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1. Introduction

Let X < R"*'=R, x R%, x'=(x,,X,,---,x,) be an open set such that 0e X and
let us consider a differential operator of order m with C*® coefficients:

(1'1) P(xﬁDx)ZPm(anx)+Pm—l(x’Dx)+”'

where we denote by P, _{x,D,) the homogeneous part of order m—j of P.
Let us suppose that:

(H,) the hyperplane x,=0 is non-characteristics for P and the principal symbol
Pu(x, &) is hyperbolic with respect to &,.

In this paper we shall study the well posedness of the Cauchy problem in C*®
for the operator P in some cases where p,(x, ) is not strictly hyperbolic but the
set of multiple characteristics has a very special form, as we will specify further.
(For a definition of correctly posed Cauchy problem in X,={xeX;x,<0} we
refer to [5]).

We shall suppose that p,(x, &) vanishes exactly of order m, <m on a smooth
manifold ¥ and that p,, is strictly hyperbolic outside X.

On X we make the following assumptions:

(H,) for any point peZX, there exists a conic neighborhood Q of p and d+1
(d <n) smooth functions g, j=0,---,d, defined on W=:QuU(—Q) and homogeous of
degree one such that Xn W is given by

(1.2) {pe W;qo(p)=..=qdp)=0}
with {g,,q;}(p)=0 for any peZnW.
(Here we have set —Q=:{(x,&)e T*X\0;(x, — &) eQ}).

Moreover, denoting by w and o=dw the canonical 1 and 2 forms in T*X
we suppose that dg(p) and w(p) are linearly independent one forms and that H, (p)
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is transversal to X, for any peX.

This implies that £ is a closed conic, non radial involutive submanifold of
codimension d+1 in T*X\0.

Hence, if peZXZ, then T,(X)" = T,(X). Here T,Z)" denotes the dual with
respect to the bilinear form o.

A consequence of (H,) is that X is locally foliated of dimension d+1 by the
flow out of the Hamiltonian fields of the g;.

The leaf through p € £, whose tangent space at p is T,(X)’, will be denoted by F,.

For any peZ, the bilinear form o induces an isomorphism

J,: T(T*X\0)/ T,(Z) - TXF),).

Hence, for any p € Z, we can define the localization p,, , of the principal symbol p,, at p
(1.3) Pm,p(0)=1limt™™p, (p+ tv) ve TXF)).
t=0

Clearly, p,, ,(v) is hyperbolic with respect to ﬁxO(p) =:J,(H,(p)). Letusassume that:
(H3) pm, is strictly hyperbolic with respect to ﬁxO(p), for any peX

It is well known that, under the assumptions (H,), (H,), the Cauchy problem for
P cannot be correctly posed in C*® for arbitrary lower order terms.

In our case, the results of lvrii-Petkov [7] give the following necessary condition
for the well posedness of the Cauchy problem: the terms p,_; must vanish of
order m—2j on X.

On the other hand, if this condition holds, it is possible to define the localization
P, of P(x,D,) at a point peX (see: [4]).

A recent result of Nishitani [10] (see also [2]) states that, in order to have the
well posedness of the Cauchy problem for P, it is necessary that P,=p,, , but, it is
clear that this kind of condition cannot be sufficient (even in the case of constant
coefficients (see, for example, [3]).

Here we prove that if P(x, D) satisfies (H,), (H;), (H;) and the Cauchy problem
for P is well posed in X, then the following Levi condition holds:

(H,) in a conic neighborhood Q of a point peX, P can be written in the form
P(x,D)= ) AJfx,D,)Q%(x,D,)..05(x,D,)
e} <mi
for some 4, OPS™ "(X) and Q;e OPS'(X) with principal symbol g;.

More precisely, our result is the following:

Theorem 1.1. Let P(x, D,) be a differential operator satisfying (H,), (H,), (H;).
The Cauchy Problem for P is well posed in X, iff (H,) holds.
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The study of propagation of singularities for the operator P satisfying
(H,)— —(H,) has been done by Melrose and Uhlmann [9] in the case m,=2
and has been generalized by Bernardi [1] (see also [8] and [11]).

2. Reduction to a normal form

Let us consider the operator (1.1) satisfying (H,), (H,).

In this section we perform a canonical change of variables preserving the
hyperplane x, =0 and transforming, microlocally near the points of X, the manifold
X into

i={(x’£);é°=fl=‘“=éd},

Let us fix a point poeXNQ.
Since H, (p,) is transversal to X, there exists je {0,---,d} such that

0q.:
{Qj, Xo}(po)= —&(Po) #0.
¢,

0
Without loss of generality, we can suppose that a_‘é‘)(po);eo.
0

Hence, in a neighborhood of p,, we can write
qO(X, 6) = (60 - A’(X’ 6,))7()(, 60} él)

with r(py)#0.
If we set G{(x,&)=q{x,Ax,&), &), j=1=-- =d, the manifold X is defined, in a
neighborhood of p,, by the equations:

50 - A'(xa él) =09 q_l(xa él)’ o '9qd(x5 6/) =0.

Let us consider the canonical map yx:T*X = T*R"*!, x(xe, X, ¢&0 &)
=0, s M0>1") With yo=x, and no=¢o— AUx, ).
In a neighborhood of x(po)=:p=00, 7,0 7'), We have

1B =E={.n;n0=8:01)=..=gs0, 1)}

with gf(y’ ’7,) = ‘L{Vo, X l(yla 7’,))’ j= 1’ ) d.
- Jg. . -
Since Z is involutive, {#y,g;}(¥, n')=a—g’{y, 7')=0 at any point (y,,y,#')€e X close
Yo
to p.
Hence, in a neighborhood of j there exist smooth functions b, ;, i,j=1,---,d

such that:
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ag ’ r d ’ r ! r
;(Vo,y )= Z bi,j(yoay N )gj(Van 1)
0o j=1

Let B(yo,)',1') be the d x d matrix with elements b, ; and let G(y,,)’,%’) be the
vector with elements g;, Then G satisfies the following first order system:

dG ’ r 7 r ’ 7’
d—(yo,y,n)=B(yo,y,n)G(yo,y,n)
Yo
2.1)
Glyg=50 =G0, ', 1)-
If we denote by C(yo,)',n') the resolvent of the linear system (2.1), we have

G0y, n)=Coy,MGI0 Y1)
Hence, in a neighborhood of g, ¥ is defined by the following equations:

no=8:0/,n)=-=8,/,1)=0
with gj(y,a '7') =gj(.}705yl, ’1’)’ Jj=1 ~d.
Let us define now the canonical map Y(yq, V', 1o, 1) = (Xo, X', £o, &) With xy=1y,
and £,=n, such that gy~ '(x,&)=¢&, for j=1,---d.

Hence, microlocally near j,=y(p), the manifold £=y(£) is given, in the new
coordinates, by the following equations

fo=é1=--=éd=0-

Let us notice that since the g;-s are positively homogeneous of degree one, the
canonical change of variables can also be taken as positively homogeneus of degree
one (see [6]).

Moreover, since the g;-s are homogeneus of degree one, we can extend the
positively homogeneous canonical change of coordinates y:Q — T*R"*!, y(x,¢)
=((x, &), n(x, £)) to a homogeneous canonical change of coordinates x: W — T*R"*!
setting ¥(x, £)=((x, = &), —n(x, =) for (x,&)e(~Q).

Notice that y(—p)= —p and that y maps £ W into

{(x,9)e W=:ﬁu(—-ﬁ);{0=§1=..=éd=0.}

where Q is a conic neighborhood of .

3. Necessary conditions

In this section we show that, under assumptions (H,)— —(Hj), the Levi condi-
tions (H,) are necessary for the well posedness of the Cauchy problem of P in X,,.
By using the results of Section 2, this fact will be a consequence of the following:

Proposition 3.1. Let us consider the pseudodifferential operators
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m—j—pu

J K
) Y AY(x,DYDLDL,

1 k=0 l|a|=m—j—k—pj

3

P(x,D,)=P,(x,D,)+

J

with

P (x,D,)= Z Z A‘O’ (x, D,)D%.D

k=0 |a|=

with A¥)(x,D,)e OPS*(X), 0<u;<m—j, having the principal symbol a¥)(x,¢)
homogeneous of degree p;.

Let us suppose that (H,), (Hy), (Hs) holds with Z={(x,&);, £, =& =0}
and &'=(y, -+, &)

If the Cauchy problem for P is well posed in X, then al)(x,&) must vanish at
any point peX if u;#0.

Proof. Let us fix peX. Without loss of generality, we can take p=(0,¢,) € .
The proof is done by induction.

Let us suppose that a¥)(p)=0, 1<j<p<m for |o| +k=m—j—p; with p;#0
and let us prove that if a¥p!(p)#0 for some ok, |a| +k=m—p—pu, then we must
have pu,=0.

Let us set
J.‘f__;agj;)(p);eo for some |a|+k=m—j—uj,j=p,~-,m—1}.
uit+j

(3.1) t= sup{

We have t>—2— Fr  and 0<t<l.
up+p
Notice that the results of [7] and [10] implies that ¢ must be strictly less than

1 <
3 in order to have the well-posedness of the Cauchy problem for P.

. ) . 1 1
On the other hand, in our situation, the cases t<5 and IZE can be treated

in the same way and we prefer consider both the case and find directly the Levi
condition of [7] and [10], in our particular setting.

Suppose that p,#0 and then >0 and let us show that this fact contradicts
the assumptions on the well posedness of the Cauchy problem.

Let j,<j,<.<j, (1<p<j,<j,<..<j,<m—1, 1<r<m—1-—p) such that
u—j‘_=t for i=1,---,r.
Mji +jl

If 5, is a positive real number, let us take s=(s"",s,) =(5¢, ***, Sy 1, S) With 5;=1s,,
for j=0,---,n—1 and let us consider the change of varlables y=p_°x.

Denoting by P, the operator P,(x,D,)= p " P(p~5x, p’D,) we have:
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Py, Dx)=p-'w"{z Y ACp~*x, p°D)p 1 P Dz, Dk

k=0 |a|]=m—k

+3 Y ARG, pSDx)p""““'“’D:,Di.,}

=1 K0 Jal=mTj—k-py

(3.2) A ___p—ts,.m{ i Y AQ(px, p(t—l)s,.Dx”” 1)p's""“‘+"’D“,D"o
X » D x X

=0 |la|=m—k Xn

m D._.
+5 S A ey

j=1 k=0 |a|=m—j—k—p; e

Xp’Sn(|a|+k)+Sn‘ljD[ljDa'Dk }
Xnx"xo (°
Applying the Taylor formula, we get

D,..
AL (P~ p I 1) =00, ) + Olp ™)+ Op ™),

Xn

Hence

P,,(x, Dx) = Z z af.?ﬂ(o, en)Di'D‘;co

k=0 |a|=m—k

room—ji—uj,
+2 Y. ali’0,e)DyiDDY,
i=1

k=0 la|=m—j—k—npj,

(33) + 0(p —ts,.) + 0(p(t— l)s,.) + Z 0(p5n(llj— tuy +j)))

J# gt delpy e m=1)
+ io(psn(uj—t(uj+j)—t))+ i 0(ps..(urf(uj+j)+(t—1)))_
j=1 j=1
Since all the powers of p in the remainder terms of (3.3) are negative, if we choose
s, sufficiently large we get

m

Pp(x7 Dx) = Z Z agz(.)li(o’ en)D:’D‘)‘co

k=0 |la|]=m—k

room=ji—uy,
(3.4 + Y Y a0, e,)D%:D%.D
i=1 k=0 la|=m—j—k—pj,
+0(p™")

for any NeN.
Let us consider the simplectic dilatation S,(xo, -, %,)=(p "X, X1, """, Xp1,

p~2x,).
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Then

P;,(X,Dx)=:p_sz(p—sz,xl, '“7xn—l»p_Z/'xn’pszmep "',Dx,._,,pzlle,.)

=3 T a0, en)(D—;i)aD’;o
0

k=0 |a|=m—k

rom—ji—pg,
(3:3) +y Y ’ Y A%(0, e )D“J-<D ) D%,
i=1 k=0 |a|=m—ji—k—py, p
+0(p™")

Set E,=¢"* with
V() =p' %, + P>, E )+ pyxo +iplX" P [ 2+ip T X/ 2.

(Here (an R xn) = (xo, X’, xm, xn))'
We have

E; DL Ey=p"y* +kp* ™y 71D+ O(p* %)

E; \DEsE, = phdt st g p ~ 1 g L, - O(pi DI 4 O(p 1 1wl
Ep_ lDijp =p3dj€}11 + 0(p3aj— 3)'

Hence
1P1 E Z Z a(O)(O en)p|a|+k§rayk
k=0 |a|=
+3 Y aOekp Itk IE D
k=0 |a|=m—k
) Y AL e kgt
=1 k=0 |a|=m-ji-k-u;,
rom=jispg
69) +Y S A0, el

[
—

k=0 la| =m—ji—k—p;,

X (k& Ey 1D, +ip,EmER T kX,

+ i Z O(p]a[—2+k)

k=0 |a|=m—k

i ) (O(p! k=2 ¥ mifty 4 O(plaI*k =1+~ 1iity)

i la| +tk=m—ji— 37

+0(p~").

Notice that, if |a|=m—k—p;—j, then |d|+k+pu; /t=m—(u;+j)+p;/t=m
Hence
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E,'P,E,=p ( Y oY a%0,e,)Et

k=0 |a|=m—k

r Ji —Hj;
3.7 £y Y AN, e..)rf’“ét.‘“v")
i=1 k=0 |a|=m—j.<—k—ujl.
+L,
with
(3.8) Ly=p™ 'Lo+p" VL +p" 2Lyt p" ™ T Ly e
and
—_-(Z Y al%0, e, k& k!
k=1 |la|]=m-k
r ~HRj;
(3.9) + Z Z Y A0, e, )& Eriyt “‘)on
i=1 k=0 |al=m_j|'_k—llj|.
r T Hi;
£y Z Y AN, e, )in £
i=1 k=0 laj=m—ji~k=pj,
Set now
P EE)=2Y Y a0, e,)E
(3.10) k=0 |a|=m—k

M-
3

-+

i

Y a0, e,)E b,

1 k=0 [a|=m—j.-—k—uj‘.

Let us suppose that there exists j;, p<j;<m—1, and a%(0,e,) #0 with p; >0
for some o, k, |@|+k=m—j—p;, i=1,---,r. We show that, in this case, the
equation

P, ¢, 6,)=0

has at least a root y with Im y <0 for a suitable choice of &', ¢, and moreover that it is
possible to find an asymptotic solution u, of L,u,=0.

This will imply that there exists a solution of P,v,=0 of the form v,=e"*u,
such that Im(y,)> p®|x|, if x, <0, for some £¢>0, that is in contradiction with the
assumption of the well posedness of the Cauchy problem (see [S]).

Notice that, since j;+p;>2, the coefficient of ym~! in (3.10), given by

Y al®),_(0,e,)¢" is real. Hence, it is sufficient to prove the existence of a root
el =1

y of p(y, &, E)=0 with Imy#0 for some &, &,
Set
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A=Y aQl0,e,)"

|la|=m—k

Agrp, (&)=Y a6

|a|=m—ji—uj.—k

qm(y’ é )_ Z A(O) k(&

m=ji—
qm—j«—u,'i(}’a é,)_ kz A:r]ll +1‘.‘] )[lj - (il)yk
=0
Then
(3.11) P75 €' )=y, &) + Z G ji—n; (> ENER%
i=1
Notice that
. . S

312 1> &, E) =12 m(l, ~—>
(3.12) Pl €08 =W s o 2

We have the following.

Lemma 3.2. Let q,(y)= ZA‘O’ ¢ be a real polynomial of degree m in the

variable y and q,,_J{y)= Z AS_ ¥, s=2,---,m polynomials of degree m—s in the
variable y. Let ;e N wtth 1<d,<s—1, s=2,--,m

If q.(y) has m real roots then p,(y, A)=qu(y)+ Y. qm-«y)A% has still m real roots
s=2

for any JeR iff q,-y) is identically zero for s=2,---,m

Proof. Let us prove the statement by induction on the degree m of p,,.

Notice that, if j,(y,4) has m real roots for any A€ R then g¢,,_(y) must be a
real polynomial in the variable y.

The statement is clearly obvious for m=2.

Suppose that the statement is true for a polynomial j,,(y, A) of degree m and let us
prove it for p,, +(y,4).

m+1
Suppose that . (1, A) =g+ 1) + Z Gm+ 1 (1A%, with 1 <, <s—1, has m+1

real roots in the variable y.
As a consequence
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d d mod
_~m 7'1 = m + m ) }'6;
e 1 4) o 1) s;d—yq +1-5)

has m real roots. By induction, this implies that d—qmﬂ_s(y) is identically zero
Y

ie. AY, ,_,=0 for any k=1, m+1—s5, 5=2,---,m.
Hence

m+1

P11 )= 1)+ Z AP, 2%

s=2

and it is easy to check that j, ., (7, ) has only real roots, for any e R iff 4%, ,=0
for any s=2,--,m+1. O

End of the proof of Proposition 3.1. Applying Lemma 3.2 to the equation
(3.11) with A=¢&, we can conclude that j,(y, v, &,)=0 must have a root y(v,&,) with
Imy#0 for some ¢, and veR? with |v]=1.

This root is simple. Actually, by (3.12), y(uv, p'¢,) = uy(v, &,) for any pe R* and
(H,) implies that y(uv, u'&,) is simple for small pu.

Writing t=p/q, with p,qe N from (3.7) we get

Lp=pm—1Lo+pm—q/pL~l+pm—2£'2+pm—(q+p)/l’[:3+...

Eventually by adding some L;=0 we can write
+ .
L,,= Zp'"_("+’)/”Lj.
j=0
Following the arguments of [5], we can find an asymptotic solution u, of
L,u?=0 in the form

+ o0
_ —k/
U= p~ "u,
k=0

and this fact contradicts the assumption on the well posedness of the Cauchy
problem for P.
Hence al»(0,e,)=0 if u; >0 for any a, k.
Repeating these arguments a finite number of times we can conclude that
a%i’(0,e,)=0 if p;>0 for any o, k and end the proof of the proposition.
O

Proof of Theorem 1.1 (Necessary conditions). Let P(x,D)=P,(x,D,)
+P,,_(x,D,)+--- be a differential operator satisfying (H,), (H,), (H;) and Q be a
neighboorhood of a point peX.
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Without loss of generality we can suppose m, =m
Since p,, vanishes of order m on £nQ, the principal symbol p,(x, &) can be
written at a point (x,£)eQ as

(3.13) Pnlx, 9=}, a(x,O)q(x, &)

|a]=m

for some symbol al%(x, ¢) positively homogeneous of degree zero.

By taking, for (x,&)e(—Q), al®x,&)=:a(x, —¢&), (3.13) holds for (x,¢)
e W=Qu(—-Q).

Let A”(x,D,) and Q/x,D,) be pseudodifferential operators with principal
symbols a{”(x, &) and g(x, &) respectively.

Hence, in W, we can write

(314) P(X,Dx)= Z ALO)(anx)Q(stx)a'i'ﬁm—1(x’Dx)+"'

|a] =m

Let x(x, £)=(y,7) be the canonical change of variables of Section 2 and let F be
the elliptic Fourier integral operator associated to 7.

P(y,D,)=FP(x,D)F '= Y A,DXD,,+ Ro)*D,,+ R)™

e} =m

+Gm—1(yaDy)+G~m—2(yaDy)+”'

for some pseudodifferential operator R; of order 0 and G- j of order m—j
Applying Proposition 3.1 to P and then coming back to P we can conclude

than, if P satisfies (H,), (H,), (H;) and the Cauchy problem for P is well posed

in X, then (H,) holds. O

4. Sufficient conditions: the energy estimates

In this section we prove the well posedness of the Cauchy problem for P in
Xy, under assumptions (H,;)— —(H,), by using the method of energy estimates
(see [5]).

Taking into account that the principal symbol of P is strictly hyperbolic
outside ¥ we can assume, without loss of generality, that m, =m.

Since all the canonical transformations we made in Section 2 preserve the
hyperplane x,=0, then it will be enough to establish some suitable energy estimate
for the operator

m

- ~ m_J
@.1) Px,D)=P,(x,D)+ Y ¥ ¥ Aulx,DIDLDL,

j=1 k=0 |aj]=m—j—k

where
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4.2) Px,D)=Y Y Ax,D,,D,.)DLD~

k=0 |a|]=m—k
with 4, ,(x,D,)e OPS°(X) and A, ,=]I.
Here we have set x'=(x,,---,x,) and x"=(x44, ", X,)-
Moreover we may assume that the symbol of P is supported in a conic
neighborhood of g=(X, fo=0, F=0,8)eE, & #0, of the form

. g
L= {(x, &); lx— | <, &) <elé’], | - — 2| <e}.
(e 0= <o 1 <ale') | <o)

Let us start by introducing a suitable class of symbols of pseudodifferential
operators.

DeriNITION 4.1. Let X be an open set of R"=R% xR"7% We say that
aeS™YXxR") iff ae C*(Xx R") and for any compact K < c X, for any aeZ",
B'eZ’ B'eZ""? there exists a positive constant C, s 4. x such that:

(4.3) |DIDE DL alx, &', &) | < Cp g (&Y WICE, EyP W

where (&) =:(1+|¢1%)!? and <&, &">=(1+|&P+|E"1P)"2.
We denote by OPS™P(X) the class of pseudodifferential operators associated with
S™P(X x R") and we set:

H™P(R")={ve LXR"); llvll,z..,p=f(1 +IEPA+IEPPIE, &P dEdE” < + o).
In the following we denote simply by |- | the norm in L?(R").

REMARK 4.2. It is easy to check that:

1. If aeS™P(XxR"), supp(a) = {(x,);|&|<c|¢"|} then for any compact
K< c X, for any ae Z", f'e Z*, f’e Z"~* there exists a positive constant C, g 5 ¢
such that:

|DDEDE a(x, &, &")| < Cy g g x<EY™IPICE P71

where (& =:(1+|&"|H)"2.

2. If ae S™P(X x R"), supp(a) = {(x,&);|E"|<c|¢'|} then ae S™*P(X x R").

3. If ae S™P(X x R"), supp(a) < {(x,&);|&'|<c} then ae S*P(X x R").

4. If X’ is an open set of R? and ae S™( X' x R% then aeS™°(X x R") with
X=X'xR""?

5. For any j>0, S™P(X x R") < S™ #P*i(X x R").

6. If A(x,D,)e OPS™P(X) and o(A)(x, &, £")=0 for |x|> R, for some R>0 then
A(x, D,) is continuous from H™P(R") to L*(R") i.e
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A, D Jull <Clul,,,, VueLXR").
We can prove the following energy estimates.

Proposition 4.3. For any K < < X there exist a constant C=C,>0 and a real
number g >0 such that for any u e C§(K) and any 1> 1, the following inequality holds:

- m . m-—j
Clo<oll Px, D Julxo, )| e~ 20dxo > 3 171 3 [1D5,u(0, )l - j -k
(4 4) j=1 k=0

m m—j

+ T2 Z J Il D’;o“(xo, : )szn—j—k,oe_ 2modxo-
ji=1 x0<0

k=0

Proof. The proof is done along the saine lines of the proof of the well
posedness of the Cauchy problem in the strictly hyperbolic case.
Let

ﬁm(x, 6): Z z aa,k(x5 éla é”)émél(c)
k=0 |a|=m—k
be the principal symbol of P.
If =% &,=0,8=0,")eE, &0, the assumption (H;) guarantees that the
localization of p,, at p:
~ ’ n__ < 1o~ g” ra, k
Pm,ﬁ(yo,y,no”?)— Z Z aa,k()’o,)’,x ,Oa ~,T)’1 Mo
k=0 |aj=m—k If I
has m distinct real roots in #,, for any y,,»',n" #0.

Hence, for (x,&,£") eI, with ¢ sufficiently small and & #0, p,, has m distinct
L
171"
A%, &', M) < Ap(x, 8, EN) < <A, £ ).

Moreover, the strict hyperbolicity of p,, outside Z, implies that, for (x, &, £")el", and ¢
small, there exist some positive constants ¢, C such that:

AN S IA, &, 8N = Afx, &, EN <, for i)
hix, &, < AL, for any i

real roots A,(x,&’, ") =|¢"|A1x, ), j=1,--,m,

Let us take now a cutoff function ye CP(R*) with x(&)=1 if |£'|<1 and
1&)=0 if |&1=2 and set 4(x, ", ¢")=(1—=x(NAfx, &', &).

It is easy to check that ;e S"°(X x R").

If A;e OPS'° is a pseudodifferential operator with principal symbol 7; we have
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ﬁm(x’ Dx) = (on - Aj(x’ Dx” Dx”))Qj(x’ on’ Dx', Dx") + Sj(x’ D Dx” Dx")

x0°

where

-1

Qj(xa on’ Dx’,Dx"): Z Cj,k(x’ Dx'9 Dx”)Dm_l—k
k=

X0 9
0

with C;,€ OPS*(X x R"), supp(c;) < {(x,);|¢|>1} and
1

Sj(x, on’ Dx’s Dx”) = Z Sj,k(xa Dx” D.x”)D;c"o— ! -—k’
k=

0

with S;,€ OPS**1'%(X x R") and supp(s;,) < {(x,&);|&<2}.
Notice that, thanks to 3) of Remark 4.2, S;, € OPS*°(X x R").
Let us calculate 2iIm{P(x, D Ju, Q;(x, DJu), for ue CP(K), K < < X.
We have:

2iTm{P(x, D yu, Q;(x, DJu)

=2iTm{ P, (x, DJu, Q;(x, D) +2ilm{(P— P,Xx, D, Ju, Q;(x, Du)
4.5  =2Im{(D,—A;(x, D, D )Q;(x, DJu, Qj(x, D,Juy

+2iIm{S(x, D Ju, Q;(x, D Ju)

+2iIm{(P— P,)x, D,)u, Q;(x, D Ju)

Hence, multiplying the above identity by ite”2**° and integrating it for x,<O0,
we have, for t sufficiently large:

Cj ”ﬁ(-x’ Dx)u(XO’ : )” Ze_ thodxo
x0<0

19;(x, DJu(0,")|1?

s

>1
Jj=1

(4.6) +7 ) 1Q,(x, D Julxo, )l *e™2™dxq
j

=1Jx0<0

- TJ‘ ”(F_ ﬁm)(xa Dx)u(XO’ ' )" Ze‘ 2rx0dx0
x0<0

-1 I18(x, D Julxo, )l 2e ™2 0dxq.

J=1Jdx0<0

Now, we can estimate the last two terms in (4.6) by
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TJ (P —P,)(x, D Ju(x,, )| 2e ™ 2*°dx,
x0<0

+y I1S(x, D Ju(xo, )| >e = 2™dx,

j=1 x0<0

m m-—j
STCZ Z |]D’;ou(x0,-)||,f,_j_k‘oe'2”‘°dx0.

ji=1k=0Jx0<0

On the other hand, using the Lagrange interpolation formula, we have, for

k:o,-..’rn_l
e eI E
B L b —TwmE e R

Take now a cutoff function ye CP(R¥) with y(&)=1 if |&'|<5/2 and x(&)=0

if |€']=3.
Hence
o n (1= &NgHm=1- "l(x,é é")" T
1—7'(& m—=1—kgk __ ] YN AN TR ) f _2
(=@ = 2ol eIy 12

Since
Nt () ) C A
P g O, & €)= Tx, €, )

belongs to S° we have:

11 = (DD ey 2t -0 < i 0/x, D Ju(x, )|
@.7) i=
+CZ Z \D “(xo,')”.i—j—k,o
j=2 k=0

On the other hand, if k<m—2
1 k,oSC”D,;ou(x0>')||2~

(4.8) 12/ (D )DYulx0, M- 1 -

Hence (4.7) and (4.8) give, for k<m—2:
1Dk u(x0, Mim— 1 k0 < 2 194x, D Ju(xo, ") 2
(4.9) =1
m m—j
+C Z Z ||D';ou(xo,')||31—j—k,o-

j=2 k=0
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m—1

X0

Moreover, since Dy, '=Q,— Y C;, D5 ™% we have
k=1

m—2
(4.10) D5 ulxo, )I* <11 Q)x, Dulxo, NI* +C 3, 1Dk gilx0, M- 1 -0

k=0

From (4.6), (4.9) and (4.10) we get, for large

@.11)

- m—1
CJ I1PCx, D Julxo," )1 %e™ > 0dxo = . | DXau(0,- )7~ 1 ~ko0
x0<0 0

k=

m—1
+12 Z D% u(x0," )1 7= 4 ~k,0€ 2=xodx,
k=0Jx0<0
m m-—j
-2y ) D%t 0 M- j— k€™ 2" °dxg

j=2 k=0Jxp<0

and using classical estimates for the terms

4.12)

f ”D‘;ou('xm.)“r%l—l—k,Oe_zrxode’ k=0,-~,m—1,
x0<0

we get (4.4) and we end the proof of the proposition.

Proof of Theorem 1.1 (Sufficient conditions). The proof of the theorem follows

easily from Proposition 4.3.

Actually, we remark that P(x,D,) is a hyperbolic differential operator with

simple characteristics outside Z.

Hence, by using classical estimates for strictly hyperbolic operator, Proposition

4.3 and a microlocal partition of the unity, the proof of Theorem 1.1 can be

completed by following the arguments of [5]. O
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