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Let F be an algebraically closed field of prime characteristic p, let G be a
finite group, and let H be a normal subgroup of G such that G/H is a

^-group. Moreover, let B be a block of the group algebra FH of H over F.

By Osima's theorem, there is a unique block A of FG covering B. We are

interested in the structure of A. As usual, the general case reduces to the special
one where B is (/-stable. Thus we assume in the following that B is G-stable and
denote by P a defect group of A. Then Q\—Pr\H is a defect group of B, and

G = F//(see [3, V]).

If P is abelian then the character theory of A is described in a paper by R.

Knόrr [5]. We are interested in the structure of A as a ring under the additional
hypothesis that Q has a complement in P. We prove that such a splitting of
defect groups implies a splitting of blocks:

Theorem. Let F be an algebraically closed field of prime characteristic p, and

let H be a normal subgroup of a finite group G such that the factor group G/H

is a p-group. Let B be a G-stable block of FH, and let A be the unique block of

FG covering B. Suppose that A has an abelian defect group P and that Q:=PnH

has a complement R in P. Then A and the tensor product FR®FB are isomorphic

F-algebras.

Proof. As observed above, we have G = PH=RH and RnH=\. We consider
the group algebra FG as a crossed product of FH with (?///= R, as usual (see

[6] for crossed products). Since 1A = 1B f°
r tne block idempotents \A and 1B of

A and B, respectively, the block A = 1AFG= 1BFG then becomes a crossed product

of \BFH=B with G/H ^ R.

Arguing by induction on q:=\G:H\ = \R\ we may assume that G/H^R is

cyclic. We write 7? = <r>. Then it suffices to show that the center ZA of A

contains a graded unit x of A of degree r and order q\ for, in that case, we will

have A = Θf'Jx'fl ^ FR®FB.

From the main result in [5], we obtain k(A) = q k(B\ where k(A) is the number

of all irreducible complex characters of G in A. Hence dim ZA = q dim ZB. On

the other hand, ZA is contained in the centralizer CA(B)=:C of B in A which is
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an algebra graded by R, with 1 -component Cί=ZB. We want to show that in
our situation C is a crossed product of ZB with R. Thus we look at the subgroup

of G. This subgroup plays an important role in Dade's theory of block extensions

([1] and [2]).
Let s/ be a root of A in FCG(P). Then *t has defect group P, and a:=,tfCG(Q)

is a well-defined block of FCG(Q) with defect group P. Since a° = A we have

BrQ(lJ1^0, and since CG(0 = CG(0nP//=PCH(0 we have laεFCH(Q) by
Osima's theorem. We choose a block ft of FCH(Q) covered by a such that

BI Q(! B)!* ̂  0. Then b is a block of FCH(Q) with defect group Q such that ftff = B.
Let CG(β)>, NG(0,, NH(0, denote the stabilizers of b in CG(0, NG(0, NH(0,

respectively. Since a is the unique block of FCG(Q) covering b by Osima's theorem,
it follows from Pong's theorems [3, V Theorems 3.12 and 3.14] that P is conjugate

in CG(0 to a subgroup of CG(Q)b. But CG(Q) = PCH(Q\ so P is conjugate in

CH(Q) to a subgroup of CG(β)fc, which means that P c CG(0fc. Thus CG(Q\
= PCH(Q) = CG(Q).

In [2], Dade has defined a natural bilinear map

and shown that G[£] = CG(Q)ωH where

CG(β)ω := {S e CG(0, : ω(NH(Q)b / CH(Q\ gCH(Q)) =

(see [2, (0.3b) and Corollary 12.6]). By definition, CG(0b/CG(0ω is isomorphic

to a subgroup of Hom(NH(0fc/CH(0,Fx) and thus a/?'-group (see [2, (11.13)]). On
the other hand, in our situation CG(β)b/CH(β) = CG(Q)bH/H is a /7-group. Thus

CG(β)ω = CG(β)6 = CG(β) and

G = PH= CG(Q)bH= CG(Q)ωH= G\_B^.

It follows easily that C is a crossed product of the local algebra ZB with R (see
[6, p. 149]); in particular, dimC=^dimZJβ = dimZ^ί. Since ZA £Ξ C we conclude

that ZA = C.

The inertial group NG(P)^ acts on P, and Q = Pr\H is an NG(P)^-stable
subgroup of P. Since NG(P)^/CG(P) is a^'-group, Maschke's theorem [4, Theorem
3.3.2] implies that Q has an NG(P)^-stable complement in P. We may assume
that our notation is such that R is N^P^-stable. Since G/H^R is abelian we

obtain [Λ,NG(P)^] ^RnH=L Thus R c CP(NG(P)J.

Let α = j/Cσ(Λ). By Watanabe's result [8, Theorem 2 (ii)], the map

is an isomorphism of F-algebras. But we have CG(R) = Rx CH(/?); in particular,
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lΛePCg(R). This implies that/is ^-graded.
There is a unique block β of FCH(R) covered by α, and we have α ̂  FR®Fβ

by multiplication; in particular, Zα ̂  FR®FZβ by multiplication. Obviously, r\β is
a graded unit of degree r and order # in Zα. Thus x^/"1^!^) is a graded unit
of degree r and order q in ZΛ, and we are done.

REMARKS, (i) The condition that Q has a complement in P is essential. Take
G the cyclic group of order p2 and H its subgroup of index /?, for instance.

(ii) The condition that P is abelian is also essential. Take G the extra-special
group of order/?3 of exponent/? and Hits subgroup of index/? for/? odd, for example.

(iii) The theorem above is related to the main result of [7] where a similar

splitting of blocks occurs.
(iv) It seems likely that our result holds also when the field F is replaced by

a suitable complete discrete valuation ring G. However, since Watanabe's result,

on which we lean heavily, does not immediately lift to $, a different proof would

have to be found.
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