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Introduction

In Namba [3; Capter 1], various examples of Galois coverings over affine
and projective planes are constructed. Among them, the Galois coverings over
C2 with branch locus B3:={(v,w)eC2\v3 = w2} are studied in detail ([3; pρ.43-52]),
and as an application, the existence or non-existence of some maximal Galois
coverings over P2 with branch locus ^u/^ is shown, where B^ is the projective
closure of B3 and /„ is the infinite line ([3; Proposition 1.3.27, 1.3.29]).

In this note, we extend his results to the Galois coverings over C2 with branch
locus Bq:={(v,w)eC2\vq = w2}, where q is a positive odd integer, under the condition
that the maximal Galois group G(C2,eBq) of (C2,eBq) is finite. It turns out that
we have five cases in all, three casess of which appear in [3; p.43]. As an
application, we determine when there exists the maximal Galois coverings over
P2 with branch locus S^u/^, and also describe the explicit structure of
G(P2,eBq + mlao) in these cases.

This note is organized as follows. In Section 1, we review some general facts
from the Galois theory of branched coverings. We begin Section 2 with giving
a simple presentation of G(C2,eBq) in Proposition 2.1, from which we can construct
the maximal abelian coverings of (C2,eBq) easily (Proposition 2.3). Using this
presentation, we determine when G(C2,eBq) is finite in Theorem 2.4 according to
Coxeter-Moser [1]. Then we give an explicit structure of G(C2

9eBq) in the cases
where G(C2,eBq) is finite, which is our maim result (Theorem 2.6). When G(C2,eBq)
is infinite, we give a sufficient condition for G(C2,eBq) to be unsolvable (Corollary
2.10). In Section 3, we describe the explicit structure of the maximal Galois group
G(P2,elϊq + ml00) and determine when the maximal Galois covering of (P2,eBq + mlao)
exists in the cases where G(C2,eBq) is finite (Proposition 3.1, Corollary 3.3).

We note that the isomorphisms given in Theorem 2.6 are more or less known in
abstract form (cf. Coxeter-Moser [1;6.7], Namba [3;p.50]) and our contribution is
the explicit description of these isomorphisms, which is essentially used in Section 3.

The case where q is even seems more complicated, and will be studied in the
forthcoming paper under the same title. We note that part of this note is taken
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from the master thesis Tamai [6].

NOTATIONS. (1) For a group G and^eG(l <i<n\ we denote by <gi,g2>'">£n>
the subgroup of G generated by gf's and by N(gί9g29~',gny the smallest normal
subgroup containing g/s. Z[G] denotes the group ring of G over the ring of

integers Z. For a ring A9 Mn(A) is the set of all square matrices of degree n

whose entries belong to A, and IneMn(A) denotes the identity matrix.

(2) Given two groups //, N, we denote by NX^H the semi-direct product of H
Λ

and N. Here, α: H -> Aut(TV) is a homomorphism and the product is defined by
(hl nί)(h2'n2):=hίh2'n

h

ί

2n29 where hteH9 «,e7V, nh

1

2 = a(h2)(nl).
(3) For a pair (M,D) of a complex manifold M and an effective divisor D on M9

we denote by G(M,D) the maximal Galois group of (M,D) and by π: X(M,D) -> M the
maximal Galois covering of (M,D) if it exists (see Section 1 for the definitions).

1. Summary of the Galois theory of branched coverings

In this section, we summarize some general facts on the Galois theory of

branched coverings in the category of complex analytic spaces, following Namba
[3; Chapter 1],

s

Let M be a complex manifold and D= ^jeiDi (e,>0) an effective divisor on
ί= 1

M, where D{ is an irreducible component of D. We set B := Cλ u D2 u u Ds. Let

π: X -» M be a branched covering over M, where A" is a normal irreducible reduced
complex analytic space, Rπ c X the ramification locus of π, and Bπ c M the branch
locus of π. For an irreducible hypersurface C c A', we denote by ec(π) the
ramification index of π at C (cf. Namba [3; p. 10]). We say that π branches at D
(resp. at most at D) if the following three conditions are satisfied:
(1) 5π = Z?(resp. Bπ c 5).

(2) Λ^π-^ίresp. Λ, cz π'1^).
(3) For any irreducible hypersurface C c Ar such that π(C) = Dj9 ec(π) = ej (resp.

eάΦjl
We fix a base point ^ 0eM—B and take a point /?7 e Z), — Sing(/?), where Sing(5)

is the singular locus of £. Take a local coordinate system (zt,z2, * ,ZM) defined

on a neighborhood U of/? ; such that (1) pj corresponds to the origin, (2) Br\U
is given by zn = Q. Take a loop (5, around Dj in (7 defined by {(0,0, ,0,

εe2π^~~lt)e U\0<t<l}9 where ε>0 is sufficiently small, and take a path ωj in M — B
from /70 to g7 = (0,0, ,ε)e U. We define γj = ω]~ίδjωj9 which is a loop around Z)_y
starting from p0.

Let /be the smallest normal subgroup N(y\v

9~-9yl'} in πί (M—B,p0) containing
yejj (\<j<s)9 which is determined independent of the choices of y/s (we confuse a
loop y, with its homotopy class in π^Af — £,/j0)). We set G(M,D):=πl(M-B,p0)/J
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and call this the maximal Galois group of (M,D) in this note. Then we have a
Galois correspondence of the following type:

Theorem 1.1 (cf. Namba [3; Theorem 1.3.9]). (1) There is a bijective map
Φ from the set {/: X -> M\f is a finite Galois covering which branches at most at

D} I ~ to the set {K c: G(M,D) \K is a normal subgroup of finite index], where ~

means the isomorphism between branched coverings over M. Φ(f) is defined by
Φ(f)=f^(πί(X—f~ί(B\ #0))mod/, where q0GX-f~l(B) is a base point over p0
and f4t:πl(X—f~ί(B)9 q^^π^M—B, p0) is the injective homomorphίsm induced

byf.
(2) This correspondence Φ satisfies the following properties:

(a) Gf ~ G(M,D) / Φ(/), where Gf denotes the covering transformation group off.

(b)/i dominates f 2 if and only if Φ(fι) <= Φ(/2). Here we say that a branched
covering /, : Xί —> M dominates another covering f2 :X2-> M if there exixts a surjective

holomorphic map g:X^ -> X2 such that f2°g =f\ -
(3) / branches at D if and only if the order of [y,.] is e^ (\<j<s\ where
[y7]eG(M,D)/Φ(/) denotes the coset containing y7 .

We call the universal Galois covering among the branched coverings which
branch at most at D the maximal Galois covering of (M,Z>) if it exists. More

precisely,

DEFINITION 1.2. Let π : X -> M be a Galois covering which branches at D. We

say that π is the maximal Galois covering of (M,D) if π dominates any branched
covering which branches at most at D.

Our next task is to give a criterion for the existence of the maximal Galois
covering in terms of G(M,D\ Consider a point p e Sing(£) and take a sufficiently

small neighborhood W of p in M which is an open ball with respect to a local

coordinate system with center p. Let i^\nl(W—(Wr^B\ p^-^π^M — B, pQ) be
the homomorphism induced by the inclusion /: W— (Wr^B) -> M — B, where

//Oe W—(Wr\B) is a base point, and let g\n^(M—B, pQ) -> G(M,D) be the natural

surjection. We have a composition map goi4ί:πl(lV—(lVnB)9 p'Q) -> G(M,D).

Consider the following condition on a subgroup K c G(M,D):

CONDITION 1.3. For any point ;?eSing(/?), (g°ΐ^~1(K) is of finite index in

We set K'=r\K, where K runs over all the subgroups of G(M,D) satisfying

Condition 1.3. K is a normal subgroup of G(M,D).

Theorem 1.4 (cf. Namba [3; Theorem 1.3.10]). There exists the maximal
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Galois covering π : X(M,D] —> M of (M,Z>) // and only if the following two conditions

are satisfied:

(1) K satisfies Condition 1.3.

(2) ord([yj]) = ej (\<j<s\ where [y7] e G(M,D) / K means the coset containing y7 .

In this case, we have the following:

(a) Gπ~G(M,Z))/£

(b) X(M9D) is simply-connected.

Asuume that G(M,D) is finite. Then we have the following corollary to

Theorem 1.4, since Condition 1.3 is satisfied for any subgroup of G and hence
K={1} in this case.

Corollary 1.5. If G(M,D) is finite, then there exists the maximal Galois

covering π:X(M,D)-*M of (M,Z>) if and only if ord(\_Vj]) = ej (\<j<s)9 where
[yJeG(M,Z)) is the coset containing y7 . In this case, Gπ~G(M,D).

2. Calculation of G(C2,eBq)

For an integer q>0, we set Bq = {(v,w)eC2\w2 = vq}. Suppose that q is

odd. Let y be a loop around Bq in C2 — Bq as in Section 1 and

we define G(e;q):=:G(C2,eBq) = πl(C2-Bq, p0)/N(γey. Suppose that q = 2r is
even. We set B\ = {(v,w)eC2\w = vr] and B2 = {(v,w)eC2\w= -vr} so that

Bq = B\vB2

q. Let γt be a loop around B\ (/=1,2) and we set G(el,e2,;q):=G(C2,
eίB

ί

q+e2B
2

q) = πί(C2-Bq, p0)/N^,γγy. Then G(e;q) and G(eί,e2;q) have the
following simple presentations.

Proposition 2.1.

G(e;q)~(a,b\ae=l, abab a = baba--by if q is odd

G(eί,e2',q) — <\a,b\aeι=be2=\, abab •• ab = baba•• bay if q is even.

q q

Proof. Put S3:={(v,w)eC2 | |v|2 + M2 = l}, Γ2:-{(v,w)EC2

and k(2,q):=\(-^-e4πi\ -^~e2πίsq]eC2\ 0<s<l \ (1 = ̂ /̂ 1). Then k(29q) c T2 is

the torus knot (or link) of type (2,q). Let C(k(29q)) = {(tv9tw)eC2\t^09 (v9w)ek(2,q)}
be the cone over k(2,q). Since (C2,Bq) is homeomorphic to (C2,C(k(2,q)\ it follows
that πl(C2-Bq) is isomorphic to π^S3-k(2,q)) (we omit the base point of the

fundamental group). Now, we take the Wirtinger generators Xι9x29 -,xq as in the
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*(2,5)

Figure

figure above and obtain the Wirtinger presentation of the knot (or link) group
π^S3 -k(2,q)) as follows (cf. Stillwell [5;4.2.3]):

From this presentation, we eliminate x3, -,xq and get the following

presentations:

\X19X2\X1X2 '"X1X2 ~X2Xί '"X2X1/
~v-

q

: odd)

(q: even)

If q is odd, then we can take xί as 7. If q is even, we can take xt as y,

(/=1,2). Hence ^(C2-5,)/7V</> (or ^(C2-Be)/#<yi',y?>) has the desired
presentation. Π

REMARK 2.2. The groups that have the same presentations as in Proposition

2.1 appear in Coxeter-Moser [1; 6.7], in which G(e^e2\q) is denoted by el[cf\e2

(q: even) and G(e;q) by e\jq\e (q: odd). These groups also occur in the theory of
regular complex polygons.

We recall that an abelian covering π: X^> M of a complex manifold M which

branches at D is called maximal if π dominates any abelian covering of M which

branches at most at D. The maximal abelian covering of C2 which branches at

eBq (q: odd) or eBq (q: even) can be obtained easily as follows.

3 e
Proposition 2.3. (1) Assume that q is odd. Set X:={(u,v,w)eC3\u
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= 0} and define π:X^C2 by π((«,v,w)) = (v,w). Then π:X-+C2 is the maximal
abelian covering of C2 which branches at eBq. Gπ is isomorphic to Z/eZ.
(2) Assume that q = 2r is even. For a pair of positive integers e^e2, set

Y:={(uί,u2,v)eC3\ue

ί

ί + 2vr-ue

2

2 = 0} and define p:Y-*C2 by p((u^u2,v)):=(v,uϊ

-fvr). Then p:Y^C2 is the maximal abelian covering of C2 which branches at

eίBq+e2B
2. Gp is isomorphic to Z/eίZ®Z/e2Z.

Proof. (1) X is a normal irreducible surface, and it is easy to see that
π: X-> C2 is a cyclic covering of degree e which branches at eBq. We show that
π: X-> C2 is the maximal abelian covering which branches at eBq. Let μ:Z-» C2

be any abelian covering which branches at most at eBq. By Theorem 1.1, it is

enough to show Φ(π) c Φ(μ). For a group G, we set Gab:=G/G', where G' is
the commutator subgroup of G. Since

the index of G(e\q} in G(e\q) is e. Since G(e',q)/Φ(π)~Gπ^Z/eZ, we conclude
φ(π) = G(e',q)'. Now, G(e;q) / Φ(μ) ~ Gμ is abelian and hence Φ(μ) ^ G(e;q)' = Φ(π).
(2) Set X,'={(uΛ,v,w)eC^ = w-vr}, X2:={(u2,v,w)eC2\ue

2

2 = w + vr}, and define

Ui'.Xi-^C2 by πί((MI ,v,>v)) = (v,>v) (/=1,2). π, is a cyclic covering of degree et over

C2. We form the fibred product Xί xX2 of πί and π2, which is isomorphic to
c2

Y over C2. y is an abelian covering over C2 which branches at elBq +e2B
2 with

Galois group isomorphic to Z/e1Z@Z/e2Z. On the other hand, it is easy to
see G(el,e2',q)ab~Z/elZ@Z/e2Z, from which it follows that Y is the maximal

abelian covering which branches at evB
l

q+e2B
l

q as in (1). Π

In the rest of this note, we are concerned with the explicit structure of G(e\q\

assuming q is odd. The following theorem is essentially due to Coxeter-Moser [1].

Theorem 2.4. Let e>2 and q>3 be integers with q odd. Then G(e\q) is a
finite group if and only if e = 2 or (e,q) = (3,3), (4,3), (5,3), (3,5).

We need a lemma for the proof of Theorem 2.4.

Lemma 2.5 (cf. Coxeter-Moser [l p. 79]). G(2,e;2q) contains a subgroup of
index 2 which is isomorphic to G(e\q).

Proof of Lemma (2.5). By adjoining a new letter c:=aba to G(2,e;2q)
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e =l, bcb- b = cbc, we have

c^. Let H:=<b,c> be a subgroup of G = G(2,e;2q) generated by b
and c. Then the index [G://] of H in G is 2. Indeed, any word w = H'(0,£,c) e G
can be rewritten as w = φ(b,c) or aφ(b,c\ where φ(6,c) is word not containing a,

since 02 = 1, ab = ca and ba = ac. Hence we have [G.7/]<2. Assume αe//. We

have G(2,e\2q)~F<aJ),c> /N< Y>, where F<a,b,c> is a free group generated

by {aj),c} and 7= is the relation

set. Then a = η(b,c)λ in F<a,b,c>, where Λ, is a finite product of conjugates
of words or inverses of words in Y. This gives a contradiction since the sum of
the exponents of a in λ is even. Therefore aφH and [G:H} = 2.

Next, we calculate a presentation of H according to Johnson [2;Chapter
9]. Let X={a,b,c] be a generator set of G and U={l,a} a Schreier transversal
for H in G. The ^Λ-table is given as follows:

Table 1

1

a

b c a

b c \

aba~l aca~l a2

be bcb bc-l c-γ a2 abac"1

be bcb bc~l -- c~l a2 abac'1

abea~l abcb- bc'1 -' c~la~γ a2 a2bac~lb~l

Here the rows are indexed by U and the columns by (X,Y). In the left-hand
half of the table, the (zv,x)-entry is uxΰx~l, where ΰxeU is the element which
belongs to the same coset modulo H as ux, and in the right-hand half of the
table, the (w,>>)-entry is uyu'1. Hence the £*§-table is given as follows:

Table 2

dy d.d;

Here dl=b, d2 = aba l, d^ — c etc., and the elements in the right-hand half of

the jfrS-table are those in the 5/Mable rewritten in terms of d/s. It follows that

H is presented as <4 (l<ί<5) | eight relations in the Z?ιS-table>. By eliminating

d2, d4 and dS9 we have H~ \=d\ = \, did3dί"'di=d3did3'"d3 >.
•^<~
q
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Since Q γd^Q = d3, where Q~dld3dί'"dί=d3dld3 "d3 , we conclude H~G(e\q).

q q

Proof of Theorem 2.4. Assume that G(e\q] is finite. By Lemma 2.5, G(2,e\2q)

is also finite. We recall that the polyhedral group P(x9y9z):= (a,b\ax = by = (ab)z=iy

(x9y9z>2) is finite if and only if (x,y,z) = (2,2,z), (2,3,3), (2,3,4), (2,3,5) and their

permutations (cf. Coxeter-Moser [1;6.4]). Since P(2,e,q) is a homomorphic image

of G(2,e\2q\ we have (e9q) = (29q)9 (3,3), (4,3), (5,3), (3,5), where q is odd and > 3. The

converse part of the proof follows from Theorem 2.6 below, or Coxeter-Moser

[i;pJ9]. Π

The following theorem is the main ingredient of this note. We note that the

isomorphisms φ29 φ4 and φl for q = 3 in the theorem are given in Namba [3; p.50] in

abstract form, and φ5 is found in Coxeter-Moser [l p.78]. We make a detailed

calculation of group presentations for this theorem since it gives the explicit form

of φi9 which is essentially used in section 3.

We denote by Cn the cyclic group of order «, by D2q:=(x,y\xq=y2 — l,

y~lxy = x~ly the dihedral group of order 2q, by Qs'=(x,y\x2=y2, *4=1,
y~lxy = x~ly the quaternion group of order 8, and by SL(2,ZΠ) the special linear

group of degree 2 whose entries belong to Zn = Z/nZ.

(1)

(2)

(3)

Theorem 2.6. We have the following isomorphisms:

; φ,(ά)=y, 9l(b)=y~lx.

2,Z3); φ2(ά) = \^ jj, ,

; ψ3(a) = s I29 ψ3(b) = S'\° Ί
\_2 IJ

described in the proof.

(4) φ4 : G(5;3)~5L(2,Z5) x C5; φ4(α) =

(5) φs : G(3;5) ~ SL(2,Z5) x C3; <p5(a) =

4 1

.1 3.

"0 2"

2 4

μ = <j>J. α, β, y are

1 4

0 1

3 4"

Proof. In this proof, we set G\=G(e;q) for short. (1) is clear from the

definition of D2q.

(2) Set s = \ [t = \ e5L(2,Z3). Then we have ,s3 = 1, sts^tst. Since {s,t}
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generates SL(2,Z3) we have a surjective homomorphism φ2:G -+SL(2,Z3) defined
by φ2(ά)=s, φ2(b) = t. Since ord(5L(2,Z3)) = 24, it is enough to show ord(G) = 24.

Consider the following exact sequence

1 -» G -> G -> C3 -> 1,

where /(α) =/(6) = u>, C3 = <w>, and G' is the commutator subgroup of G. We
take C/:={l,β,α2} as a Schreier transveral for G' in G. Then the BR and /?5
tables for G are given as follows:

Table 3

1

<2

a2

tf

1

1

a3

b

ha'1

aba'2

a2b

abab la *b l

abab-la~lb-1

a2bab~la~lb~la~l

a3bab-^b^a-2

a3

a3

a3

a3

Table 4

Hence G'~<c, (l</<4) | six relations in the BS-tab\ey~(c2,c3\c3 =
c2 — C3c2c3y, which is isomorphic to Q8 by the correspondence c2 -> x9 c3 -> ̂ . Thus

ord(G') = 8 so that ord(G) = 24.
(3) We take a Schreier transversal (7:={l,α,α2,α3} for G' in G. The BR- and

55-tables are given as follows:

Table 5

1

a

a2

a3

a b

1 ba~l

1 aba'2

1 a2ba~3

a4 a3b

i**-1'-1*-1 "Λ

abab-ta-ib-*

a bcib a b a d

d bdb d b d d

ΛΛ-'β- A-'β-' «*
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Table 6

Hence G'~(ct (1</<5)| eight relations in the £S-table>~<c2,c4| c2 = C4c2

2c4,
C4 = c2c4

2c2>. Next, we take C/:=:{l,c2,c2

2} as a Schreier transversal for (GJ in G'

and the BR- and 5/S-tables are given as follows: (we set c2 =/?, c4 = qin the ̂ Λ-t

Table 7

1

p

P2

p q

1 gp~

q pqp~2

p3 p2q

pq2pq 1 qp2qp 1

pq pq qp qp~
p2q2pq~ lp ~ 1 pqp2qp ~ 2

ΛVΓ'P-' Λ^-

Table 8

d2dίd2

Hence (GJ~(di (l</<4) | six relations in the J95-table>^<ί/3,ί/4|ί/3

2ί/4

2 = l,
d3=d4d3d4y, which is isomorphic to Qs by the correspondence d3 -+x,d4-* y. We

have c2

3=rf4

2e(G')'~g8 and hence ord(c2) = 6. Set //:=:<c2

2>^C3. Then

G' = (GJ [X //^β8KC3, where α: C3 = <ί> -* Aut(β8) is given by α(
α

and α(0(y)=y=>;Λ: since cJ2ί/3C22 = ί/41 andc^"2ί/4c2

2 = ί/3J4

3. If we set L:=<α> c G,

then L-C4 and G = G'px:L-(28|XC3)IXC4, where /?: C4 = <^> -> Aut(β8 tXC3)
α β a.

is given by ί s = t2-yx3, xs=x, ys=yx. a 6 G corresponds to 5- 1 le(<28 |χC3) IX C4,
and b to s-t'x under this isomorphism.

Next, we show S£(2,Z3)-β8[χC3. Set X:=\ 1 , Y:= ° l [ T:= \ 2\
\_l 1J [_2 OJ |_1 OJ

e5L(2,Z3). Then we have 72-^2, ^4=1, 7"^^= X~l and {̂ ,7} generates
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a subgroup N isomorphic to Q8. We also have ord(Γ) = 3 and set M:= <Γ>. Then

3 since T'1XT=YX2

9 T~1YT=YX. Hence G~

SL(2,Z3)tXC4, where γ: C4 = <s> -> Aut(5L(2,Z3)) is given by Xs = X, YS=YX,

0 1
TS=T2YX3. αeG corresponds to sΊ2 and b to s-

(4) We have Gab~C5 and take U={\,a,a2,a3,a4} as a Schreier transversal for

G' in G. Then the BR- and ^5-tables are given as follows:

Table 9

1

a

a2

a3

a*

a

\

1

1

1

a5

b

ba~l

aba'2

a2ba~3

a3ba~4

a*b

abab-^b-i «5

Q.ΌQ.O Q. U O.

d bob Q, b Q. a

d Odo d o d d

d odu d b d d

d bob a b d d

Table 10

Hence G'^<c t (1 </<6) | ten relations in the j55-table>^<c2,c4| C4c2

2c4 = C2c4c2,

t4 oΊ Γ4 41
, ί/4= e5L(2,Z5), then we

4 4J LO 4J

have d4d2d4 = d2d4d2 and d^id2

ίd4 = d2

ίd4rd2. Since {rf2A} generates 5L(2,Z5),

we have a surjective homomorphism F:G'^> SL(2,Z5) defined by F(c^ = di

(/ = 2,4). By applying the same argument as in the case (5) in Remark 2.7 below,

we find G'~SL(2,Z5) and hence F is an isomorphism.

Next, we show Gc±SL(2,Z5)x C5. Set x:=abaeG. Then x 1 0 eG' and we

have Xi° = (ab)l5=(c3c5cίc2c4c6)
3=(c<2c2)* which corresponds to

eSL(2,Z5). Hence we have ord(.x) = 20. If we set w:=x4, then ord(w) = 5 and w
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belongs to the center of G. Since {V| 0</<4} is a transversal for G' in G, we

conclude G^SL(2,Z5)x C5. We have Gf3w2a = (c^c2)
2c4 which corresponds to

Ui]eSL(2,Z5). Hence #eG corresponds to I, n>3 )eSL(2,Z5) x C5, where

> = <w>. Similarly, beG corresponds eSL(2,Z5)xC5.

(5) Similar to (4). We give some data for convenience. The BR- and £S-tables
for G' in G are given as follows:

Table 11

1

a

a2

a

1

1

a3

b

ba-*

aba~2

a2b

ababab~la lb~la~lb~l

ababab ~ίa~ίb~ίa~ίb~ί

a2babab~la~1b~la-ίb-ίa~ί

a3babab~1a~1b~1a~1b~1a~2

a3

a3

a3

a3

b3

b3

ab3a~l

a2b3a~2

Table 12

C
3
C

4
C

2

C
4
C
2
C
3

(1</<4)| nine relations in the £5-table>

Γ4 41 Γ4 Ol
where c2 corresponds to and c3 to . We have G = G' x <w> ~SL(2,Z5)

|_0 4J 14 4J

x C3, where w = (ababa)4eG (oΐd(ababa) = 12). aεG corresponds to I ,
VL2 4J

4
w2 e5L(2,Z5) and beG to :) -) D

REMARK 2.7. By Corollary 1.5, there exists the maximal Galois covering

π:X(C2, eBq)-+C2 in the five cases above. We have X(C2, eBq) ~ C2 in these

cases. Since the cases (2),(3),(4) are studied in Namba [3;p.50], we briefly discuss
the remaining two cases. In the case (1), the maximal Galois covering π t : C

2 -» C2
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of (C2, 2Bq) is given by (v9w) = πl((s9t)) = (st9 (I / 2)(sq + tq)). Indeed, if we set

N={(x,y,z)eC3\ xy = zq} and Λ/={(w,v,w)eC3| w2 — u2 = vq}9 then π t is decomposed

as π1=fogoh, where C 2->W^M-> C2, and/, g, A are defined as follows:
h g f

Λ(M) = (*W), g((x^z)) = ((\/2}(x-y\ z, (1/2X*+>0), and /((t/,v,w)) = (v,vv). Since
h is unramified outside (0,0,0) e TV and / branches at 2Bq, we conclude that π t is
a covering which branches at 2Bq. It is easy to see that Gπι is isomorphic to

D2q and generated by σ, τeAut(C2), where σ((s9t)):=(ζs9ζ'lt) (C:= e2π^lq) and
τίfof)):^^). Hence we conclude that π t is the maximal Galois covering of (C2,
2Bq). In the case (5), let G:C2 -» C2/5'L(2,Z5)-L:={(w,v,w)eC2| t/3 + v5-w2 = 0}
be the quotient map giving the binary icosahedral kleinian singularity (cf. Pinkham
[4]), and define F:L-+C2 by P((u9v,w)) = (v,w). Then π 5:=F°G:C 2 -> C2 is a
covering which branches at 3B5. Since C 2-πJ x ((0,0)) = C2-{(0,0)} is simply-
connected, π5 is the maximal Galois covering of (C2,3#5) by Namba [3; Corollary
1.3.12]. We also find that the maximal Galois group G(C2,3£5)^Gπ5 is an
extension of 5L(2,Z5) by C3 by this geometric argument without group-theoretic
computation.

In the case where G(e\q) is an infinite group, to determine whether G(e\q) is
solvable or not is a fundamental problem in the Galois theory of branched
coverings. As for this, we have the following result:

Theorem 2.8. G(e\q)'= (G(e\q)'}' if and only if e is odd and GCD(e9q)=l.

Proof. We set G = G(e;q) and G(e\q}' = N for short. According to Johnson
[2; Chapter 12], let F(X) be a free group generated by X={S,T} and /:=

[dS* dS_e~]
dS df

dw dw
dS dTJ

eM2 (Z[F(X}]) be the jacobian of G, where w =

eHAΊ and — , — are the Fox derivations. Let
V ' dS dT

the natural surjections and we denote by the same symbol the map

M2(ZIF[X}]) -> M2(Z[G]) -* M2(Z[CJ) induced by them. We set D := μ o ψ o φ(J) e

Λf2β(Z), where μ:Z[CJ -> Afβ(Z) (or μ:M2(Z [Ce])-> M2β(Z)) is the blowing-up

map (cf. Johnson [2; 12.1]).
Now, we have
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which is equivalent to

0

Here we say that two matrices are equivalent if they can be transformed to each

other by elementary transformations.

/β-1

We have μl Σ ^ )=

\i = 0

1 l 1

1 1 » 1
eMe(Z)9 which is equivalent to

1 O 0

0 O 0
. Since N/N' xZe~l^Z2e/lm μ(L) (Johnson [2;Proposition 1,

0 O 0
p 161]), we conclude N—N' if and only if e is odd and GCD(e,q)=\ by the

following lemma. Π

Lemma 2.9. For an odd integer q>3, set z:= ^(-ly'^eZtCJ, Ce =
i= 1

<j>. Then z is a unit in Z[C^\ if and only if e is odd and GCΌ(e,q)=\.

Proof. We identify Z[Ce] with A := Z[x~] / (xe — ϊ)9 where s~* corresponds to
_ _ β-i

the coset x of x. Since x is a unit in .A9 we show z = £ (— l)VeΛ is a unit if
i = 0

and only if e is odd and GCΌ(e9q)=l. Now, assume e is even. If there exist
A-i \
I (- ̂ ^ )̂ ) + (^e- !)^)= ! in ZW» then we have

/

^F(— 1)=1 by setting x= —1, contradiction. Assume that e is odd and GCD(β,̂ )
«~1_.

= 1. By replacing x with —x, we may assume that z= ^ xlεB:= Z[x~]/(xe+ 1).
i = 0

Since GCD(2e,g)= 1, there exist P(x), β(x)eZM such that (x*- \}P(x) + (x2e- \)Q(x)
/q-l \

= jc - 1 by the Euclidian division algorithm. Thus ]Γ x1 lP(x) + (xe + 1)
\ί = 0 /

= 1 and hence ze5 is a unit. Assume that e is odd and GCΌ(e,q) = d> 1. Since

P(x), G(x)eZ[_x~\ such that I Σ (
\i = 0

_ _

Σ x1 divides ^ χl

i = 0 i = 0

_

» ^ ^s enough to show £ x1 is a non-unit in 5. Suppose
i = 0
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that there exist f(x\ g(x) e Z[>] such that

ίd~l \
We have ^e-|-l=( ^xl\h(x}-\-2 for some /φc)eZ[>] by a direct division. By

\ / = o /
subsitituting this to (1), we obtain

d-\

Then £ Λ;1 is a unit in Z2[x], contradiction. Π

Corollary 2.10. If (e,q) is not one of those in Theorem 2.4 and GCΌ(e9q)=l

with e odd, then G(e\q) is an infinite unsolvable group.

3. Calculation of

Let G[ejn\q] := G(P 2, eBq + ml^) be the maximal Galois group of (P 2, eBq 4- m/^),

where ΊΓq = {(x0,xί,x2)EP2\ Xo=x2x2~
2} and /00 = {(jc0,x1,x2)eP2| x2 = Q} (the

infinite line). Let δ be a loop around /„ in F2-(5^u/00) and [δ] eπ1(/>2-(B€u/00))

= πi(C2—Bq) the homotopy class of (5. It is easy to see [^~1] = [ ^^2^1'"^i ]

= [ X2x1x2 ^2 ] (CL Proposition 2.1), and hence we have G\e,m\q]~(c&b\

( Q:= aba-a = bab - b ).

e exp ici stmcture of G^^ ]̂ for the (̂ ,̂ )'s given in Theorem 2.4 is as follows:

Proposition 3.1.

D2q ifm is even
(1) G\2,m q\~ .

[{1} i/misodd

C3 ///n = l,3 (mod4)

(2) G[3,m;3]~ -j PSL(2,Z3) ifm = 2 (mod 4)

5L(2,Z3) z/m = 0(mod4)



362 T. NAKANO and K. TAMAI

(3)

{1}

β

((C2xC2)I><C3)jxC4

a β

if m = 1,3,5,7 (mod 8)

//m = 2,6 (mod 8)

if m = 4 (mod 8)

ifm = Q (mod 8)

(4)

(5) G[3,m;5]~

{1}

PSL(29Z5)
SL(2,Z5)

C5

PSL(2,Z5) x C5

5L(2,Z5) x C5

{1}
FSL(2,Z5)

C3

PSL(2,Z5) x C3

Si(2,Z5) x C3

ifm= 1,3,7,9,1 1,13,17,19 (mod 20)

z/ m = 2,6,14,18 (mod 20)

ί/ w = 4,8,12,16 (mod 20)

ί/ra = 5,15 (mod 20)
ifm=\ϋ (mod 20)

*/ m = 0 (mod 20)

ι/ w = 1,5,7,11 (mod 12)
i/ m = 2,10 (mod 12)

ι/ w = 3,9 (mod 12)
ί/m = 4,8 (mod 12)
i/ m = 6 (mod 1 2)

ι/ m = 0 (mod 1 2)

Proof. (1) We have G[2,m#] -<£,</! b2 = dq=l, b~ldb = d-^ / ̂ 7V<xm>, where
x = bd(q~ί}/2

9 by setting d=ab. Since ord(x) = 2, we have G[2,w;#] ̂  Z)2g if m is

even. If m is odd, then N(xmy = D2q and hence G[2,w;#] = {l}.

= \ e5L(2,Z3) (cf. Theorem(2) We have ord(0 = 4 since φ2(Q) = φ2(aba)

2.6). If /w = l,3 (mod 4), then G\_2jn\q]c*(aJ)\ a3 = l,
-C3. If m = 2 (mod 4), then G[3,m;^]
F5L(2,Z3). If m = 0 (mod 4), then G[3,m;^]-G(3;3)-5L(2,Z3).

(3) We have (?3(β) = ,s3 t2 je(ρ8CXC3)XC4, and hence ord(β) = 8. If m= 1,3,5,7
α /?

(mod 8), then G[4,m;3] - <Λ,i| a
4 = aba = bab= 1>^{1}. If m = 2,6 (mod 8), then

φ3(Q2) = s2 l x and hence G[4,m;3]-(g8χC3) DκC4/<^2 1 χ>. If m = 4 (mod
α ^

8), then φ3(β4)=l 1 -x2 and hence G[4,m;3]^((C2 x C2)[χC3)t><C4, where α, β

ά ^
are the homomorphisms induced by α,/?. If m = 0 (mod 8), then G[4,m;3] ̂  G(4;3).

(4) We have φ4(β) = M 3 ° I w4 Je5L(2,Z5) x C5 so that ord(β) = 20. If m = 1,3,7,

9,11,13,17,19 (mod 20), then

-{!}. If m = 2,6,14,18 (mod20), then G[5,m;3]-5L(2,Z5)x C5/{±/2} x C5-
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AS£(2,Z5). If m = 4,8,12,16 (mod 20), then G[5,m;3] ~SZ,(2,Z5) x C5 / C5 ~SL(2,Z5).

If m = 5,15 (mod 20), then we have φ4(β5) = M , 1 I Hence G[5,w;3] c± C5 since

Λ^< >=5L(2,Z5). If w= 10 (mod20), then we have ^4(ρ10) = M ~! ° I 1 j

so that G[5,m;3]-P5£(2,Z5)xC5. If m = 0 (mod 20), then G[5,m;3] - G(5;3)-
5L(2,Z5)xC5.

/Γ2 31 \
(5) We have φ5(Q) = ( I s ] and the rest is similar to (4). D

REMARK 3.2. In the case (3), G[4,ra;3] (AW = 2,6 (mod 8)) is isomorphic to
the symmetric group S4 of degree 4 (cf. Namba [3;p.50]).

Corollary 3.3. Suppose that (e,q) is one of those given in Theorem 2.4 and let
D = eBq -f ra/^. Then there exists the maximal covering π : X(P 2,Z)) -> P 2 if and only if
(1) m = 2 in the case where (e,q) = (2,q) (q\odd),

(2) m= 1,2,4 in the case where (e,#) = (3,3),

(3) m = 2,4,8 in the case where (̂ ) = (4,3),

(4) m =2,4,5,10,20 in the case where (e,g) = (5,3),

(5) m = 2,3,4,6,12 in the case where (e,#) = (3,5).

In these cases, the Galois group Gπ of π is isomorphic to G\e,m\q\.

Proof. Since ord(α) = 2 and ord(Q) = 2 in G\2mq]~D2q (m: even), (1) follows
from Corollary 1.5. By calculating ord(α) and ord(0 using Theorem 2.6 and

Proposition 3.1, the other assertions follow from Corollary 1.5 similarly. Π

Let S(e,m;q) = X(P2,eBq + mlao) be the maximal Galois covering for the
given in Corollary 3.3. Then S(ejn\q) is a normal projective irreducible rational
surface since it is a compactification of C 2/ finite group. One of the singularities

of S(e,m',q) lies over (0,0,1), which is a quotient singularity. To detemine the

structure of S(e,m\q] (especially the singularities lying over (0,1,0)) will be an

interesting poblem, which will be discussed elsewhere. We give a list of S(e,m;q)

and G[ejn\q] for convenience.

Table 13

S(ejn\q)

G\e,m\q\

5(2,2.)

°*

5(3,,;3)

c,

S(3,2;3)

'SUM

5(3,4;3)

5L(2,Z3)
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S(4,2;3)

S4

S(4,4;3)

((C2xC2)tχC3)tχC4

S(4,8;3)

(ββχc3)χc4

S(5,2;3)

PSL(2,Z5)

S(5,4;3)

SL(2,Z5]

S(5,5;3)

C5

S(5,10;3)

PSL(2,Z5)xC5

S(5,20;3)

SL(2,Z5)xC5

S(3,2;5)

F5L(2,Z5)

5(3,3;5)

C3

S(3,4;5)

SL(2,Z5)

S(3,6;5)

PSL(2,Z5)xC3

S(3,12;5)

5L(2,Z5) x C3

[1]

[2]

[3]

[4]

[5]

[6]
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