ON SOME MAXIMAL GALOIS COVERINGS OVER AFFINE AND PROJECTIVE PLANES

Tetsuo NAKANO and Ken-ichi TAMAI

(Received March 26, 1995)

Introduction

In Namba [3; Capter 1], various examples of Galois coverings over affine and projective planes are constructed. Among them, the Galois coverings over C^{2} with branch locus $B_{3}:=\left\{(v, w) \in C^{2} \mid v^{3}=w^{2}\right\}$ are studied in detail ([3; pp.43-52]), and as an application, the existence or non-existence of some maximal Galois coverings over \boldsymbol{P}^{2} with branch locus $\overline{B_{3}} \cup l_{\infty}$ is shown, where $\overline{B_{3}}$ is the projective closure of B_{3} and l_{∞} is the infinite line ([3; Proposition 1.3.27, 1.3.29]).

In this note, we extend his results to the Galois coverings over C^{2} with branch locus $B_{q}:=\left\{(v, w) \in C^{2} \mid v^{q}=w^{2}\right\}$, where q is a positive odd integer, under the condition that the maximal Galois group $G\left(C^{2}, e B_{q}\right)$ of $\left(C^{2}, e B_{q}\right)$ is finite. It turns out that we have five cases in all, three casess of which appear in [3; p.43]. As an application, we determine when there exists the maximal Galois coverings over \boldsymbol{P}^{2} with branch locus $\overline{B_{q}} \cup l_{\infty}$, and also describe the explicit structure of $G\left(\boldsymbol{P}^{2}, e \overline{B_{q}}+m l_{\infty}\right)$ in these cases.

This note is organized as follows. In Section 1, we review some general facts from the Galois theory of branched coverings. We begin Section 2 with giving a simple presentation of $G\left(C^{2}, e B_{q}\right)$ in Proposition 2.1, from which we can construct the maximal abelian coverings of ($C^{2}, e B_{q}$) easily (Proposition 2.3). Using this presentation, we determine when $G\left(C^{2}, e B_{q}\right)$ is finite in Theorem 2.4 according to Coxeter-Moser [1]. Then we give an explicit structure of $G\left(C^{2}, e B_{q}\right)$ in the cases where $G\left(C^{2}, e B_{q}\right)$ is finite, which is our maim result (Theorem 2.6). When $G\left(C^{2}, e B_{q}\right)$ is infinite, we give a sufficient condition for $G\left(C^{2}, e B_{q}\right)$ to be unsolvable (Corollary 2.10). In Section 3, we describe the explicit structure of the maximal Galois group $G\left(\boldsymbol{P}^{2}, e \overline{B_{q}}+m l_{\infty}\right)$ and determine when the maximal Galois covering of $\left(\boldsymbol{P}^{2}, e \bar{B}_{q}+m l_{\infty}\right)$ exists in the cases where $G\left(C^{2}, e B_{q}\right)$ is finite (Proposition 3.1, Corollary 3.3).

We note that the isomorphisms given in Theorem 2.6 are more or less known in abstract form (cf. Coxeter-Moser [1;6.7], Namba [3;p.50]) and our contribution is the explicit description of these isomorphisms, which is essentially used in Section 3.

The case where q is even seems more complicated, and will be studied in the forthcoming paper under the same title. We note that part of this note is taken
from the master thesis Tamai [6].
Notations. (1) For a group G and $g_{i} \in G(1 \leq i \leq n)$, we denote by $\left\langle g_{1}, g_{2}, \cdots, g_{n}\right\rangle$ the subgroup of G generated by g_{i} 's and by $N\left\langle g_{1}, g_{2}, \cdots, g_{n}\right\rangle$ the smallest normal subgroup containing g_{i} 's. $Z[G]$ denotes the group ring of G over the ring of integers Z. For a ring $A, M_{n}(A)$ is the set of all square matrices of degree n whose entries belong to A, and $I_{n} \in M_{n}(A)$ denotes the identity matrix.
(2) Given two groups H, N, we denote by $N \underset{\alpha}{\mho} H$ the semi-direct product of H and N. Here, $\alpha: H \rightarrow \operatorname{Aut}(N)$ is a homomorphism and the product is defined by $\left(h_{1} \cdot n_{1}\right)\left(h_{2} \cdot n_{2}\right):=h_{1} h_{2} \cdot n_{1}^{h_{2}} n_{2}$, where $h_{i} \in H, n_{i} \in N, n_{1}^{h_{2}}=\alpha\left(h_{2}\right)\left(n_{1}\right)$.
(3) For a pair (M, D) of a complex manifold M and an effective divisor D on M, we denote by $G(M, D)$ the maximal Galois group of (M, D) and by $\pi: X(M, D) \rightarrow M$ the maximal Galois covering of (M, D) if it exists (see Section 1 for the definitions).

1. Summary of the Galois theory of branched coverings

In this section, we summarize some general facts on the Galois theory of branched coverings in the category of complex analytic spaces, following Namba [3; Chapter 1].

Let M be a complex manifold and $D=\sum_{i=1}^{s} e_{i} D_{i}\left(e_{i}>0\right)$ an effective divisor on M, where D_{i} is an irreducible component of D. We set $B:=C_{1} \cup D_{2} \cup \cdots \cup D_{s}$. Let $\pi: X \rightarrow \mathrm{M}$ be a branched covering over M, where X is a normal irreducible reduced complex analytic space, $R_{\pi} \subset X$ the ramification locus of π, and $B_{\pi} \subset M$ the branch locus of π. For an irreducible hypersurface $C \subset X$, we denote by $e_{C}(\pi)$ the ramification index of π at C (cf. Namba [3; p.10]). We say that π branches at D (resp. at most at D) if the following three conditions are satisfied:
(1) $B_{\pi}=B$ (resp. $B_{\pi} \subset B$).
(2) $R_{\pi}=\pi^{-1}(B)$ (resp. $R_{\pi} \subset \pi^{-1}(B)$).
(3) For any irreducible hypersurface $C \subset X$ such that $\pi(C)=D_{j}, e_{C}(\pi)=e_{j}$ (resp. $\left.e_{C}(\pi) \mid e_{j}\right)$.

We fix a base point $p_{0} \in M-B$ and take a point $p_{j} \in D_{j}-\operatorname{Sing}(B)$, where $\operatorname{Sing}(B)$ is the singular locus of B. Take a local coordinate system $\left(z_{1}, z_{2}, \cdots, z_{n}\right)$ defined on a neighborhood U of p_{j} such that (1) p_{j} corresponds to the origin, (2) $B \cap U$ is given by $z_{n}=0$. Take a loop δ_{j} around D_{j} in U defined by $\{(0,0, \cdots, 0$, $\left.\left.\varepsilon e^{2 \pi \sqrt{-1} t}\right) \in U \mid 0 \leq t \leq 1\right\}$, where $\varepsilon>0$ is sufficiently small, and take a path ω_{j} in $M-B$ from p_{0} to $q_{j}=(0,0, \cdots, \varepsilon) \in U$. We define $\gamma_{j}=\omega_{j}^{-1} \delta_{j} \omega_{j}$, which is a loop around D_{j} starting from p_{0}.
 $\gamma_{j}^{e_{j}}(1 \leq j \leq s)$, which is determined independent of the choices of γ_{j} 's (we confuse a loop γ_{j} with its homotopy class in $\left.\pi_{1}\left(M-B, p_{0}\right)\right)$. We set $G(M, D):=\pi_{1}\left(M-B, p_{0}\right) / J$
and call this the maximal Galois group of (M, D) in this note. Then we have a Galois correspondence of the following type:

Theorem 1.1 (cf. Namba [3; Theorem 1.3.9]). (1) There is a bijective map Φ from the set $\{f: X \rightarrow M \mid f$ is a finite Galois covering which branches at most at $D\} / \simeq$ to the set $\{K \subset G(M, D) \mid K$ is a normal subgroup of finite index $\}$, where \simeq means the isomorphism between branched coverings over $M . \Phi(f)$ is defined by $\Phi(f)=f_{*}\left(\pi_{1}\left(X-f^{-1}(B), q_{0}\right)\right) \bmod J$, where $q_{0} \in X-f^{-1}(B)$ is a base point over p_{0} and $f_{*}: \pi_{1}\left(X-f^{-1}(B), q_{0}\right) \rightarrow \pi_{1}\left(M-B, p_{0}\right)$ is the injective homomorphism induced by f.
(2) This correspondence Φ satisfies the following properties:
(a) $G_{f} \simeq G(M, D) / \Phi(f)$, where G_{f} denotes the covering transformation group of f.
(b) f_{1} dominates f_{2} if and only if $\Phi\left(f_{1}\right) \subset \Phi\left(f_{2}\right)$. Here we say that a branched covering $f_{1}: X_{1} \rightarrow M$ dominates another covering $f_{2}: X_{2} \rightarrow M$ if there exixts a surjective holomorphic map $g: X_{1} \rightarrow X_{2}$ such that $f_{2} \circ g=f_{1}$.
(3) f branches at D if and only if the order of $\left[\gamma_{j}\right]$ is $e_{j}(1 \leq j \leq s)$, where $\left[\gamma_{j}\right] \in G(M, D) / \Phi(f)$ denotes the coset containing γ_{j}.

We call the universal Galois covering among the branched coverings which branch at most at D the maximal Galois covering of (M, D) if it exists. More precisely,

Definition 1.2. Let $\pi: X \rightarrow M$ be a Galois covering which branches at D. We say that π is the maximal Galois covering of (M, D) if π dominates any branched covering which branches at most at D.

Our next task is to give a criterion for the existence of the maximal Galois covering in terms of $G(M, D)$. Consider a point $p \in \operatorname{Sing}(B)$ and take a sufficiently small neighborhood W of p in M which is an open ball with respect to a local coordinate system with center p. Let $i_{*}: \pi_{1}\left(W-(W \cap B), p_{0}^{\prime}\right) \rightarrow \pi_{1}\left(M-B, p_{0}\right)$ be the homomorphism induced by the inclusion $i: W-(W \cap B) \rightarrow M-B$, where $p_{0}^{\prime} \in W-(W \cap B)$ is a base point, and let $g: \pi_{1}\left(M-B, p_{0}\right) \rightarrow G(M, D)$ be the natural surjection. We have a composition map $g \circ i_{*}: \pi_{1}\left(W-(W \cap B), p_{0}^{\prime}\right) \rightarrow G(M, D)$. Consider the following condition on a subgroup $K \subset G(M, D)$:

Condition 1.3. For any point $p \in \operatorname{Sing}(B),\left(g \circ i_{*}\right)^{-1}(K)$ is of finite index in $\pi_{1}\left(W-(W \cap B), p_{0}^{\prime}\right)$.

We set $\tilde{K}:=\cap K$, where K runs over all the subgroups of $G(M, D)$ satisfying Condition 1.3. \tilde{K} is a normal subgroup of $G(M, D)$.

Theorem 1.4 (cf. Namba [3; Theorem 1.3.10]). There exists the maximal

Galois covering $\pi: X(M, D) \rightarrow M$ of (M, D) if and only if the following two conditions are satisfied:
(1) \tilde{K} satisfies Condition 1.3.
(2) $\operatorname{ord}\left(\left[\gamma_{j}\right]\right)=e_{j}(1 \leq j \leq s)$, where $\left[\gamma_{j}\right] \in G(M, D) / \tilde{K}$ means the coset containing γ_{j}. In this case, we have the following:
(a) $G_{\pi} \simeq G(M, D) / \tilde{K}$.
(b) $X(M, D)$ is simply-connected.

Asuume that $G(M, D)$ is finite. Then we have the following corollary to Theorem 1.4, since Condition 1.3 is satisfied for any subgroup of G and hence $\tilde{K}=\{1\}$ in this case.

Corollary 1.5. If $G(M, D)$ is finite, then there exists the maximal Galois covering $\pi: X(M, D) \rightarrow M$ of (M, D) if and only if $\operatorname{ord}\left(\left[\gamma_{j}\right]\right)=e_{j}(1 \leq j \leq s)$, where $\left[\gamma_{j}\right] \in G(M, D)$ is the coset containing γ_{j}. In this case, $G_{\pi} \simeq G(M, D)$.

2. Calculation of $G\left(C^{2}, e B_{q}\right)$

For an integer $q>0$, we set $B_{q}=\left\{(v, w) \in C^{2} \mid w^{2}=v^{q}\right\}$. Suppose that q is odd. Let γ be a loop around B_{q} in $C^{2}-B_{q}$ as in Section 1 and we define $G(e ; q):=: G\left(C^{2}, e B_{q}\right)=\pi_{1}\left(C^{2}-B_{q}, p_{0}\right) / N\left\langle\gamma^{e}\right\rangle$. Suppose that $q=2 r$ is even. We set $B_{q}^{1}=\left\{(v, w) \in C^{2} \mid w=v^{r}\right\}$ and $B_{q}^{2}=\left\{(v, w) \in C^{2} \mid w=-v^{r}\right\}$ so that $B_{q}=B_{q}^{1} \cup B_{q}^{2}$. Let γ_{i} be a loop around $B_{q}^{i}(i=1,2)$ and we set $G\left(e_{1}, e_{2}, ; q\right):=G\left(C^{2}\right.$, $\left.e_{1} B_{q}^{1}+e_{2} B_{q}^{2}\right)=\pi_{1}\left(C^{2}-B_{q}, p_{0}\right) / N\left\langle\gamma_{1}^{e_{1}}, \gamma_{2}^{e_{2}}\right\rangle$. Then $G(e ; q)$ and $G\left(e_{1}, e_{2} ; q\right)$ have the following simple presentations.

Proposition 2.1.

$$
\left\{\begin{array}{l}
G(e ; q) \simeq\langle a, b \mid a^{e}=1, \underbrace{a b a b \cdots a}_{q}=\underbrace{b a b a \cdots b}_{q}\rangle \text { if } q \text { is odd } \\
G\left(e_{1}, e_{2} ; q\right) \simeq\langle a, b \mid a^{e_{1}}=b^{e_{2}}=1, \underbrace{a b a b \cdots a b}_{q}=\underbrace{b a b a \cdots b a}_{q}\rangle \text { if } q \text { is even. }
\end{array}\right.
$$

Proof. Put $S^{3}:=\left\{\left.(v, w) \in C^{2}| | v\right|^{2}+|w|^{2}=1\right\}, T^{2}:=\left\{(v, w) \in C^{2}| | v\left|=|w|=\frac{1}{\sqrt{2}}\right\}\right.$, and $k(2, q):=\left\{\left.\left(\frac{1}{\sqrt{2}} e^{4 \pi i s}, \frac{1}{\sqrt{2}} e^{2 \pi i s q}\right) \in C^{2} \right\rvert\, 0 \leq s \leq 1\right\}(i=\sqrt{-1}) . \quad$ Then $k(2, q) \subset T^{2}$ is the torus knot (or link) of type $(2, q)$. Let $C(k(2, q))=\left\{(t v, t w) \in C^{2} \mid t \geq 0,(v, w) \in k(2, q)\right\}$ be the cone over $k(2, q)$. Since $\left(C^{2}, B_{q}\right)$ is homeomorphic to ($C^{2}, C(k(2, q))$, it follows that $\pi_{1}\left(C^{2}-B_{q}\right)$ is isomorphic to $\pi_{1}\left(S^{3}-k(2, q)\right.$) (we omit the base point of the fundamental group). Now, we take the Wirtinger generators $x_{1}, x_{2}, \cdots, x_{q}$ as in the

Figure
figure above and obtain the Wirtinger presentation of the knot (or link) group $\pi_{1}\left(S^{3}-k(2, q)\right)$ as follows (cf. Stillwell [5;4.2.3]):

$$
\pi_{1}\left(S^{3}-k(2, q)\right) \simeq\left\langle x_{1}, x_{2}, \cdots, x_{q} \mid x_{1} x_{q}=x_{2} x_{1}=x_{3} x_{2}=\cdots=x_{q} x_{q-1}\right\rangle .
$$

From this presentation, we eliminate x_{3}, \cdots, x_{q} and get the following presentations:
$\pi_{1}\left(S^{3}-k(2, q)\right) \simeq \begin{cases}\langle x_{1}, x_{2} \mid \underbrace{x_{1} x_{2} \cdots x_{2} x_{1}}_{q}=\underbrace{x_{2} x_{1} \cdots x_{1} x_{2}}_{q}\rangle & \text { (q: odd) } \\ \left\langle x_{1}, x_{2}\right| \underbrace{x_{1} x_{2} \cdots x_{1} x_{2}}_{q}=\underbrace{\left.x_{2} x_{1} \cdots x_{2} x_{1}\right\rangle}_{q} & \text { (q: even) }\end{cases}$
If q is odd, then we can take x_{1} as γ. If q is even, we can take x_{i} as γ_{i} $(i=1,2)$. Hence $\pi_{1}\left(C^{2}-B_{q}\right) / N\left\langle\gamma^{e}\right\rangle\left(\right.$ or $\pi_{1}\left(C^{2}-B_{q}\right) / N\left\langle\gamma_{1}^{e_{1}}, \gamma_{2}^{e_{2}}\right\rangle$) has the desired presentation.

Remark 2.2. The groups that have the same presentations as in Proposition 2.1 appear in Coxeter-Moser [1; 6.7], in which $G\left(e_{1}, e_{2} ; q\right)$ is denoted by $e_{1}[q] e_{2}$ (q : even) and $G(e ; q)$ by $e[q] e$ (q : odd). These groups also occur in the theory of regular complex polygons.

We recall that an abelian covering $\pi: X \rightarrow M$ of a complex manifold M which branches at D is called maximal if π dominates any abelian covering of M which branches at most at D. The maximal abelian covering of C^{2} which branches at $e B_{q}$ (q: odd) or $e B_{q}$ (q: even) can be obtained easily as follows.

Proposition 2.3. (1) Assume that q is odd. Set $X:=\left\{(u, v, w) \in \boldsymbol{C}^{3} \mid u^{e}+v^{q}-w^{2}\right.$
$=0\}$ and define $\pi: X \rightarrow C^{2}$ by $\pi((u, v, w))=(v, w)$. Then $\pi: X \rightarrow \boldsymbol{C}^{2}$ is the maximal abelian covering of \boldsymbol{C}^{2} which branches at $e B_{q} . \quad G_{\pi}$ is isomorphic to $\boldsymbol{Z} / e \boldsymbol{Z}$.
(2) Assume that $q=2 r$ is even. For a pair of positive integers e_{1}, e_{2}, set $Y:=\left\{\left(u_{1}, u_{2}, v\right) \in \boldsymbol{C}^{3} \mid u_{1}^{e_{1}}+2 v^{r}-u_{2}^{e_{2}}=0\right\}$ and define $\rho: Y \rightarrow C^{2}$ by $\rho\left(\left(u_{1}, u_{2}, v\right)\right):=\left(v, u_{1}^{e_{1}}\right.$ $+v^{r}$). Then $\rho: Y \rightarrow C^{2}$ is the maximal abelian covering of C^{2} which branches at $e_{1} B_{q}^{1}+e_{2} B_{q}^{2} . \quad G_{\rho}$ is isomorphic to $\boldsymbol{Z} / e_{1} \boldsymbol{Z} \oplus \boldsymbol{Z} / e_{2} \boldsymbol{Z}$.

Proof. (1) X is a normal irreducible surface, and it is easy to see that $\pi: X \rightarrow C^{2}$ is a cyclic covering of degree e which branches at $e B_{q}$. We show that $\pi: X \rightarrow C^{2}$ is the maximal abelian covering which branches at $e B_{q}$. Let $\mu: Z \rightarrow C^{2}$ be any abelian covering which branches at most at $e B_{q}$. By Theorem 1.1, it is enough to show $\Phi(\pi) \subset \Phi(\mu)$. For a group G, we set $G^{a b}:=G / G^{\prime}$, where G^{\prime} is the commutator subgroup of G. Since

$$
\begin{aligned}
G(e ; q)^{a b} & \simeq\langle a, b \mid a^{e}=1, \underbrace{a b \cdots a b a}_{q}=\underbrace{b a \cdots b a b}_{q}, a b=b a\rangle \\
& \simeq \boldsymbol{Z} / e \boldsymbol{Z},
\end{aligned}
$$

the index of $G(e ; q)^{\prime}$ in $G(e ; q)$ is e. Since $G(e ; q) / \Phi(\pi) \simeq G_{\pi} \simeq \boldsymbol{Z} / e \boldsymbol{Z}$, we conclude $\Phi(\pi)=G(e ; q)^{\prime}$. Now, $G(e ; q) / \Phi(\mu) \simeq G_{\mu}$ is abelian and hence $\Phi(\mu) \supset G(e ; q)^{\prime}=\Phi(\pi)$.
(2) Set $X_{1}:=\left\{\left(u_{1}, v, w\right) \in \boldsymbol{C}^{3} \mid u_{1}^{e_{1}}=w-v^{r}\right\}, X_{2}:=\left\{\left(u_{2}, v, w\right) \in \boldsymbol{C}^{2} \mid u_{2}^{e_{2}}=w+v^{r}\right\}$, and define $\pi_{i}: X_{i} \rightarrow C^{2}$ by $\pi_{i}\left(\left(u_{i}, v, w\right)\right)=(v, w)(i=1,2) . \quad \pi_{i}$ is a cyclic covering of degree e_{i} over C^{2}. We form the fibred product $X_{1} \times X_{\boldsymbol{c}^{2}}$ of π_{1} and π_{2}, which is isomorphic to Y over $C^{2} . \quad Y$ is an abelian covering over C^{2} which branches at $e_{1} B_{q}^{1}+e_{2} B_{q}^{2}$ with Galois group isomorphic to $\boldsymbol{Z} / e_{1} \boldsymbol{Z} \oplus \boldsymbol{Z} / e_{2} \boldsymbol{Z}$. On the other hand, it is easy to see $G\left(e_{1}, e_{2} ; q\right)^{a b} \simeq \boldsymbol{Z} / e_{1} \boldsymbol{Z} \oplus \boldsymbol{Z} / e_{2} \boldsymbol{Z}$, from which it follows that Y is the maximal abelian covering which branches at $e_{1} B_{q}^{1}+e_{2} B_{q}^{1}$ as in (1).

In the rest of this note, we are concerned with the explicit structure of $G(e ; q)$, assuming q is odd. The following theorem is essentially due to Coxeter-Moser [1].

Theorem 2.4. Let $e \geq 2$ and $q \geq 3$ be integers with q odd. Then $G(e ; q)$ is a finite group if and only if $e=2$ or $(e, q)=(3,3),(4,3),(5,3),(3,5)$.

We need a lemma for the proof of Theorem 2.4.
Lemma 2.5 (cf. Coxeter-Moser[1;p.79]). $G(2, e ; 2 q)$ contains a subgroup of index 2 which is isomorphic to $G(e ; q)$.

Proof of Lemma (2.5). By adjoining a new letter $c:=a b a$ to $G(2, e ; 2 q)$
$=\left\langle a, b \mid a^{2}=b^{e}=1,(a b)^{q}=(b a)^{q}\right\rangle$, we have $G(2, e ; 2 q) \simeq\langle a, b, c| b^{e}=\underbrace{1, b c b \cdots b}_{q}=\underbrace{c b c \cdots c}_{q}$, $\left.a^{2}=1, a b a=c\right\rangle$. Let $H:=\langle b, c\rangle$ be a subgroup of $G=G(2, e ; 2 q)$ generated by b and c. Then the index [G:H] of H in G is 2 . Indeed, any word $w=w(a, b, c) \in G$ can be rewritten as $w=\varphi(b, c)$ or $a \varphi(b, c)$, where $\varphi(b, c)$ is word not containing a, since $a^{2}=1, a b=c a$ and $b a=a c$. Hence we have $[G: H] \leq 2$. Assume $a \in H$. We have $G(2, e ; 2 q) \simeq F<a, b, c>/ N<Y>$, where $F<a, b, c>$ is a free group generated by $\{a, b, c\}$ and $Y=\{b^{e}, \underbrace{b c b \cdots b}_{q} \underbrace{c^{-1} b^{-1} c^{-1} \cdots c^{-1}}_{q}, a^{2}, a b a c^{-1}\}$ is the relation set. Then $a=\eta(b, c) \lambda$ in $F<a, b, c>$, where λ is a finite product of conjugates of words or inverses of words in Y. This gives a contradiction since the sum of the exponents of a in λ is even. Therefore $a \notin H$ and $[G: H]=2$.

Next, we calculate a presentation of H according to Johnson [2;Chapter 9]. Let $X=\{a, b, c\}$ be a generator set of G and $U=\{1, a\}$ a Schreier transversal for H in G. The $B \hat{R}$-table is given as follows:

Table 1

| | b | c | a | b^{e} | $b c b \cdots b c^{-1} \cdots c^{-1}$ | a^{2} | $a b a c^{-1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | b | c | 1 | b^{e} | $b c b \cdots b c^{-1} \cdots c^{-1}$ | a^{2} | $a b a c^{-1}$ |
| a | $a b a^{-1}$ | $a c a^{-1}$ | a^{2} | $a b^{e} a^{-1}$ | $a b c b \cdots b c^{-1} \cdots c^{-1} a^{-1}$ | a^{2} | $a^{2} b a c^{-1} b^{-1}$ |

Here the rows are indexed by U and the columns by (X, Y). In the left-hand half of the table, the (u, x)-entry is $u x \overline{u x}^{-1}$, where $\overline{u x} \in U$ is the element which belongs to the same coset modulo H as $u x$, and in the right-hand half of the table, the (u, y)-entry is $u y u^{-1}$. Hence the $B \hat{S}$-table is given as follows:

Table 2

d_{1}	d_{3}	-	d^{e}	$d_{1} d_{3} \cdots d_{1} d_{3}^{-1} \cdots d_{3}^{-1}$	d_{5}	$d_{2} d_{5} d_{3}^{-1}$
d_{2}	d_{4}	d_{5}	d_{2}^{e}	$d_{2} d_{4} \cdots d_{2} d_{4}^{-1} \cdots d_{4}^{-1}$	d_{5}	$d_{5} d_{1} d_{4}^{-1}$

Here $d_{1}=b, d_{2}=a b a^{-1}, d_{3}=c$ etc., and the elements in the right-hand half of the $B \hat{S}$-table are those in the $B \hat{R}$-table rewritten in terms of d_{i} 's. It follows that H is presented as $\left\langle d_{i}(1 \leq i \leq 5)\right|$ eight relations in the $B \hat{S}$-table \rangle. By eliminating d_{2}, d_{4} and d_{5}, we have $H \simeq\langle d_{1}, \quad d_{3} \mid d_{1}^{e}=d_{3}^{e}=1, \underbrace{d_{1} d_{3} d_{1} \cdots d_{1}}_{q}=\underbrace{d_{3} d_{1} d_{3} \cdots d_{3}}_{q}\rangle$.

Since $Q^{-1} d_{1} Q=d_{3}$, where $Q=\underbrace{d_{1} d_{3} d_{1} \cdots d_{1}}_{q}=\underbrace{d_{3} d_{1} d_{3} \cdots d_{3}}_{q}$, we conclude $H \simeq G(e ; q)$.

Proof of Theorem 2.4. Assume that $G(e ; q)$ is finite. By Lemma 2.5, $G(2, e ; 2 q)$ is also finite. We recall that the polyhedral group $P(x, y, z):=\left\langle a, b \mid a^{x}=b^{y}=(a b)^{2}=1\right\rangle$ $(x, y, z \geq 2)$ is finite if and only if $(x, y, z)=(2,2, z),(2,3,3),(2,3,4),(2,3,5)$ and their permutations (cf. Coxeter-Moser [1;6.4]). Since $P(2, e, q)$ is a homomorphic image of $G(2, e ; 2 q)$, we have $(e, q)=(2, q),(3,3),(4,3),(5,3),(3,5)$, where q is odd and ≥ 3. The converse part of the proof follows from Theorem 2.6 below, or Coxeter-Moser [1;p,79].

The following theorem is the main ingredient of this note. We note that the isomorphisms φ_{2}, φ_{4} and φ_{1} for $q=3$ in the theorem are given in Namba [3; p.50] in abstract form, and φ_{5} is found in Coxeter-Moser [1;p.78]. We make a detailed calculation of group presentations for this theorem since it gives the explicit form of φ_{i}, which is essentially used in section 3.

We denote by C_{n} the cyclic group of order n, by $D_{2 q}:=\langle x, y| x^{q}=y^{2}=1$, $\left.y^{-1} x y=x^{-1}\right\rangle$ the dihedral group of order $2 q$, by $Q_{8}:=\langle x, y| x^{2}=y^{2}, x^{4}=1$, $\left.y^{-1} x y=x^{-1}\right\rangle$ the quaternion group of order 8 , and by $\boldsymbol{S L}\left(2, \boldsymbol{Z}_{n}\right)$ the special linear group of degree 2 whose entries belong to $\boldsymbol{Z}_{n}=\boldsymbol{Z} / n \boldsymbol{Z}$.

Theorem 2.6. We have the following isomorphisms:
(1) $\varphi_{1}: G(2 ; q) \simeq D_{2 q} ; \varphi_{1}(a)=y, \varphi_{1}(b)=y^{-1} x$.
(2) $\varphi_{2}: G(3 ; 3) \simeq \boldsymbol{S L}\left(2, \boldsymbol{Z}_{3}\right) ; \varphi_{2}(a)=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right], \varphi_{2}(b)=\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right]$.
(3) $\varphi_{3}: G(4 ; 3) \simeq\left(Q_{8} \underset{\alpha}{\nless} C_{3}\right) \underset{\beta}{\ltimes} C_{4} ; \quad \varphi_{3}(a)=s \cdot 1 \cdot 1, \quad \varphi_{3}(b)=s \cdot t \cdot x \quad\left(C_{3}=\langle t\rangle, \quad c_{4}=\langle s\rangle\right)$. $\psi_{3}: G(4 ; 3) \simeq \boldsymbol{S L}\left(2, Z_{3}\right) \underset{\gamma}{\ltimes} C_{4} ; \quad \psi_{3}(a)=s \cdot I_{2}, \psi_{3}(b)=s \cdot\left[\begin{array}{ll}0 & 1 \\ 2 & 1\end{array}\right]\left(C_{4}=\langle s\rangle\right) . \quad \alpha, \beta, \gamma$ are described in the proof.

$$
\begin{align*}
& \varphi_{4}: G(5 ; 3) \simeq \boldsymbol{S L}\left(2, \boldsymbol{Z}_{5}\right) \times C_{5} ; \varphi_{4}(a)=\left(\left[\begin{array}{ll}
4 & 1 \\
1 & 3
\end{array}\right], w^{3}\right), \varphi_{4}(b)=\left(\left[\begin{array}{ll}
1 & 4 \\
0 & 1
\end{array}\right], w^{3}\right)\left(C_{5}=\langle w\rangle\right) . \tag{4}\\
& \varphi_{5}: G(3 ; 5) \simeq \boldsymbol{S} \boldsymbol{L}\left(2, \boldsymbol{Z}_{5}\right) \times C_{3} ; \varphi_{5}(a)=\left(\left[\begin{array}{ll}
0 & 2 \\
2 & 4
\end{array}\right], w^{2}\right), \varphi_{5}(b)=\left(\left[\begin{array}{ll}
3 & 4 \\
3 & 1
\end{array}\right], w^{2}\right)\left(C_{3}=\langle w\rangle\right) .
\end{align*}
$$

Proof. In this proof, we set $G:=G(e ; q)$ for short. (1) is clear from the definition of $D_{2 q}$.
(2) Set $s=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right], t=\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right] \in \boldsymbol{S L}\left(2, \boldsymbol{Z}_{3}\right) . \quad$ Then we have $s^{3}=1$, sts $=$ tst. \quad Since $\{s, t\}$
generates $\boldsymbol{S L}\left(2, \boldsymbol{Z}_{3}\right)$ we have a surjective homomorphism $\varphi_{2}: \boldsymbol{G} \rightarrow \boldsymbol{S} \boldsymbol{L}\left(2, \boldsymbol{Z}_{3}\right)$ defined by $\varphi_{2}(a)=s, \varphi_{2}(b)=t . \quad$ Since $\operatorname{ord}\left(\operatorname{SL}\left(2, Z_{3}\right)\right)=24$, it is enough to show $\operatorname{ord}(G)=24$.

Consider the following exact sequence

$$
1 \rightarrow G^{\prime} \rightarrow G \underset{f}{G} C_{3} \rightarrow 1
$$

where $f(a)=f(b)=w, C_{3}=\langle w\rangle$, and G^{\prime} is the commutator subgroup of G. We take $U:=\left\{1, a, a^{2}\right\}$ as a Schreier transveral for G^{\prime} in G. Then the $B \hat{R}$ and $B \hat{S}$ tables for G^{\prime} are given as follows:

Table 3

	a	b	$a b a b^{-1} a^{-1} b^{-1}$	a^{3}
1	1	$b a^{-1}$	$a b a b^{-1} a^{-1} b^{-1}$	a^{3}
a	1	$a b a^{-2}$	$a^{2} b a b^{-1} a^{-1} b^{-1} a^{-1}$	a^{3}
a^{2}	a^{3}	$a^{2} b$	$a^{3} b a b^{-1} a^{-1} b^{-1} a^{-2}$	a^{3}

Table 4

-	c_{2}	$c_{3} c_{1} c_{4}^{-1} c_{2}^{-1}$	c_{1}
-	c_{3}	$c_{4} c_{2}^{-1} c_{1}^{-1} c_{3}^{-1}$	c_{1}
c_{1}	c_{4}	$c_{1} c_{2} c_{3}^{-1} c_{4}^{-1}$	c_{1}

Hence $G^{\prime} \simeq\left\langle c_{i}(1 \leq i \leq 4)\right|$ six relations in the $B \hat{S}$-table $\rangle \simeq\left\langle c_{2}, c_{3}\right| c_{3}=c_{2} c_{3} c_{2}$, $\left.c_{2}=c_{3} c_{2} c_{3}\right\rangle$, which is isomorphic to Q_{8} by the correspondence $c_{2} \rightarrow x, c_{3} \rightarrow y$. Thus $\operatorname{ord}\left(G^{\prime}\right)=8$ so that $\operatorname{ord}(G)=24$.
(3) We take a Schreier transversal $U:=\left\{1, a, a^{2}, a^{3}\right\}$ for G^{\prime} in G. The $B \hat{R}$ - and $B \hat{S}$-tables are given as follows:

Table 5

	a	b	$a b a b^{-1} a^{-1} b^{-1}$	a^{4}
1	1	$b a^{-1}$	$a b a b^{-1} a^{-1} b^{-1}$	a^{4}
a	1	$a b a^{-2}$	$a^{2} b a b^{-1} a^{-1} b^{-1} a^{-1}$	a^{4}
a^{2}	1	$a^{2} b a^{-3}$	$a^{3} b a b^{-1} a^{-1} b^{-1} a^{-2}$	a^{4}
a^{3}	a^{4}	$a^{3} b$	$a^{4} b a b^{-1} a^{-1} b^{-1} a^{-3}$	a^{4}

Table 6

-	c_{2}	$c_{3} c_{4}^{-1} c_{2}^{-1}$	c_{1}
-	c_{3}	$c_{4} c_{1} c_{5}^{-1} c_{3}^{-1}$	c_{1}
-	c_{4}	$c_{5} c_{2}^{-1} c_{1}^{-1} c_{4}^{-1}$	c_{1}
c_{1}	c_{5}	$c_{1} c_{2} c_{3}^{-1} c_{5}^{-1}$	c_{1}

Hence $G^{\prime} \simeq\left\langle c_{i}(1 \leq i \leq 5)\right|$ eight relations in the $B \hat{S}$-table $\rangle \simeq\left\langle c_{2}, c_{4}\right| c_{2}=c_{4} c_{2}^{2} c_{4}$, $\left.c_{4}=c_{2} c_{4}^{2} c_{2}\right\rangle$. Next, we take $U:=:\left\{1, c_{2}, c_{2}^{2}\right\}$ as a Schreier transversal for $\left(G^{\prime}\right)^{\prime}$ in G^{\prime} and the $B \hat{R}$ - and $B \hat{S}$-tables are given as follows: (we set $c_{2}=p, c_{4}=q$ in the $B \hat{R}$-table)

Table 7

	p	q	$p q^{2} p q^{-1}$	$q p^{2} q p^{-1}$
1	1	$q p^{-1}$	$p q^{2} p q^{-1}$	$q p^{2} q p^{-1}$
p	q	$p q p^{-2}$	$p^{2} q^{2} p q^{-1} p^{-1}$	$p q p^{2} q p^{-2}$
p^{2}	p^{3}	$p^{2} q$	$p^{3} q^{2} p q^{-1} p^{-2}$	$p^{2} q p^{2} q p^{-3}$

Table 8

-	d_{2}	$d_{3} d_{d} d_{2}^{-1}$	$d_{2} d_{1} d_{2}$
-	d_{3}	$d_{4} d_{2} d_{3}^{-1}$	$d_{3} d_{1} d_{3}$
d_{1}	d_{4}	$d_{1} d_{2} d_{3} d_{1} d_{4}^{-1}$	$d_{4}^{d_{4} d_{1}^{-1}}$

Hence $\left(G^{\prime}\right)^{\prime} \simeq\left\langle d_{i}(1 \leq i \leq 4)\right|$ six relations in the $B \hat{S}$-table $\rangle \simeq\left\langle d_{3}, d_{4}\right| d_{3}^{2} d_{4}^{2}=1$, $\left.d_{3}=d_{4} d_{3} d_{4}\right\rangle$, which is isomorphic to Q_{8} by the correspondence $d_{3} \rightarrow x, d_{4} \rightarrow y$. We have $c_{2}{ }^{3}=d_{4}{ }^{2} \in\left(G^{\prime}\right)^{\prime} \simeq Q_{8}$ and hence $\operatorname{ord}\left(c_{2}\right)=6$. Set $H:=:\left\langle c_{2}{ }^{2}\right\rangle \simeq C_{3}$. Then $G^{\prime}=\left(G^{\prime}\right)^{\prime} \bowtie H \simeq Q_{8} \ltimes C_{\alpha}$, where $\alpha: C_{3}=\langle t\rangle \rightarrow \operatorname{Aut}\left(Q_{8}\right)$ is given by $\alpha(t)(x)=x^{t}=y x^{2}$ and $\alpha(t)(y)=y^{t}=y x$ since $c_{2}^{-2} d_{3} c_{2}^{2}=d_{4}^{-1}$ and $c_{2}^{-2} d_{4} c_{2}^{2}=d_{3} d_{4}^{3}$. If we set $L:=\langle a\rangle \subset G$, then $L \simeq C_{4}$ and $G=G^{\prime} \ltimes L \simeq\left(Q_{8} \ltimes C_{\alpha}\right) \underset{\beta}{\propto} C_{4}$, where $\beta: C_{4}=\langle s\rangle \rightarrow \operatorname{Aut}\left(Q_{8} \ltimes_{\alpha} C_{3}\right)$ is given by $t^{s}=t^{2} \cdot y x^{3}, x^{s}=x, y^{s}=y x . \quad a \in G$ corresponds to $s \cdot 1 \cdot 1 \in\left(Q_{8} \bowtie C_{3}\right) \bowtie C_{4}$, and b to $s \cdot t \cdot x$ under this isomorphism.

Next, we show $\boldsymbol{S L}\left(2, \boldsymbol{Z}_{3}\right) \simeq Q_{8}{\underset{\alpha}{\alpha}}^{\alpha} C_{3} . \quad$ Set $X:=\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right], Y:=\left[\begin{array}{ll}0 & 1 \\ 2 & 0\end{array}\right], T:=\left[\begin{array}{ll}2 & 2 \\ 1 & 0\end{array}\right]$ $\in S L\left(2, Z_{3}\right)$. Then we have $Y^{2}=X^{2}, X^{4}=1, Y^{-1} X Y=X^{-1}$ and $\{X, Y\}$ generates
a subgroup N isomorphic to Q_{8}. We also have $\operatorname{ord}(T)=3$ and set $M:=\langle T\rangle$. Then $S L\left(2, Z_{3}\right)=N \ltimes M \simeq Q_{8} \underset{\alpha}{\ltimes} C_{3}$ since $T^{-1} X T=Y X^{2}, T^{-1} Y T=Y X$. Hence $G \simeq$ $\boldsymbol{S L}\left(2, Z_{3}\right) \underset{\gamma}{\propto} C_{4}$, where $\gamma: C_{4}=\langle s\rangle \rightarrow \operatorname{Aut}\left(S L\left(2, Z_{3}\right)\right)$ is given by $X^{s}=X, \quad Y^{s}=Y X$, $T^{s}=T^{2} Y X^{3} . \quad a \in G$ corresponds to $s \cdot I_{2}$ and b to $s \cdot\left[\begin{array}{ll}0 & 1 \\ 2 & 1\end{array}\right]$.
(4) We have $G^{a b} \simeq C_{5}$ and take $U=\left\{1, a, a^{2}, a^{3}, a^{4}\right\}$ as a Schreier transversal for G^{\prime} in G. Then the $B \hat{R}$ - and $B \hat{S}$-tables are given as follows:

Table 9

	a	b	$a b a b^{-1} a^{-1} b^{-1}$	a^{5}
1	1	$b a^{-1}$	$a b a b^{-1} a^{-1} b^{-1}$	a^{5}
a	1	$a b a^{-2}$	$a^{2} b a b^{-1} a^{-1} b^{-1} a^{-1}$	a^{5}
a^{2}	1	$a^{2} b a^{-3}$	$a^{3} b a b^{-1} a^{-1} b^{-1} a^{-2}$	a^{5}
a^{3}	1	$a^{3} b a^{-4}$	$a^{4} b a b^{-1} a^{-1} b^{-1} a^{-3}$	a^{5}
a^{4}	a^{5}	$a^{4} b$	$a^{5} b a b^{-1} a^{-1} b^{-1} a^{-4}$	a^{5}

Table 10

-	c_{2}	$c_{3} c_{4}^{-1} c_{2}^{-1}$	c_{1}
-	c_{3}	$c_{4} c_{5}^{-1} c_{3}^{-1}$	c_{1}
-	c_{4}	$c_{5} c_{1} c_{6}^{-1} c_{4}^{-1}$	c_{1}
-	c_{5}	$c_{6} c_{2} c_{1}^{-1} c_{5}^{-1}$	c_{1}
c_{1}	c_{6}	$c_{1} c_{2} c_{3}^{-1} c_{6}^{-1}$	c_{1}

Hence $G^{\prime} \simeq\left\langle c_{i}(1 \leq i \leq 6)\right|$ ten relations in the $B \hat{S}$-table $\rangle \simeq\left\langle c_{2}, c_{4}\right| c_{4} c_{2}^{2} c_{4}=c_{2} c_{4} c_{2}$, $\left.c_{4}^{-1} c_{2}^{-1} c_{4}=c_{2}^{-1} c_{4} c_{2}\right\rangle$. Now, if we set $d_{2}=\left[\begin{array}{ll}4 & 0 \\ 4 & 4\end{array}\right], d_{4}=\left[\begin{array}{ll}4 & 4 \\ 0 & 4\end{array}\right] \in \boldsymbol{S} \boldsymbol{L}\left(2, \boldsymbol{Z}_{5}\right)$, then we have $d_{4} d_{2}^{2} d_{4}=d_{2} d_{4} d_{2}$ and $d_{4}^{-1} d_{2}^{-1} d_{4}=d_{2}^{-1} d_{4} d_{2}$. Since $\left\{d_{2}, d_{4}\right\}$ generates $\operatorname{SL}\left(2, Z_{5}\right)$, we have a surjective homomorphism $F: G^{\prime} \rightarrow \boldsymbol{S L}\left(2, \boldsymbol{Z}_{5}\right)$ defined by $F\left(c_{i}\right)=d_{i}$ ($i=2,4$). By applying the same argument as in the case (5) in Remark 2.7 below, we find $G^{\prime} \simeq \boldsymbol{S L}\left(2, Z_{5}\right)$ and hence F is an isomorphism.

Next, we show $G \simeq \boldsymbol{S L}\left(2, \boldsymbol{Z}_{5}\right) \times C_{5}$. Set $x:=\mathrm{aba} \in G$. Then $x^{10} \in G^{\prime}$ and we have $x^{10}=(a b)^{15}=\left(c_{3} c_{5} c_{1} c_{2} c_{4} c_{6}\right)^{3}=\left(c_{4}^{2} c_{2}\right)^{3} \quad$ which corresponds to $\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$ $\in \boldsymbol{S L}\left(2, \boldsymbol{Z}_{5}\right)$. Hence we have $\operatorname{ord}(x)=20$. If we set $w:=x^{4}$, then $\operatorname{ord}(w)=5$ and w
belongs to the center of G. Since $\left\{w^{i} \mid 0 \leq i \leq 4\right\}$ is a transversal for G^{\prime} in G, we conclude $G \simeq \boldsymbol{S L}\left(2, \boldsymbol{Z}_{5}\right) \times C_{5}$. We have $G^{\prime} \ni w^{2} a=\left(c_{4}^{2} c_{2}\right)^{2} c_{4}$ which corresponds to $\left[\begin{array}{ll}4 & 1 \\ 1 & 3\end{array}\right] \in \boldsymbol{S L}\left(2, \boldsymbol{Z}_{5}\right)$. Hence $a \in G$ corresponds to $\left(\left[\begin{array}{ll}4 & 1 \\ 1 & 3\end{array}\right], w^{3}\right) \in \boldsymbol{S} \boldsymbol{L}\left(2, \boldsymbol{Z}_{5}\right) \times C_{5}$, where $C_{5}=\langle w\rangle$. Similarly, $b \in G$ corresponds to $\left(\left[\begin{array}{ll}1 & 4 \\ 0 & 1\end{array}\right], w^{3}\right) \in \boldsymbol{S L}\left(2, \boldsymbol{Z}_{5}\right) \times C_{5}$.
(5) Similar to (4). We give some data for convenience. The $B \hat{R}$ - and $B \hat{S}$-tables for G^{\prime} in G are given as follows:

Table 11

	a	b	$a b a b a b^{-1} a^{-1} b^{-1} a^{-1} b^{-1}$	a^{3}	b^{3}
1	1	$b a^{-1}$	$a b a b a b^{-1} a^{-1} b^{-1} a^{-1} b^{-1}$	a^{3}	b^{3}
a	1	$a b a^{-2}$	$a^{2} b a b a b^{-1} a^{-1} b^{-1} a^{-1} b^{-1} a^{-1}$	a^{3}	$a b^{3} a^{-1}$
a^{2}	a^{3}	$a^{2} b$	$a^{3} b a b a b^{-1} a^{-1} b^{-1} a^{-1} b^{-1} a^{-2}$	a^{3}	$a^{2} b^{3} a^{-2}$

Table 12

-	c_{2}	$c_{3} c_{1} c_{2} c_{3}^{-1} c_{4}^{-1} c_{2}^{-1}$	c_{1}	$c_{2} c_{3} c_{4}$
-	c_{3}	$c_{4} c_{3} c_{1} c_{4}^{-1} c_{2}^{-1} c_{1}^{-1} c_{3}^{-1}$	c_{1}	$c_{3} c_{4} c_{2}$
c_{1}	c_{4}	$c_{1} c_{2} c_{4} c_{2}^{-1} c_{1}^{-1} c_{3}^{-1} c_{4}^{-1}$	c_{1}	$c_{4} c_{2} c_{3}$

$$
\begin{aligned}
G^{\prime} & \left.\simeq\left\langle c_{i}(1 \leq i \leq 4)\right| \text { nine relations in the } B \hat{S} \text {-table }\right\rangle \\
& \simeq\left\langle c_{2}, c_{3} \mid c_{2} c_{3}^{2} c_{2}=c_{3} c_{2} c_{3}, c_{3} c_{2}^{2} c_{3}=c_{2} c_{3} c_{2}\right\rangle \\
& \simeq \boldsymbol{S L}\left(2, Z_{5}\right),
\end{aligned}
$$

where c_{2} corresponds to $\left[\begin{array}{ll}4 & 4 \\ 0 & 4\end{array}\right]$ and c_{3} to $\left[\begin{array}{ll}4 & 0 \\ 4 & 4\end{array}\right]$. We have $\boldsymbol{G}=\boldsymbol{G}^{\prime} \times\langle w\rangle \simeq \boldsymbol{S} \boldsymbol{L}\left(2, \boldsymbol{Z}_{5}\right)$ $\times C_{3}$, where $w=(a b a b a)^{4} \in G \quad(\operatorname{ord}(a b a b a)=12) . \quad a \in G$ corresponds to $\left(\left[\begin{array}{ll}0 & 2 \\ 2 & 4\end{array}\right]\right.$, $\left.w^{2}\right) \in \boldsymbol{S L}\left(2, \boldsymbol{Z}_{5}\right)$ and $b \in G$ to $\left(\left[\begin{array}{ll}3 & 4 \\ 3 & 1\end{array}\right], w^{2}\right)$.

Remark 2.7. By Corollary 1.5, there exists the maximal Galois covering $\pi: X\left(C^{2}, e B_{q}\right) \rightarrow C^{2}$ in the five cases above. We have $X\left(C^{2}, e B_{q}\right) \simeq C^{2}$ in these cases. Since the cases (2),(3),(4) are studied in Namba [3;p.50], we briefly discuss the remaining two cases. In the case (1), the maximal Galois covering $\pi_{1}: C^{2} \rightarrow \boldsymbol{C}^{2}$
of $\left(C^{2}, 2 B_{q}\right)$ is given by $(v, w)=\pi_{1}((s, t))=\left(s t,(1 / 2)\left(s^{q}+t^{q}\right)\right)$. Indeed, if we set $N=\left\{(x, y, z) \in C^{3} \mid x y=z^{q}\right\}$ and $M=\left\{(u, v, w) \in C^{3} \mid w^{2}-u^{2}=v^{q}\right\}$, then π_{1} is decomposed as $\pi_{1}=f \circ g \circ h$, where $C^{2} \rightarrow N \leftrightharpoons M \rightarrow C^{2}$, and f, g, h are defined as follows: $h((s, t))=\left(s^{q}, t^{q}, s t\right), g((x, y, z))=((1 / 2)(x-y), z,(1 / 2)(x+y))$, and $f((u, v, w))=(v, w)$. Since h is unramified outside $(0,0,0) \in N$ and f branches at $2 B_{q}$, we conclude that π_{1} is a covering which branches at $2 B_{q}$. It is easy to see that $G_{\pi_{1}}$ is isomorphic to $D_{2 q}$ and generated by $\sigma, \tau \in \operatorname{Aut}\left(C^{2}\right)$, where $\sigma((s, t)):=\left(\zeta s, \zeta^{-1} t\right)\left(\zeta:=e^{2 \pi \sqrt{-1} / q}\right)$ and $\tau((s, t)):=(t, s)$. Hence we conclude that π_{1} is the maximal Galois covering of $\left(\boldsymbol{C}^{2}\right.$, $2 B_{q}$). In the case (5), let $G: \boldsymbol{C}^{2} \rightarrow \boldsymbol{C}^{2} / \boldsymbol{S L}\left(2, Z_{5}\right) \simeq L:=\left\{(u, v, w) \in \boldsymbol{C}^{2} \mid u^{3}+v^{5}-w^{2}=0\right\}$ be the quotient map giving the binary icosahedral kleinian singularity (cf. Pinkham [4]), and define $F: L \rightarrow C^{2}$ by $\left.F(u, v, w)\right)=(v, w)$. Then $\pi_{5}:=F \circ G: C^{2} \rightarrow C^{2}$ is a covering which branches at $3 B_{5}$. Since $C^{2}-\pi_{5}^{-1}((0,0))=C^{2}-\{(0,0)\}$ is simplyconnected, π_{5} is the maximal Galois covering of $\left(C^{2}, 3 B_{5}\right)$ by Namba [3; Corollary 1.3.12]. We also find that the maximal Galois group $G\left(C^{2}, 3 B_{5}\right) \simeq G_{\pi 5}$ is an extension of $\boldsymbol{S L}\left(2, \boldsymbol{Z}_{5}\right)$ by C_{3} by this geometric argument without group-theoretic computation.

In the case where $G(e ; q)$ is an infinite group, to determine whether $G(e ; q)$ is solvable or not is a fundamental problem in the Galois theory of branched coverings. As for this, we have the following result:

Theorem 2.8. $G(e ; q)^{\prime}=\left(G(e ; q)^{\prime}\right)^{\prime}$ if and only if e is odd and $\operatorname{GCD}(e, q)=1$.
Proof. We set $G=G(e ; q)$ and $G(e ; q)^{\prime}=N$ for short. According to Johnson [2; Chapter 12], let $F(X)$ be a free group generated by $X=\{S, T\}$ and $J:=$ $\left[\begin{array}{l}\frac{\partial S e}{\partial S} \\ \frac{\partial w}{\partial S} \frac{\partial w}{\partial T} \\ \frac{\partial w}{\partial T}\end{array}\right] \in M_{2}(Z[F(X)])$ be the jacobian of G, where $w=\underbrace{S T S \cdots S}_{q} \underbrace{T^{-1} S^{-1} \cdots T^{-1}}_{q}$ $\in F(X)$ and $\frac{\partial}{\partial S}, \frac{\partial}{\partial T}$ are the Fox derivations. Let $F(X) \underset{\phi}{\rightarrow} \underset{\psi}{q} G / N \simeq C_{e}=\langle s\rangle$ are the natural surjections and we denote by the same symbol the map $M_{2}(Z[F(X)]) \underset{\phi}{\rightarrow} M_{2}(Z[G]) \underset{\psi}{\rightarrow} M_{2}\left(Z\left[C_{e}\right]\right)$ induced by them. We set $D:=\mu \circ \psi \circ \phi(J) \in$ $M_{2 e}(Z)$, where $\mu: Z\left[C_{e}\right] \rightarrow M_{e}(Z)$ (or $\mu: M_{2}\left(Z\left[C_{e}\right]\right) \rightarrow M_{2 e}(Z)$) is the blowing-up map (cf. Johnson [2;12.1]).

Now, we have

$$
\psi \circ \phi(J)=\left[\begin{array}{cc}
e+s+s^{2}+\cdots+s^{e-1} & 0 \\
s^{-2}+s^{-4}+\cdots+s^{-(q-1)} & s^{-1}+s^{-3}+\cdots+s^{-q} \\
-s^{-1}-s^{-3}-\cdots-s^{-q} & -s^{-2}-s^{-4}-\cdots-s^{-(q-1)}
\end{array}\right]
$$

which is equivalent to

$$
L:=\left[\begin{array}{cc}
e+s+s^{2}+\cdots+s^{e-1} & 0 \\
0 & s^{-1}+s^{-3}+\cdots+s^{-q}-s^{-2}-s^{-4}-\cdots-s^{-(q-1)}
\end{array}\right]
$$

Here we say that two matrices are equivalent if they can be transformed to each other by elementary transformations.

We have $\mu\left(\sum_{i=0}^{e-1} s^{i}\right)=\left[\begin{array}{cccc}1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & & \\ 1 & 1 \cdots & 1\end{array}\right] \in M_{e}(Z)$, which is equivalent to $\left[\begin{array}{cccc}1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & & & \\ 0 & 0 & \cdots & 0\end{array}\right]$. Since $N / N^{\prime} \times \boldsymbol{Z}^{e-1} \simeq \boldsymbol{Z}^{2 e} / \operatorname{Im} \mu(L) \quad$ (Johnson [2;Proposition 1, p 161]), we conclude $N=N^{\prime}$ if and only if e is odd and $\operatorname{GCD}(e, q)=1$ by the following lemma.

Lemma 2.9. For an odd integer $q \geq 3$, set $z:=\sum_{i=1}^{q}(-1)^{i-1} s^{-i} \in Z\left[C_{e}\right], C_{e}=$ $\langle s\rangle . \quad$ Then z is a unit in $Z\left[C_{e}\right]$ if and only if e is odd and $\operatorname{GCD}(e, q)=1$.

Proof. We identify $Z\left[C_{e}\right]$ with $A:=Z[x] /\left(x^{e}-1\right)$, where s^{-1} corresponds to the coset \bar{x} of x. Since \bar{x} is a unit in A, we show $\bar{z}=\sum_{i=0}^{q-1}(-1)^{i} \bar{x}^{i} \in A$ is a unit if and only if e is odd and $\operatorname{GCD}(e, q)=1$. Now, assume e is even. If there exist $F(x), G(x) \in Z[x]$ such that $\left(\sum_{i=0}^{q-1}(-1)^{i} x^{i}\right) F(x)+\left(x^{e}-1\right) G(x)=1$ in $Z[x]$, then we have $q F(-1)=1$ by setting $x=-1$, contradiction. Assume that e is odd and $\operatorname{GCD}(e, q)$ $=1$. By replacing x with $-x$, we may assume that $\bar{z}=\sum_{i=0}^{q-1} \bar{x}^{i} \in B:=Z[x] /\left(x^{e}+1\right)$. Since $\operatorname{GCD}(2 e, q)=1$, there exist $P(x), Q(x) \in Z[x]$ such that $\left(x^{q}-1\right) P(x)+\left(x^{2 e}-1\right) Q(x)$ $=x-1$ by the Euclidian division algorithm. Thus $\left(\sum_{i=0}^{q-1} x^{i}\right) P(x)+\left(x^{e}+1\right)\left(\sum_{i=0}^{e-1} x^{i}\right) Q(x)$ $=1$ and hence $\bar{z} \in B$ is a unit. Assume that e is odd and $\operatorname{GCD}(e, q)=d>1$. Since $\sum_{i=0}^{d-1} \bar{x}^{i}$ divides $\sum_{i=0}^{q-1} \bar{x}^{i}$ in B, it is enough to show $\sum_{i=0}^{d-1} \bar{x}^{i}$ is a non-unit in B. Suppose
that there exist $f(x), g(x) \in Z[x]$ such that

$$
\begin{equation*}
f(x)\left(x^{e}+1\right)+g(x)\left(\sum_{i=0}^{d-1} x^{i}\right)=1 \tag{1}
\end{equation*}
$$

We have $x^{e}+1=\left(\sum_{i=0}^{d-1} x^{i}\right) h(x)+2$ for some $h(x) \in Z[x]$ by a direct division. By subsitituting this to (1), we obtain

$$
(h(x) f(x)+g(x))\left(\sum_{i=0}^{d-1} x^{i}\right)+2 f(x)=1 .
$$

Then $\sum_{i=0}^{d-1} x^{i}$ is a unit in $Z_{2}[x]$, contradiction.
Corollary 2.10. If (e, q) is not one of those in Theorem 2.4 and $\operatorname{GCD}(e, q)=1$ with e odd, then $G(e ; q)$ is an infinite unsolvable group.
3. Calculation of $G\left(\boldsymbol{P}^{2}, e \overline{B_{q}}+m l_{\infty}\right)$

Let $G[e, m ; q]:=G\left(\boldsymbol{P}^{2}, e \overline{B_{q}}+m l_{\infty}\right)$ be the maximal Galois group of $\left(\boldsymbol{P}^{2}, e \overline{B_{q}}+m l_{\infty}\right)$, where $\overline{B_{q}}=\left\{\left(x_{0}, x_{1}, x_{2}\right) \in \boldsymbol{P}^{2} \mid x_{0}^{q}=x_{1}^{2} x_{2}^{q-2}\right\}$ and $l_{\infty}=\left\{\left(x_{0}, x_{1}, x_{2}\right) \in \boldsymbol{P}^{2} \mid x_{2}=0\right\}$ (the infinite line $)$. Let δ be a loop around l_{∞} in $\boldsymbol{P}^{2}-\left(\overline{B_{q}} \cup l_{\infty}\right)$ and $[\delta] \in \pi_{1}\left(\boldsymbol{P}^{2}-\left(\overline{B_{q}} \cup l_{\infty}\right)\right)$ $=\pi_{1}\left(\boldsymbol{C}^{2}-B_{q}\right)$ the homotopy class of δ. It is easy to see $\left[\delta^{-1}\right]=[\underbrace{x_{1} x_{2} x_{1} \cdots x_{1}}_{q}]$ $=[\underbrace{x_{2} x_{1} x_{2} \cdots x_{2}}_{q}]$ (cf. Proposition 2.1), and hence we have $G[e, m ; q] \simeq\langle c, a, b|$ $a^{e}=c^{m}=1, \underbrace{a b a \cdots a}_{q}=\underbrace{b a b \cdots b}_{q}=c^{-1}\rangle \simeq G(e ; q) / N<Q^{m}>\quad(Q:=\underbrace{a b a \cdots a}_{q}=\underbrace{b a b \cdots b}_{q})$. The explicit $\begin{gathered}q \\ \text { structure of } G[e, m ; q]\end{gathered} \quad$ for the (e, q) 's given in Theorem 2.4 is as follows:

Proposition 3.1.

(1) $G[2, m ; q] \simeq\left\{\begin{array}{l}D_{2 q} \text { if } m \text { is even } \\ \{1\} \text { if } m \text { is odd }\end{array}\right.$.
(2) $G[3, m ; 3] \simeq \begin{cases}C_{3} & \text { if } m \equiv 1,3(\bmod 4) \\ P S L\left(2, Z_{3}\right) & \text { if } m \equiv 2(\bmod 4) \\ \boldsymbol{S L}\left(2, Z_{3}\right) & \text { if } m \equiv 0(\bmod 4)\end{cases}$
(3) $G[4, m ; 3] \simeq \begin{cases}\{1\} & \text { if } m \equiv 1,3,5,7(\bmod 8) \\ \left(Q_{8} \underset{\alpha}{\ltimes} C_{3}\right) \underset{\beta}{\ltimes} C_{4} /\left\langle s^{2} \cdot 1 \cdot x\right\rangle & \text { if } m \equiv 2,6(\bmod 8) \\ \left(\left(C_{2} \times C_{2}\right) \propto_{\bar{\alpha}} C_{3}\right) \ltimes_{\bar{\beta}} C_{4} & \text { if } m \equiv 4(\bmod 8) \\ G(4 ; 3) & \text { if } m \equiv 0(\bmod 8)\end{cases}$
(4) $G[5, m ; 3] \simeq \begin{cases}\{1\} & \text { if } m \equiv 1,3,7,9,11,13,17,19(\bmod 20) \\ \boldsymbol{P S L}\left(2, \boldsymbol{Z}_{5}\right) & \text { if } m \equiv 2,6,14,18(\bmod 20) \\ \boldsymbol{S L}\left(2, \boldsymbol{Z}_{5}\right) & \text { if } m \equiv 4,8,12,16(\bmod 20) \\ C_{5} & \text { if } m \equiv 5,15(\bmod 20) \\ \boldsymbol{P S L}\left(2, \boldsymbol{Z}_{5}\right) \times C_{5} & \text { if } m \equiv 10(\bmod 20) \\ \boldsymbol{S L}\left(2, \boldsymbol{Z}_{5}\right) \times C_{5} & \text { if } m \equiv 0(\bmod 20)\end{cases}$
$(5) \quad G[3, m ; 5] \simeq \begin{cases}\{1\} & \text { if } m \equiv 1,5,7,11(\bmod 12) \\ \boldsymbol{P S L}\left(2, \boldsymbol{Z}_{5}\right) & \text { if } m \equiv 2,10(\bmod 12) \\ C_{3} & \text { if } m \equiv 3,9(\bmod 12) \\ \boldsymbol{S L}\left(2, \boldsymbol{Z}_{5}\right) & \text { if } m \equiv 4,8(\bmod 12) \\ \boldsymbol{P S L}\left(2, \boldsymbol{Z}_{5}\right) \times C_{3} & \text { if } m \equiv 6(\bmod 12) \\ \boldsymbol{S L}\left(2, \boldsymbol{Z}_{5}\right) \times C_{3} & \text { if } m \equiv 0(\bmod 12)\end{cases}$
Proof. (1) We have $G[2, m ; q] \simeq\left\langle b, d \mid b^{2}=d^{q}=1, b^{-1} d b=d^{-1}\right\rangle / N\left\langle x^{m}\right\rangle$, where $x=b d^{(q-1) / 2}$, by setting $d=a b$. Since $\operatorname{ord}(x)=2$, we have $G[2, m ; q] \simeq D_{2 q}$ if m is even. If m is odd, then $N\left\langle x^{m}\right\rangle=D_{2 q}$ and hence $G[2, m ; q]=\{1\}$.
(2) We have $\operatorname{ord}(Q)=4$ since $\varphi_{2}(Q)=\varphi_{2}(a b a)=\left[\begin{array}{ll}0 & 1 \\ 2 & 0\end{array}\right] \in \boldsymbol{S} \boldsymbol{L}\left(2, \boldsymbol{Z}_{3}\right)$ (cf. Theorem 2.6). If $m \equiv 1,3(\bmod 4)$, then $G[2, m ; q] \simeq\left\langle a, b \mid a^{3}=1, a b a=b a b=1\right\rangle \simeq\left\langle a \mid a^{3}=1\right\rangle$ $\simeq C_{3}$. If $m \equiv 2(\bmod 4)$, then $G[3, m ; q] \simeq G(3 ; 3) / N\left\langle Q^{2}\right\rangle \simeq \boldsymbol{S L}\left(2, Z_{3}\right) /\left\{ \pm I_{2}\right\} \simeq$ $\boldsymbol{P S L}\left(2, \boldsymbol{Z}_{3}\right)$. If $m \equiv 0(\bmod 4)$, then $G[3, m ; q] \simeq G(3 ; 3) \simeq \boldsymbol{S L}\left(2, \boldsymbol{Z}_{3}\right)$.
(3) We have $\varphi_{3}(Q)=s^{3} \cdot t^{2} \cdot y \in\left(Q_{8} \ltimes_{\alpha} C_{3}\right) \ltimes{ }_{\beta} C_{4}$, and hence $\operatorname{ord}(Q)=8$. If $m \equiv 1,3,5,7$ $(\bmod 8)$, then $G[4, m ; 3] \simeq\left\langle a, b \mid a^{4}=a b a=b a b=1\right\rangle \simeq\{1\}$. If $m \equiv 2,6(\bmod 8)$, then $\varphi_{3}\left(Q^{2}\right)=s^{2} \cdot 1 \cdot x$ and hence $G[4, m ; 3] \simeq\left(Q_{8} \ltimes C_{3}\right) \underset{\beta}{\ltimes} C_{4} /\left\langle s^{2} \cdot 1 \cdot x\right\rangle$. If $m \equiv 4(\bmod$ 8), then $\varphi_{3}\left(Q^{4}\right)=1 \cdot 1 \cdot x^{2}$ and hence $G[4, m ; 3] \simeq\left(\left(C_{2} \times C_{2}\right) \underset{\bar{\alpha}}{\ltimes} C_{3}\right) \underset{\bar{\beta}}{\underset{\alpha}{~}} C_{4}$, where $\bar{\alpha}, \bar{\beta}$ are the homomorphisms induced by α, β. If $m \equiv 0(\bmod 8)$, then $G[4, m ; 3] \simeq G(4 ; 3)$.
(4) We have $\varphi_{4}(Q)=\left(\left[\begin{array}{ll}3 & 0 \\ 1 & 2\end{array}\right], w^{4}\right) \in \boldsymbol{S} \boldsymbol{L}\left(2, \boldsymbol{Z}_{5}\right) \times C_{5}$ so that $\operatorname{ord}(Q)=20$. If $m \equiv 1,3,7$, $9,11,13,17,19(\bmod 20)$, then $G[5, m ; 3] \simeq\left\langle a, b \mid a^{5}=1, a b a=b a b=1\right\rangle \simeq\left\langle a \mid a^{5}=a^{-3}=1\right\rangle$ $\simeq\{1\}$. If $m \equiv 2,6,14,18(\bmod 20)$, then $G[5, m ; 3] \simeq \boldsymbol{S L}\left(2, \boldsymbol{Z}_{5}\right) \times C_{5} /\left\{ \pm I_{2}\right\} \times C_{5} \simeq$
$\boldsymbol{P S L}\left(2, \boldsymbol{Z}_{5}\right)$. If $m \equiv 4,8,12,16(\bmod 20)$, then $G[5, m ; 3] \simeq \boldsymbol{S L}\left(2, \boldsymbol{Z}_{5}\right) \times C_{5} / C_{5} \simeq \boldsymbol{S L}\left(2, \boldsymbol{Z}_{5}\right)$. If $m \equiv 5,15(\bmod 20)$, then we have $\varphi_{4}\left(Q^{5}\right)=\left(\left[\begin{array}{ll}3 & 0 \\ 1 & 2\end{array}\right], 1\right)$. Hence $G[5, m ; 3] \simeq C_{5}$ since $N\left\langle\left[\begin{array}{ll}3 & 0 \\ 1 & 2\end{array}\right]\right\rangle=\boldsymbol{S} \boldsymbol{L}\left(2, \boldsymbol{Z}_{5}\right) . \quad$ If $m \equiv 10(\bmod 20)$, then we have $\varphi_{4}\left(Q^{10}\right)=\left(\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right], 1\right)$ so that $G[5, m ; 3] \simeq \boldsymbol{P S L}\left(2, \boldsymbol{Z}_{5}\right) \times C_{5}$. If $m \equiv 0(\bmod 20)$, then $G[5, m ; 3] \simeq G(5 ; 3) \simeq$ $\boldsymbol{S L}\left(2, \boldsymbol{Z}_{5}\right) \times C_{5}$.
(5) We have $\varphi_{5}(Q)=\left(\left[\begin{array}{ll}2 & 3 \\ 0 & 3\end{array}\right], s\right)$ and the rest is similar to (4).

Remark 3.2. In the case (3), $G[4, m ; 3](m \equiv 2,6(\bmod 8))$ is isomorphic to the symmetric group S_{4} of degree 4 (cf. Namba [3;p.50]).

Corollary 3.3. Suppose that (e, q) is one of those given in Theorem 2.4 and let $D=e \overline{B_{q}}+m l_{\infty}$. Then there exists the maximal covering $\pi: X\left(\boldsymbol{P}^{2}, D\right) \rightarrow \boldsymbol{P}^{2}$ if and only if (1) $m=2$ in the case where $(e, q)=(2, q)(q: o d d)$,
(2) $m=1,2,4$ in the case where $(e, q)=(3,3)$,
(3) $m=2,4,8$ in the case where $(e, q)=(4,3)$,
(4) $m=2,4,5,10,20$ in the case where $(e, q)=(5,3)$,
(5) $m=2,3,4,6,12$ in the case where $(e, q)=(3,5)$.

In these cases, the Galois group G_{π} of π is isomorphic to $G[e, m ; q]$.
Proof. Since $\operatorname{ord}(a)=2$ and $\operatorname{ord}(Q)=2$ in $G[2, m ; q] \simeq D_{2 q}$ (m : even), (1) follows from Corollary 1.5. By calculating $\operatorname{ord}(a)$ and $\operatorname{ord}(Q)$ using Theorem 2.6 and Proposition 3.1, the other assertions follow from Corollary 1.5 similarly.

Let $S(e, m ; q)=X\left(\boldsymbol{P}^{2}, e \overline{B_{q}}+m l_{\infty}\right)$ be the maximal Galois covering for the $(e, m ; q)$'s given in Corollary 3.3. Then $S(e, m ; q)$ is a normal projective irreducible rational surface since it is a compactification of $\boldsymbol{C}^{2} /$ finite group. One of the singularities of $S(e, m ; q)$ lies over $(0,0,1)$, which is a quotient singularity. To detemine the structure of $S(e, m ; q)$ (especially the singularities lying over ($0,1,0$) will be an interesting poblem, which will be discussed elsewhere. We give a list of $S(e, m ; q)$ and $G[e, m ; q]$ for convenience.

Table 13

$S(e, m ; q)$	$S(2,2 ; q)$
$G[e, m ; q]$	$D_{2 q}$

$S(3,1 ; 3)$	$S(3,2 ; 3)$	$S(3,4 ; 3)$
C_{3}	$P S L\left(2, Z_{3}\right)$	$S L\left(2, Z_{3}\right)$

$S(4,2 ; 3)$	$S(4,4 ; 3)$	$S(4,8 ; 3)$
S_{4}	$\left(\left(C_{2} \times C_{2}\right) \bowtie C_{3}\right) \bowtie C_{4}$	$\left(Q_{8} \bowtie C_{3}\right) \bowtie C_{4}$

$\mathrm{S}(5,2 ; 3)$	$\mathrm{S}(5,4 ; 3)$	$\mathrm{S}(5,5 ; 3)$	$\mathrm{S}(5,10 ; 3)$	$\mathrm{S}(5,20 ; 3)$
$\boldsymbol{P S L}\left(2, \boldsymbol{Z}_{5}\right)$	$\boldsymbol{S L}\left(2, \boldsymbol{Z}_{5}\right)$	C_{5}	$\boldsymbol{P S L}\left(2, Z_{5}\right) \times C_{5}$	$\boldsymbol{S L}\left(2, Z_{5}\right) \times C_{5}$

$S(3,2 ; 5)$	$S(3,3 ; 5)$	$S(3,4 ; 5)$	$S(3,6 ; 5)$	$S(3,12 ; 5)$
$\boldsymbol{P S L}\left(2, \boldsymbol{Z}_{5}\right)$	C_{3}	$\boldsymbol{S L}\left(2, Z_{5}\right)$	$\boldsymbol{P S L}\left(2, \boldsymbol{Z}_{5}\right) \times C_{3}$	$\boldsymbol{S L}\left(2, \boldsymbol{Z}_{5}\right) \times C_{3}$

References

[1] H.S.M. Coxeter and W.O.J. Moser: Generators and relations for discrete groups (third edition), Springer-Verlag, Berlin-Heidelberg-New York, 1972.
[2] D.L. Johnson: Presentations of Groups, London Math. Soc. Student Texts 15, Cambridge Univ. Press, Cambridge-New York-Port Chester-Melbourne-Sydney, 1990.
[3] M. Namba: Branched coverings and algebraic functions, Pitman Research Notes in Math. Series 161, Longman Scientific and Technical, Harlow-New York, 1987.
[4] H. Pinkham: Singularités de Klein I, II, in Séminaire sur les Singularités des Surfaces, Springer Lec. Notes 777, Springer-Verlag, Berlin-Heidelberg-New York, 1980, 1-20.
[5] J. Stillwell: Classical Topology and Combinatorial Group Theory (second edition), GTM 72, Springer-Verlag, New York-Berlin-Heidelberg, 1993.
[6] K. Tamai: On the Galois coverings of \boldsymbol{C}^{2} with branch locus $w^{2}=v^{q}$ (in Japanese), Master Thesis, Tokyo Denki Univ., 1994.

Department of Mathematical Sciences College of Science and Engineering Tokyo Denki University Hatoyama, Hiki-gun, Saitama-ken 350-03 Japan

