NON-LINEARIZABLE REAL ALGEBRAIC ACTIONS OF $O(2, R) O N R^{4}$

Hiroyuki MIKI

(Received March 18, 1994)

0. Introduction

In algebraic transformation groups, one of the important problems is the following.

Linearization problem ([6]). Let G be a reductive complex algebraic group. Is any algebraic G action on affine space C^{n} linearizable, i.e. isomorphic to some G module as G variety?

Some positive answers to this problem have been given (see [1] for a survey article) but in 1989, G.W. Schwarz [17] constructed counterexamples for many noncommutative groups with $O(2, C)$ being the most explicit case (in the case that the acting group is commutative, any counterexample have never found, and see [7], [9], [11], [12] for further recent results).

In this paper, we consider the analogous problem in the real algebraic category, which was posed in [15]. Then it would be appropriate to take a compact Lie group as acting group since there is a one-to-one correspondence between the family of compact Lie groups and that of reductive complex algebraic groups through the complexification (see [14] p.247).

Schwarz used the properties of complex algebraic geometry to find the counterexamples, so it is not clear whether his argument works in the real algebraic category because \boldsymbol{R} is not algebraically closed. We use the methods of Masuda-Petrie [11] to obtain the following result.

Theorem. There is a continuous family of algebraically inequivalent, nonlinearizable real algebraic $O(2, \boldsymbol{R})$ actions on \boldsymbol{R}^{4}.

Let G be a compact real algebraic group and G_{C} be the reductive complex algebraic group obtained from G via the complexification. Let $A C T\left(G, R^{n}\right)$ (resp. $A C T\left(G_{C}, C^{n}\right)$) be the set of equivalence classes of real algebraic G actions on R^{n} (resp. complex algebraic G_{C} actions on C^{n}), where the equivalence relation is defined by G variety (resp. G_{C} variety) isomorphism. Then there is a complexification map

$$
c_{a}: A C T\left(G, R^{n}\right) \rightarrow A C T\left(G_{C}, C^{n}\right)
$$

It is natural to ask that c_{a} is injective, but it turns out that the examples in the theorem above give a negative answer to this question.

Proposition. The map c_{a} is not injective.
This paper is organized as follows. We consider the relation between the linearization problem and algebraic G vector bundles in section 1 and construct non-trivial real (affine) algebraic $O(2, R)$ vector bundles in section 2 . In section 3 we consider the complexification of real algebraic G vector bundles and that of algebraic actions. In section 4 we prove the theorem above using vector bundles constructed in section 2, and apply the complexifications to the examples in the theorem. We give an explicit description of a non-linearizable real algebraic $O(2, \boldsymbol{R})$ action in the appendix. Most of the results in this paper are from the author's master thesis [13].

Acknowledgement. I would like to thank Professor Mikiya Masuda heartily for not only his many helpful suggestions for writing this paper but his lead to my research. I would also like to thank Professor Sung Sook Kim for her many useful suggestions for writing this paper.

1. Algebraic G vector bundles and non-linearizable actions

Let \boldsymbol{K} be the real numbers \boldsymbol{R} or the complex numbers \boldsymbol{C}. We say that X $\left(\subset K^{n}\right)$ is an affine variety if X is the set of the zeros of a map from K^{n} to some K^{m} whose coordinate functions are polynomials, and we say that $f: X \rightarrow Y$, where $X\left(\subset K^{n}\right)$ and $Y\left(\subset K^{m}\right)$ are affine varieties, is an algebraic map if f extends to a map from K^{n} to K^{m} whose coordinate functions are polynomials. A group G is an algebraic group if G is an affine variety and the map $\varphi: G \times G \rightarrow G$ defined by $\left(g_{1}, g_{2}\right) \mapsto g_{1} g_{2}^{-1}$ is algebraic, X is an (affine) G variety if X is an affine variety and the action map $\phi: G \times X \rightarrow X$ is algebraic, and $f: X \rightarrow Y$ is an algebraic G map (here X and Y are G varieties) if f is algebraic and G equivariant. An algebraic G map is an algebraic G isomorphism if it is bijective and its inverse is also an algebraic G map. Two G varieties are isomorphic if there is an algebraic G isomorphism between them.

Let G denote an algebraic group over K and let B, F, S denote G modules over K whose representation maps $(: G \times B \rightarrow B$ etc.) are algebraic.

Definition 1.1. Let $\operatorname{Vec}(B, F ; S)$ be the set of algebraic G vector bundles E over B such that $E \oplus S$ is isomorphic to $F \oplus S$ as algebraic G vector bundle, where $F=B \times F$ and $S=B \times S$ are product bundles over B. We define $V E C(B, F ; S)$ to be the set of isomorphism classes of elements in $\operatorname{Vec}(B, F ; S)$ as algebraic G vector
bundles.
We recall some results about $\operatorname{Vec}(B, F ; S)$ from [11]. The following results are established in [11] when $\boldsymbol{K}=\boldsymbol{C}$. But the same argument works when $\boldsymbol{K}=\boldsymbol{R}$.

Definition 1.2. Let $\operatorname{sur}(\boldsymbol{F} \oplus \boldsymbol{S}, \boldsymbol{S})$ be the set of algebraic G vector bundle surjections $L: \boldsymbol{F} \oplus \boldsymbol{S} \rightarrow \boldsymbol{S}$ which allow an algebraic G splitting map from \boldsymbol{S} to $\boldsymbol{F} \oplus \boldsymbol{S}$, and let $\operatorname{aut}(\boldsymbol{F} \oplus \boldsymbol{S})$ be the group of algebraic G vector bundle automorphisms τ of $\boldsymbol{F} \oplus \boldsymbol{S}$.

Remark. In the complex category, any algebraic G vector bundle surjection from $\boldsymbol{F} \oplus \boldsymbol{S}$ to \boldsymbol{S} has a splitting (see [2]). But in the real category, this is not the case. For example, $f: \boldsymbol{R} \times \boldsymbol{R} \rightarrow \boldsymbol{R} \times \boldsymbol{R}$ defined by $(a, b) \mapsto\left(a,\left(a^{2}+1\right) b\right)$ has no splitting, where $\boldsymbol{R} \times \boldsymbol{R}$ is viewed as a trivial bundle with the projection on the first factor \boldsymbol{R}.

The group $\operatorname{aut}(\boldsymbol{F} \oplus \boldsymbol{S})$ acts on $\operatorname{sur}(\boldsymbol{F} \oplus \boldsymbol{S}, \boldsymbol{S})$ by $L \stackrel{\tau}{\rightarrow} L \circ \tau$ and $L \in \operatorname{sur}(\boldsymbol{F} \oplus \boldsymbol{S}, \boldsymbol{S})$ defines an element $\operatorname{ker} L$ in $\operatorname{Vec}(B, F ; S)$.

Theorem 1.3 ([11]). The map sending $L \in \operatorname{sur}(\boldsymbol{F} \oplus \boldsymbol{S}, \boldsymbol{S})$ to $\operatorname{ker} L \in \operatorname{Vec}(B, F ; S)$ induces a bijection

$$
\operatorname{sur}(\boldsymbol{F} \oplus S, S) / \operatorname{aut}(\boldsymbol{F} \oplus S) \cong V E C(B, F ; S)
$$

Because of the solution of the Serre conjecture (see[16], [19]), any vector bundle $E \in \operatorname{Vec}(B, F ; S)$ is trivial if we forget the actions. So E gives an algebraic G action on some K^{n}. We consider the classification of (the total spaces of) elements in $\operatorname{Vec}(B, F ; S)$ as G varieties.

Definition 1.4. Let $\operatorname{VAR}(B, F ; S)$ be the set of isomorphism classes of elements in $\operatorname{Vec}(B, F ; S)$ as G varieties. Let $\operatorname{Aut}(B)^{G}$ be the group of G variety automorphisms of B.

The group $\operatorname{Aut}(B)^{G}$ acts on $V E C(B, F ; S)$ by taking pull back bundles and the trivial element in $\operatorname{VEC}(B, F ; S)$ is fixed under the action. One easily sees that the natural map from $\operatorname{VEC}(B, F ; S)$ to $\operatorname{VAR}(B, F ; S)$ factors through the map

$$
V E C(B, F ; S) / \operatorname{Aut}(B)^{G} \rightarrow V A R(B, F ; S)
$$

This map is often (but not always) bijective ([11]). We recall a sufficient condition for the above map to be bijective.

Definition 1.5. Let $E_{1}, E_{2} \in \operatorname{Vec}(B, F ; S)$ and let $f: E_{1} \rightarrow E_{2}$ be a G variety isomorphism. We say that f maps B as graph if the composition $p f s: B \rightarrow B$ is
in $\operatorname{Aut}(B)^{G}$, where $p: E_{2} \rightarrow B$ is the projection and $s: B \rightarrow E_{1}$ is the zero-section.
Theorem 1.6 ([11]). Suppose that any G variety isomorphism between elements in $\operatorname{Vec}(B, F ; S)$ maps B as graph. Then the natural map: $V E C(B, F ; S) \rightarrow V A R(B, F ; S)$ induces a bijection

$$
V E C(B, F ; S) / \operatorname{Aut}(B)^{G} \cong V A R(B, F ; S)
$$

In particular, if $E \in \operatorname{Vec}(B, F ; S)$ is non-trivial, then the G action on E is non-linearizable.

2. Non-trivial $O(2, \boldsymbol{R})$ vector bundles

In this section we show that $V E C(B, F ; S)$ can be non-trivial. Let $O(2, R)$ be the real orthogonal group. We identify it with $S^{1} \quad Z_{2}$. Define a two dimensional real $O(2, \boldsymbol{R})$ module $W_{n}=\{(a, \bar{a}) ; a \in \boldsymbol{C}\}(n \in N)$ as follows (here \bar{a} denotes the complex conjugate of a). For $g \in S^{1}$ and $1 \neq J \in Z_{2}$, the representation map is defined by

$$
g \mapsto\left(\begin{array}{cc}
g^{n} & 0 \\
0 & \bar{g}^{n}
\end{array}\right), \quad J \mapsto\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) .
$$

Theorem 2.1. There exists a bijection: $V E C\left(W_{1}, W_{m} ; \boldsymbol{R}\right) \cong \boldsymbol{R}^{m-1}$.

In order to prove this theorem, we use Theorem 1.3. We first calculate $\operatorname{sur}\left(\boldsymbol{W}_{m} \oplus \boldsymbol{R}, \boldsymbol{R}\right)$ and $\operatorname{aut}\left(\boldsymbol{W}_{m} \oplus \boldsymbol{R}\right)$.

Lemma 2.2. (1) Any surjection $L \in \operatorname{sur}\left(\boldsymbol{W}_{m} \oplus \boldsymbol{R}, \boldsymbol{R}\right)$ is of the following form on the fiber over $(a, \bar{a}) \in W_{1}$;

$$
L(a, \bar{a})=\left(f \bar{a}^{m}, f a^{m}, h\right)
$$

where f, h are relatively prime polynomials of $t=|a|^{2}$ with real coefficients and $h(0) \neq 0$.
(2) Any automorphism $\tau \in \operatorname{aut}\left(\boldsymbol{W}_{\boldsymbol{m}} \oplus \boldsymbol{R}\right)$ is of the following form on the fiber over $(a, \bar{a}) \in W_{1}$;

$$
\tau(a, \bar{a})=\left(\begin{array}{ccc}
u & a^{2 m} l & a^{m} s \\
\bar{a}^{2 m} l & u & \bar{a}^{m} s \\
\bar{a}^{m} r & a^{m} r & w
\end{array}\right),
$$

where u, w, l, r, s are polynomials of $t=|a|^{2}$ and u, w are congruent to non-zero constants modulo t^{m}.

Proof. (1) L is linear relative to each coordinate of W_{m} and \boldsymbol{R}, so one can write

$$
L(a, \bar{a})=\left(L_{1}(a, \bar{a}), L_{2}(a, \bar{a}), L_{3}(a, \bar{a})\right),
$$

where L_{i} is a polynomial for $i=1,2,3$. The S^{1} equivariance of L means that

$$
L_{1}(g a, \overline{g a})=\bar{g}^{m} L_{1}(a, \bar{a}), \quad L_{2}(g a, \overline{g a})=g^{m} L_{2}(a, \bar{a}), \quad L_{3}(g a, \overline{g a})=L_{3}(a, \bar{a}) .
$$

An elementary computation shows that these imply

$$
L_{1}(a, \bar{a})=f_{1}(t) \bar{a}^{m}, \quad L_{2}(a, \bar{a})=f_{2}(t) a^{m}, \quad L_{3}(a, \bar{a})=h(t)
$$

for some polynomials f_{1}, f_{2} and h with real coefficients. The Z_{2} equivariance shows that f_{1} coincides with f_{2}, which we denote by f. The property that f and h are relatively prime follows from the existence of a splitting of L and that $h(0)$ is non-zero follows from the surjectivity of L.
(2) Because of $O(2, \boldsymbol{R})$ equivariance, one can check that τ is of the form in the statement. Since τ is an automorphism,

$$
\operatorname{det}(\tau(a, \bar{a}))=\left(u-t^{m} l\right)\left(u w-2 t^{m} r s+t^{m} l w\right)
$$

must be a unit polynomial, which is a non-zero constant. So each factor at the right hand side is also a non-zero constant. It follows that u and $u w$ are congruent to non-zero constants modulo t^{m}, hence so is w.

Notation. Let $L_{f, h}$ denote L in Lemma 2.2 (1) and $E(f, h)$ denote the kernel of $L_{f, h}$. We abbreviate $E(1, h)$ as $E(h)$. Then the vector bundle $E(h)$ (with the obvious projection on W_{1}) is written as follows;

$$
E(h)=\left\{(a, \bar{a}, x, \bar{x}, z) \in W_{1} \times W_{m} \times \boldsymbol{R} ; \bar{a}^{m} x+a^{m} \bar{x}+h(t) z=0\right\} .
$$

Note that if h is a non-zero constant, $E(h)$ is isomorphic to $\boldsymbol{W}_{\boldsymbol{m}}$ through the correspondence $(a, \bar{a}, x, \bar{x}, z) \mapsto(a, \bar{a}, x, \bar{x})$.

Lemma 2.3. There are three vector bundle isomorphisms.
(1) $E(f, h) \cong E(f, h / h(0))$.
(2) $E(f, h) \cong E(h)$.
(3) $E\left(h_{1}\right) \cong E\left(h_{2}\right)$ if and only if there is a non-zero constant c such that $h_{1} \equiv c h_{2}$ modulo t^{m}.

Proof. (1) $\quad(x, \bar{x}, z) \mapsto(x, \bar{x}, h(0) z)$ is the required isomorphism.
(2) By Theorem 1.3 and Lemma 2.2 (2), it suffices to show the existence of polynomials u, w, l, r, s such that

$$
\left(\begin{array}{lll}
\bar{a}^{m} & a^{m} & h
\end{array}\right)=\left(\begin{array}{lll}
f \bar{a}^{m} & f a^{m} h
\end{array}\right)\left(\begin{array}{ccc}
u & a^{2 m} l & a^{m} s \\
\bar{a}^{2 m} l & u & \bar{a}^{m} S \\
\bar{a}^{m} r & a^{m} r & w
\end{array}\right)
$$

and that the determinant of the above 3×3 matrix is a non-zero constant. Choose polynomials ξ and η of t such that $f \xi+h \eta=1$ (this is possible since f and h are
relatively prime by Lemma 2.2 (1)) and polynomials r^{\prime} and $r^{\prime \prime}$ of t such that $h r^{\prime}=(1-f)-t^{m} r^{\prime \prime}$ (this is possible since $h(0) \neq 0$ by Lemma 2.2 (1)). Then one can check that

$$
u=1+t^{m} l, \quad w=1-2 t^{m} f l, \quad s=h l, \quad l=\xi r^{\prime \prime} / 2, \quad r=r^{\prime}+t^{m} \eta r^{\prime \prime}
$$

satisfies the required conditions.
(3) If $E\left(h_{1}\right) \cong E\left(h_{2}\right)$ there is $\tau \in \operatorname{aut}\left(\boldsymbol{W}_{m} \oplus \boldsymbol{R}\right)$ such that $L_{1, h_{1}}=L_{1, h_{2}} \circ \tau$, i.e.

$$
\left(\begin{array}{lll}
\bar{a}^{m} & a^{m} & h_{1}
\end{array}\right)=\left(\begin{array}{lll}
\bar{a}^{m} & a^{m} & h_{2}
\end{array}\right)\left(\begin{array}{ccc}
u & a^{2 m} l & a^{m} s \\
\bar{a}^{2 m} l & u & \bar{a}^{m} s \\
\bar{a}^{m} r & a^{m} r & w
\end{array}\right),
$$

where the determinant of the above 3×3 matrix is a non-zero constant. Hence $h_{1}=h_{2} w+2 t^{m} s$. Since w is a non-zero constant modulo t^{m} by Lemma 2.2 (2), the necessity is clear. Conversely if $h_{1}=c h_{2}+t^{m} h_{0}$ for some polynomial h_{0} of t, then $\tau \in \operatorname{aut}\left(\boldsymbol{W}_{m} \oplus R\right)$ defined by

$$
\tau(a, \bar{a})=\left(\begin{array}{ccc}
1 & 0 & a^{m} h_{0} / 2 \\
0 & 1 & \bar{a}^{m} h_{0} / 2 \\
0 & 0 & c
\end{array}\right)
$$

is the isomorphism between $E\left(h_{1}\right)$ and $E\left(h_{2}\right)$.

Proof of Theorem 2.1. By Theorem 1.3 and Lemma 2.2 (1), any element in $\operatorname{VEC}\left(W_{1}, W_{m} ; \boldsymbol{R}\right)$ is of the form $[E(f, h)]$, where [] denotes the isomorphism class. Then Lemma 2.3 implies that the correspondence

$$
\boldsymbol{R}^{m-1} \ni\left(a_{1}, \cdots, a_{m-1}\right) \mapsto[(E(h)],
$$

where $h(t)=1+a_{1} t+\cdots+a_{m-1} t^{m-1}$, gives the bijection.

3. Complexification

In this section, we assume that G is a real algebraic group and B, F, S are real G modules. We first define the complexification of real affine verieties and algebraic maps and prove some properties.

Definition 3.1. Let $X\left(\subset \boldsymbol{R}^{\prime \prime}\right)$ be a real affine variety and let $I(X)$ be the ideal of polynomial maps from \boldsymbol{R}^{n} to \boldsymbol{R} which vanish on X. We define the complex affine variety X_{C} to be the common zeros of all the elements in $I(X)$ regarded as maps from \boldsymbol{C}^{n} to \boldsymbol{C}, and we call X_{C} the complexification of X.

Here are some elementary properties about the complexification.

Proposition 3.2. (1) Let $I\left(X_{C}\right)$ be the ideal of polynomial maps from \boldsymbol{C}^{n} to \boldsymbol{C} which vanish on X_{C}. Then $I\left(X_{C}\right)=I(X) \otimes \boldsymbol{C}$.
(2) $(X \times Y)_{C}=X_{C} \times Y_{C}$.
(3) Any algebraic map $f: X \rightarrow Y$ extends to a unique algebraic map $f_{C}: X_{C} \rightarrow Y_{C}$.

Proof. (1) It is clear that $I\left(X_{C}\right) \supset I(X) \otimes C$ by definition. We prove the opposite inclusion. For $f \in I\left(X_{C}\right)$, we express $f=f_{1}+i f_{2}$, where f_{1} and f_{2} are polynomials with real coefficients. Then $\left.f_{1}\right|_{X}+\left.i f_{2}\right|_{X}=\left.f\right|_{X}=0$, so f_{1} and f_{2} are in $I(X)$. This means that $I\left(X_{C}\right) \subset I(X) \otimes C$.
(2) The ideal $I(X \times Y)$ is generated by the elements $f_{t} h_{s}$, where $f_{t} \in I(X)$ and $h_{s} \in I(Y)$. This together with (1) shows that the ideal $I\left((X \times Y)_{c}\right)$ is generated by the elements $\tilde{f}_{t} \tilde{h}_{s}$, where $\tilde{f}_{t} \in I\left(X_{C}\right)$ and $\tilde{h}_{s} \in I\left(Y_{C}\right)$. This implies (2).
(3) Suppose $X \subset \boldsymbol{R}^{n}$ and $Y \subset \boldsymbol{R}^{m}$ and let $F: \boldsymbol{R}^{n} \rightarrow \boldsymbol{R}^{m}$ be an extension of f. We regard F as a map from C^{n} to C^{m}. One easily checks that F maps X_{C} to Y_{c}. Therefore $F_{X_{C}}: X_{C} \rightarrow Y_{C}$ is an extension of f. Now we prove the uniqueness. Suppose that two maps $f_{1}, f_{2}: X_{C} \rightarrow Y_{C}$ are extensions of f. Let $F_{j}: \boldsymbol{C}^{n} \rightarrow \boldsymbol{C}^{m}$ be an extension of $f_{j}(j=1,2)$. Then $F_{1}-F_{2}$ is algebraic and vanishes on X. Therefore $F_{1}-F_{2}$ vanishes on X_{C} by (1). Hence $f_{1}-f_{2}=\left.\left(F_{1}-F_{2}\right)\right|_{X_{C}}=0$, i.e. $f_{1}=f_{2}$.

We call f_{C} the complexification of f. By Proposition 3.2, we obtain the following.
Corollary 3.3. (1) The complexification of a real algebraic group is a complex algebraic group.
(2) If G is a real algebraic group and X is a real G variety, X_{C} is a complex G_{C} variety.
(3) If X and Y are real G varieties and $f: X \rightarrow Y$ is G equivariant, then $f_{C}: X_{C} \rightarrow Y_{C}$ is G_{C} equivariant.
(4) If $f: X \rightarrow Y$ and $h: Y \rightarrow Z$ are algebraic G maps between real G varieties, then $(f \circ h)_{C}=f_{C} \circ h_{C}$.

Now we define a complexification of elements in $\operatorname{VEC}(B, F ; S)$ and an involution on $\operatorname{VEC}\left(B_{C}, F_{C} ; S_{C}\right)$. Note that the usual complexification of vector bundles means to complexify only fibers, but our definition means to complexify also base space. Let L be an element in $\operatorname{sur}(\boldsymbol{F} \oplus \boldsymbol{S}, \boldsymbol{S})$. The map $L_{C}:(\boldsymbol{F} \oplus \boldsymbol{S})_{C} \rightarrow \boldsymbol{S}_{C}$ is G_{C} equivariant and has a splitting because if P is an algebraic G splitting of L then P_{C} is an algebraic G_{C} splitting of L_{C}. Hence L_{C} is in $\operatorname{sur}\left((\boldsymbol{F} \oplus \boldsymbol{S})_{C}, S_{C}\right)$. Let L^{\prime} be another element of $\operatorname{sur}(\boldsymbol{F} \oplus S, S)$. If $L^{\prime}=L \circ \tau$ for some $\tau \in \operatorname{aut}(\boldsymbol{F} \oplus S)$, then $L_{C}^{\prime}=L_{C}{ }^{\circ} \tau_{C}$ and $\tau_{c} \in \operatorname{aut}\left(\boldsymbol{F} \oplus \boldsymbol{S}_{C}\right)$. Therefore the following definition makes sense, i.e. it does not depend on the choice of L.

Definition 3.4. Let $[E] \in V E C(B, F ; S)$ and let $L \in \operatorname{sur}(\boldsymbol{F} \oplus S, S)$ represent E, i.e.
$E=\operatorname{ker} L . \quad$ Then we define the complexification of $[E]$ by $\left[\operatorname{ker} L_{C}\right] \in V E C\left(B_{C}, F_{C} ; S_{C}\right)$.
Let $X\left(\subset \boldsymbol{R}^{n}\right)$ be a real G variety. For $x \in X_{C}\left(\subset \boldsymbol{C}^{n}\right)$, the complex conjugation \bar{x} is also in X_{C} since $f(\bar{x})=0$ for any $f \in I(X)$. Hence X_{C} has an involution defined by $x \mapsto \bar{x}$. Similarly, G_{C} has an involution. Since the action map: $G \times X \rightarrow X$ is real algebraic, we have $\overline{g \cdot x}=\bar{g} \cdot \bar{x}$ for any $g \in G_{C}$ and $x \in X_{C}$.

Definition 3.5. For $L \in \operatorname{sur}\left(\left(\boldsymbol{F} \oplus \boldsymbol{S}_{C}, \boldsymbol{S}_{C}\right)\right.$, we define $\bar{L}:(\boldsymbol{F} \oplus \boldsymbol{S})_{C} \rightarrow \boldsymbol{S}_{C}$ by

$$
\bar{L}(b, f, s)=\overline{L(\bar{b}, \bar{f}, \bar{s})}
$$

One can check that \bar{L} is in $\operatorname{sur}\left(\left(\boldsymbol{F} \oplus \boldsymbol{S}_{C}, \boldsymbol{S}_{C}\right)\right.$. So the correspondence $L \mapsto \bar{L}$ induces an involution on $\operatorname{VEC}\left(B_{C}, F_{C} ; S_{C}\right)$. Since $\overline{L_{C}}=L_{C}$ for $L \in \operatorname{sur}(\boldsymbol{F} \oplus \boldsymbol{S}, \boldsymbol{S})$, the complexification in Definition 3.4 induces a map

$$
c_{b}: V E C(B, F ; S) \rightarrow V E C\left(B_{C}, F_{C} ; S_{C}\right)^{z_{2}}
$$

We ask
Complexification problem (vector bundle case). Is the above map c_{b} bijective?
We turn to the complexification of actions. Let $A C T\left(G, \boldsymbol{R}^{n}\right)\left(\right.$ resp. $\left.A C T\left(G_{C}, C^{n}\right)\right)$ be the set of the equivalence classes of real algebraic G actions on $\boldsymbol{R}^{\boldsymbol{n}}$ (resp. complex algebraic G_{C} actions on C^{n}), where the equivalence relation is defined by G variety (resp. G_{C} variety) isomorphism. By the complexification of real G varieties, we obtain a map

$$
c_{a}: A C T\left(G, R^{n}\right) \rightarrow A C T\left(G_{C}, C^{n}\right) .
$$

Complexification problem (action case). Is the above map injective?
We deal with these problems in the next section.

4. Non-linearizable actions and the complexification problems

We first classify the elements in $\operatorname{Vec}\left(W_{1}, W_{m} ; \boldsymbol{R}\right)$ as $O(2, \boldsymbol{R})$ varieties, i.e. we calculate $\operatorname{VAR}\left(W_{1}, W_{m} ; \boldsymbol{R}\right)$. We show that the assumption of Theorem 1.6 is satisfied.

Lemma 4.1. Any $O(2, \boldsymbol{R})$ variety isomophism between elements in $\operatorname{Vec}\left(W_{1}, W_{m} ; \boldsymbol{R}\right)$ maps W_{1} as graph.

Proof. Let E_{1}, E_{2} be elements in $\operatorname{Vec}\left(W_{1}, W_{m} ; \boldsymbol{R}\right)$ and $f: E_{1} \rightarrow E_{2}$ be an $O(2, \boldsymbol{R})$ variety isomorphism. We show that $p f s$ is in $\operatorname{Aut}\left(W_{1}\right)^{O(2, R)}$, where $p: E_{2} \rightarrow W_{1}$ is the projection and $s: W_{1} \rightarrow E_{1}$ is the zero-section. Take the complexification
$f_{C}:\left(E_{1}\right)_{C} \rightarrow\left(E_{2}\right)_{C}$, which is an $O(2, C)$ variety isomorphism. According to [11], f_{C} maps $\left(W_{1}\right)_{c}$ as graph, in fact, $p_{c} f_{c} s_{c}:\left(W_{1}\right)_{c} \rightarrow\left(W_{1}\right)_{c}$ is a non-zero scalar multiplication. We recall the proof. The map $f_{C} s_{C}$ is $O(2, C)$ equivariant, so it is of the form

$$
\left(W_{1}\right)_{C} \ni(a, b) \mapsto\left(a f_{0}, b f_{0}, a^{m} h_{0}, b^{m} h_{0}, k_{0}\right),
$$

where f_{0}, h_{0} and k_{0} are polynomials of $t=a b$. If f_{0} is not a non-zero constant, f_{0} has some zero t_{0}. Let ζ be a primitive m-th root of 1 . Then $f_{C} s_{C}$ maps ($t_{0}, 1$) and $\left(\zeta t_{0}, \zeta^{-1}\right)$ to the same element $\left(0,0, a^{m} h_{0}\left(t_{0}\right), b^{m} h_{0}\left(t_{0}\right), k_{0}\left(t_{0}\right)\right)$, which contradicts to the injectivity of $f_{c} s_{c}$. Hence f_{0} must be a non-zero constant. Finally since $p_{c} f_{c} s_{C}$ is the complexification of $p f s$, it preserves W_{1}. This proves that $p f s \in \operatorname{Aut}\left(W_{1}\right)^{o(2, R)}$.

We can check $\operatorname{Aut}\left(W_{1}\right)^{O(2, R)}=\boldsymbol{R}^{*}$ using the $O(2, \boldsymbol{R})$ equivariance. Suppose that $E\left(h_{1}\right)$ is isomorphic to $E\left(h_{2}\right)$ as $O(2, \boldsymbol{R})$ varieties. Then $E\left(h_{1}\right)$ is isomorphic to $c^{*} E\left(h_{2}\right)$ as $O(2, \boldsymbol{R})$ vector bundles for some $c \in \operatorname{Aut}\left(W_{1}\right)^{O(2, R)}=\boldsymbol{R}^{*}$ by Theorem 1.6 and Lemma 4.1. The fiber of $c^{*} E\left(h_{2}\right)$ over (a, \bar{a}) is the set of points satisfying the equation; $c^{m}\left(\bar{a}^{m} x+a^{m} \bar{x}\right)+h_{2}\left(c^{2} t\right) z=0$. Then

$$
\begin{aligned}
c^{*} E\left(h_{2}\right) & =\left\{(a, \bar{a}, x, \bar{x}, z) ; c^{m}\left(\bar{a}^{m} x+a^{m} \bar{x}\right)+h_{2}\left(c^{2} t\right) z=0\right\} \\
& \cong\left\{(a, \bar{a}, x, \bar{x}, z) ; \bar{a}^{m} x+a^{m} \bar{x}+h_{2}\left(c^{2} t\right) z=0\right\}
\end{aligned}
$$

by Lemma 2.3 (1). Hence $h_{1}(t)$ is congruent to $h_{2}\left(c^{2} t\right)$ modulo t^{m} by Lemma 2.3 (3) and we obtain the following bijection.

Theorem 4.2. $\operatorname{VAR}\left(W_{1}, W_{m} ; \boldsymbol{R}\right) \cong \boldsymbol{R}^{m-1} / \boldsymbol{R}^{*}$, where the \boldsymbol{R}^{*} action on \boldsymbol{R}^{m-1} is defined as follows. For $c \in \boldsymbol{R}^{*}$ and $\left(a_{1}, \cdots, a_{m-1}\right) \in \boldsymbol{R}^{m-1}$,

$$
\left(a_{1}, \cdots, a_{m-1}\right) \stackrel{c}{\mapsto}\left(c^{2} a_{1}, c^{4} a_{2}, \cdots, c^{2(m-1)} a_{m-1}\right) .
$$

Proof of the Theorem (in introduction). By Theorem 1.6, it suffices to show that the set $\operatorname{VAR}\left(W_{1}, W_{m} ; \boldsymbol{R}\right)$ can be continuous density, but Theorem 4.2 says that the case $m \geq 3$ satisfies this condition.

Next we apply the complexification defined in section 3 to the $O(2, \boldsymbol{R})$ case. We recall Schwarz's [17] and Masuda-Petrie's [11] results in the complex category. Here $O(2, C)=C^{*} \quad \boldsymbol{Z}_{2}$ and its action on $\left(W_{m}\right)_{C}=\left\{(a, b) \in C^{2}\right\}$ is defined as follows. For $g \in C^{*}, 1 \neq J \in \boldsymbol{Z}_{2}$ and $(a, b) \in\left(W_{m}\right)_{c}$,

$$
(a, b) \stackrel{g}{\mapsto}\left(g^{m} a, g^{-m} b\right) \quad(a, b) \stackrel{J}{\mapsto}(b, a) .
$$

Theorem $4.3 \quad([11],[17]) . \quad V E C\left(\left(W_{1}\right)_{C},\left(W_{m}\right)_{C} ; C\right) \cong C^{m-1}$, where the correspon-
dence is defined similarly to Theorem 2.1.
Theorem 4.4 ([11]). $\operatorname{VAR}\left(\left(W_{1}\right)_{c},\left(W_{m}\right)_{c} ; C\right) \cong \boldsymbol{C}^{m-1} / C^{*}$, where the C^{*} action on C^{m-1} is defined similarly to Theorem 4.2.

We study the involution on $\operatorname{VEC}\left(\left(W_{1}\right)_{C},\left(W_{m}\right)_{c} ; C\right)$. Any element of $V E C\left(\left(W_{1}\right)_{c}\right.$, $\left.\left(W_{m}\right)_{C} ; \boldsymbol{C}\right)$ is represented by $L \in \operatorname{sur}\left(\left(\boldsymbol{W}_{m} \oplus \boldsymbol{R}\right)_{C}, \boldsymbol{C}\right)$ of the form;

$$
L(a, b, x, y, z)=b^{m} x+a^{m} y+f(t) z
$$

where $t=a b$ and f is a polynomial with real coefficients. Then

$$
\bar{L}(a, b, x, y, z)=\overline{L(\bar{a}, \bar{b}, \bar{x}, \bar{y}, \bar{z})}=b^{m} x+a^{m} y+\bar{f}(t) z,
$$

where \bar{f} is a polynomial whose coefficients are complex conjugate of those of f. So the involution on $V E C\left(\left(W_{1}\right)_{C},\left(W_{m}\right)_{C} ; C\right)$ coincides with the complex conjugate on \boldsymbol{C}^{m-1} through the bijection in Theorem 4.3. This together with Theorem 2.1 shows that the complexification map

$$
c_{b}: V E C\left(W_{1}, W_{m} ; \boldsymbol{R}\right) \rightarrow V E C\left(\left(W_{1}\right)_{c},\left(W_{m}\right)_{c} ; C\right)^{Z_{2}}
$$

is bijective.
Now we turn to the case of actions. Remember that we have the complexification map

$$
c_{a}: A C T\left(O(2, R), \boldsymbol{R}^{4}\right) \rightarrow A C T\left(O(2, C), C^{4}\right)
$$

The sets $\operatorname{VAR}\left(W_{1}, W_{m} ; \boldsymbol{R}\right)$ and $\operatorname{VAR}\left(\left(W_{1}\right)_{c},\left(W_{m}\right)_{c} ; \boldsymbol{C}\right)$ are subsets of $A C T\left(O(2, \boldsymbol{R}), \boldsymbol{R}^{4}\right)$ and $A C T\left(O(2, C), C^{4}\right)$ respectively and c_{a} maps $\operatorname{VAR}\left(W_{1}, W_{m} ; \boldsymbol{R}\right)$ into $\operatorname{VAR}\left(\left(W_{1}\right)_{c},\left(W_{m}\right)_{c} ; \boldsymbol{C}\right)$. Through the bijections in Theorems 4.2 and 4.4, one can see that the map c_{a} restricted to $\operatorname{VAR}\left(W_{1}, W_{m} ; \boldsymbol{R}\right)$ is nothing but the map from $\boldsymbol{R}^{m-1} / \boldsymbol{R}^{*}$ to $\boldsymbol{C}^{m-1} / \boldsymbol{C}^{*}$ induced from the natural inclusion $R^{m-1} \subset C^{m-1}$. An elementary observation shows that the map from $\boldsymbol{R}^{m-1} / \boldsymbol{R}^{*}$ to $\boldsymbol{C}^{m-1} / \boldsymbol{C}^{*}$ is not injective, in fact, the inverse image of an element in C^{m-1} / C^{*} consists of one or two elements. This gives a negative answer to the complexification problem in the action case. However $c_{a}^{-1}([0])=[0]$, where $[0]$ denotes the element in $\boldsymbol{R}^{m-1} / \boldsymbol{R}^{*}$ or $\boldsymbol{C}^{m-1} / \boldsymbol{C}^{*}$ represented by 0 . Since [0] corresponds to a linear action, we pose

Weak complexification problem. If the complexification of a real algebraic action on \boldsymbol{R}^{n} is linearizable, then is the action itself linearizable?

Appendix

We give an explicit description of a non-linearizable real algebraic $O(2, \boldsymbol{R})$ action on \boldsymbol{R}^{4} obtained from Theorem 4.2. For example, we take $E\left(1-t^{2}\right) \in \operatorname{Vec}\left(W_{1}, W_{4} ; \boldsymbol{R}\right)$.

The following (nonequivariant) algebraic vector bundle automorphism of $\boldsymbol{W}_{4} \oplus \boldsymbol{R}$ gives a trivialization of $E\left(1-t^{2}\right) \cong W_{4} \subset \boldsymbol{W}_{4} \oplus \boldsymbol{R}$.

$$
\tau(a, \bar{a})=\begin{gathered}
1+i t \\
0 \\
a^{-4}
\end{gathered}\left(\begin{array}{cc}
0 & -a^{4} / 2 \\
1-i t & -a^{-4} / 2 \\
a^{4} & 1-t^{2}
\end{array}\right)
$$

We define $\sigma: \boldsymbol{R}^{4} \rightarrow \boldsymbol{W}_{4}$ by $(a, b, x, y) \mapsto(a+i b, a-i b, x+i y, x-i y)$. Then it suffices to calculate the correspondence of the composition map in the following;

$$
\boldsymbol{R}^{4} \xrightarrow{\sigma} W_{4} \xrightarrow{\mathfrak{\tau}^{-1}} E\left(1-t^{2}\right) \xrightarrow{\text { action }} E\left(1-t^{2}\right) \xrightarrow{\tau} W_{4} \xrightarrow{\sigma^{-1}} \boldsymbol{R}^{4} .
$$

It turns out that the actions on \boldsymbol{R}^{4} of $g=\cos \theta+i \sin \theta \in S^{1}$ and $1 \neq J \in \boldsymbol{Z}_{2}(\subset O(2, \boldsymbol{R}))$ are as follows.

$$
\left.\left.\begin{array}{l}
\left(\binom{a}{b},\binom{x}{y}\right) \stackrel{g}{\mapsto}\left(\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\binom{a}{b},\left(\begin{array}{cc}
\cos 4 \theta & -\sin 4 \theta \\
\sin 4 \theta & \cos 4 \theta
\end{array}\right)\binom{x}{y}\right) \\
\left(\binom{a}{b},\binom{x}{y}\right) \stackrel{J}{\mapsto}\left(\binom{a}{-b},\left(\begin{array}{c}
-f_{2} t+2 t^{4}-2 t^{2}+1 \\
-f_{1} t+t^{5}-2 t^{3}+2 t \\
-2 t^{3}+2 t
\end{array}-f_{2} t-2 t^{4}+2 t^{2}-1\right.\right.
\end{array}\right)\binom{x}{y}\right), ~ l
$$

where $t=a^{2}+b^{2}$, and f_{1}, f_{2} are polynomials of a, b with the real coefficients such that $(a+i b)^{8}=f_{1}+i f_{2}$.

References

[1] H. Bass: Algebraic group actions on affine spaces, Comtemp. Math. 43 (1985), 1-23.
[2] H. Bass and W. Haboush: Linearizing certain reductive group actions, Trans. Amer. Math. Soc. 292 (1984), 463-482.
[3] H. Bass and W. Haboush: Some equivariant K-theory of affine algebraic group actions, Comm. in Alg. 15 (1987), 181-217.
[4] J. Bochnak, M. Coste and M.F. Roy: Géométrie algébrique réelle, Ergebnisse der Math. und ihrer Grenzgebiete, Band 12, Springer-Verlag, 1987.
[5] J.E. Humphreys: Linear Algebraic Groups, Graduate Texts in Math. 21, Springer-Verlag, 1972.
[6] T. Kambayashi: Automorphism group of a polynomial ring and algebraic group actions on an affine space, J. Algebra 60 (1979), 439-451.
[7] F. Knop: Nichtlinearisierbare Operationen halbeinfacher Gruppen auf affinen Räumen, Invent. Math. 105 (1991), 217-220.
[8] H. Kraft: G-vector bundles and the linearization problem, in Group Actions and Invariant Theory, CMS Conf. Proc. 10 (1988), 111-123.
[9] H. Kraft and G.W. Schwarz: Reductive group actions with one dimensional quotient, Inst. Hautes Études Sci. Publ. Math. 76 (1992), 1-97.
[10] M. Masuda: Algebraic transformation groups from topologycal point of view, Sugaku.
[11] M. Masuda and T. Petrie: Equivariant algebraic vector bundles over representations of reductive groups: Theory, Proc. Nat. Acad. Sci. USA 88 (1991), 9061-9064.
[12] M. Masuda, L. Moser-Jauslin and T. Petrie: Equivariant algebraic vecter bundles over
representations of reductive groups: Applications, Proc. Nat. Acad. Sci. USA 88 (1991), 9065-9066.
[13] H. Miki: Non-linearizable compact real algebraic group actions on R^{n}, Master Thesis (in Japanese), Osaka Cith Univ. (1991).
[14] A.L. Onishchik and E.B. Vinverg: Lie Groups and Algebraic Groups, Springer-Verlag, 1988.
[15] T. Petrie and J.D. Randall: Finite-order algebraic automorphisms of affine varieties, Comm. Math. Helv. 61 (1986), 203-221.
[16] D. Quillen: Projective modules over polynomial rings, Invent. Math. 36 (1976), 167-171.
[17] G.W. Schwarz: Exotic algebraic group actions, C.R. Acad. Sci. 309 (1989), 89-94.
[18] T.A. Springer: Aktionen reductiver Gruppen auf Varietäten, in DMV Seminar Band 13: Algebraische Transformationsgruppen und Invariantentheorie, Birkhäuser-Verlag (1989), 3-39.
[19] A. Suslin: Projective modules over a polynomial ring, Dokl. Akad. Nauk SSSR 26 (1976).

Hiroyuki Miki
Department of Mathematics
Osaka City University
Osaka 558, Japan

