be considered as a section of the line bundle of degree two on Pι(C\
the solution space is the total space of the line bundle. •

EXAMPLE 2: hypergeometric case ([8])

We take the hypergeometric equation as the starting equation:

dz2 dz

If we set

y satisfies the following equation:

OS, ^ (°

where

dz2~ \?

y(y-2)
a-—:—, b= c=-

<xγ + βy-2xβ-γ2+γ

4 ' 4 2

Let τ be the ratio of two solutions of (3.5). We set

ατ dτ z dτ z—\

Then X, F and Z satisfy the following equations:

— = x 2 + 0 ( ; r - γ)2+A(jr- z ) 2 +c( Jr- y)(x- z),

Ύτ

dZ

Ύτ

Since

= Y2 + a(X- Yf + b(X- Z)2 + c{X- Y\X- Z),

=Z2 + a(X- Y)2 + b(X-Z)2 + c(X- YJ.X-Z).

we have
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(3.6)
dY

~dτ~

This system (3.6) is different from the equation obtained by Halphen ([8]). But
by a suitable linear transformation between X, Y and Z, we can transform (3.6)
into Halphen's equations.

EXAMPLE 3: Chazy's case ([3])

J. Chazy studied some class of third order equations in his study of Painleve
property. As the staring linear equations, he took

(3.7)
d2y (\_Ί \dy_l/l _ 1

W + V2~6*fe~4V36~V

in the case n is an integer larger than six, or n = oo. This is a special case of EXAMPLE

2. We have

1/1

2\6 «

1/1

2\6 n

Hence we have

3 , 2 36 + 23n2

a= , b=—, c= —.
16 9 144«2

We can rewrite (3.6) into a single equation. In order to simplify coefficients we
take W=6X. If n = oo, we have

d3W _ d2W (dW\

And if n > 6, we have

dτ dτ2 dτj 36-«2\ dτ
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EXAMPLE 4: Jacobi-Halphen's case ([9], [7])

943

Halphen's equation (0.3) is the starting point of our investigation ([11]).

Halphen deduced (0.3) by using an addition formula of Weierstrass' (-function

([7]). In [11], the author deduced (0.2) by the same method as Halphen using

more familiar notation. We will show that (0.3) can be deduced as a special case

of EXAMPLE 2. This method is essentially the same as Jacobi's method ([9]). If

we set

in EXAMPLE 2, we have

1 u ! !
α = — , b——, c = - .

4 4 4

Therefore in this case (3.6) is as follows:

(3.8)

If we set

we obtain

(3.9)

=χ*-\χ-γγ-\x-Zf-\γ-Z)\
V V Vdτ

— = Y2- V- Yf -\x-Zf -\γ-Z)\

—=z2-\x-γf-λ-\x-zf-\γ-zf.
dτ 8̂  8̂  ΪΓ

i= Y+Z,

Jτ(

~{χi+χ2y-
dτ



944 Y. OHYAMA

which is the same as Halphen's equation (0.3).

We will show that logarithmic derivatives of theta constants satisfy (3.9). We

will take two independent solutions of (3.5)

We have

dt

κ,_ Γ

by the theory of elliptic integrals (See, e.g., [10]). Hence if we set

and take

we obtain

K' w
τ — i— = — ,

K y1

~log^=2~
dτ dτ

Therefore

2^logkK2^
dτ dτ

X+ Y=2—\ogVK=2—\ogθl.
dτ dτ

dτ
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X2 = 2~
dτ

X3=2~
dτ

EXAMPLE 5: modular forms with level three

The solutions of Halphen's equation are written by theta null values, i.e.,
modular forms with level two. In the same as Halphen's equation, we can obtain
nonlinear equations which are satisfied by modular forms with other modular
groups. In this example we will show the nonlinear equations whose solutions
are written by modular forms with level three. The detail is written in [12].

We take the starting linear equation

(3.10) (1-a^-3a2^-aκ = 0,
da2 da

which is a Picard-Fuchs equation of Hasse pencil

The solutions of (3.10) is given by elliptic integrals on Hesse pencil:

C'1 dx

Jo y2-ax'

o y

- 1 dx
ι — aω2x

Here K, K! and K" are modular forms with level three and have a linear relation

if a is sufficiently small. Note that a is a modular function of level three.
We take

ωκf — K

and
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W= — logfc,
dτ

X=-\og{(a-\)κ}9
dτ

Y=-log{(a-ω)κ},
dτ

Z=T\og{(a-ω2)κ}.
dτ

Then W9 X, Y, Z satisfy the following equations.

—(W+X+ Y)= WX+XY+ YW,
dτ

—(W+ Y+Z)= WY+ YZ+ZW,
dτ

—(W+X+Z)=WX+XZ+ZW,
dτ

—{X+ Y+Z) = XY+ YZ + ZX,
dτ

YZ) + (XY+ZW) = 0.

REMARK. We can find nonlinear equations which are satisfied by modular

forms with general modular groups by the same method as level two and three. The

strategy is as follows:

1) Find elliptic modular surfaces,

2) Calculate Picard-Fuchs equations,

3) Represent elliptic integrals and moduli parameters as modular forms,

4) Apply Jacobi's method.

From now on we will consider non-Fuchsian cases. In the followings, τ is a

ratio of two solutions of starting linear equations.

EXAMPLE 6: Airy's equation

We will start from Airy's equations:
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dz
:-zy =

If we set

we obtain

dX

~dτ~

dY

-X)2 + (Z-X)(Y-Z).

EXAMPLE 7: Whittaker's equation

We start from Whittaker's equation:

d^y Λ , k , /

If we set

dτ dτ z dτ

we obtain

4dτ

dτ

-- = Z2-3{Z-X)2+k(Y-X)(Z-
dτ 4

EXAMPLE 8: Weber's equation

We start from Weber's equations:
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dz1

If we set

we obtain

X=—logy9 Y=—log(yezl Z=—log
dτ dτ dτ

γ
— = X 2 + a ( Y- X)2+b( Y- XJZ - X),
dτ

dτ

dZ

~dz
= Z 2 + (α +1)( Y- X)2 + b{ Y- X\Z - X) - (Z - X)2.

EXAMPLE 9: Lame's equations

Finally we start from Lame's equations:

d2y

dz2

Here ff> (z) is Weierstrass' £» -function, which satisfies the following equation:

' =A&(z)-ei)te(z)-s&v(z)-ea
dz

Lame's equation can be considered as the equation with four regular
singularities, when we take £> (z) as a new independent variable. If we set

we obtain

dτ

dXo
dτ

dτ
-ejj), (j= 1,2,3)

= XI

dτ 2 2 2
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(X2 - X0){X, - X3) (X2 -

^ι-e3 e2-e3

Here p and q are defined by the equations

4(p + q) + Λ=0, 4pe3+4qe2-B = 0.
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