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1. Introduction

An abstract Wiener space is a triplet (B, H, 1) of a real Banach space B, a real
Hilbert space H, and a Gaussian measure ¢ on B, and is called complex if B and
H are complex Banach and Hilbert spaces, respectively. For detailed definition, see
Section 2. Thinking of H as the tangent space of B and following the notion on
finite dimensional manifolds, we define

(1.1) AG(H)={]: H—H : ] is an isometry and J*=—ida},

and call J€ « 6 (H) an almost complex structure on (B, H, 1). A typical example
of almost complex structure is the multiplication by ¥—1 in the case where (B, H,
1) is complex. In the present paper, we shall see that each /€ # 6 (H) admits a
natural complex abstract Wiener space (Bj,H, 1) so that J is realized as the
multiplication by ¥—1 under this complex structure. Moreover, studied will be the
correspondence between (By, H, py) and the original space: if J extends to a
closed operator J': B— B, then B; is imbedded in B continuously and densely,
and if it does to a continuous linear operator J : B—B, then B,=B and the norm
n; is equivalent to the original one |+|s, i.e. Clz|z<n;(z)<C™'|zls zEB, for
some 0< C< oo, See Theorem 2.6.

An almost complex structure on (B, H, 1) was introduced by Shigekawa [10]
as a JE 4 6(H) extending to an isometry J : B—B, and, with his definition,
several complex analytical studies were made on abstract Wiener spaces [2, 8, 12,
13, 14]. The above observation not only asserts that the almost complex structure
introduced by Shigekawa is nothing but a complex structure on B, but also enables
one to extend some complex analytical observations to general /€4 6 (H). In
fact, for every /€ 4 6 (H), one can define a Cauchy-Riemann operator 0 on B
with the help of the Malliavin calculus. Holomorphic functions on an open set G
in B are measurable functions % with d =0 on G. Assuming that J has a closed
extension /' : B— B, we shall define skeletons of holomorphic functions on G as
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Lebesgue densities at points in G H. Then, the holomorphy of skeletons on G
N H and a uniqueness theorem based on skeletons will be discussed. The investiga-
tion is a continuation of those in [12, 14] to general /. See Section 2.

Now arises a natural question whether there is an almost complex structure J
€4 6(H) which has no extension to a continuous operator of B to B. The
answer is yes. In fact, let (B, H, 1) be the abstract Wiener space corresponding to
the pinned Brownian motion on R?%. Thinking of B as a based loop group over
the abelian Lie group R, one can define an almost complex structure JE « 6 (H)
by taking advantage of Fourier series (cf. [9]). We shall see that this J has a closed
extension J': B— B, but does not have any extension to a continuous operator of
B to B. These will be discussed in Section 3.

On an abstract Wiener space with almost complex structure in the sense of
Shigekawa, Sugita [13] introduced a concept of “holomorphically exceptional”
which can spell H out of B ; a one-point set {z} is holomorphically exceptional or
not accordingly as z& H or €H. In the present paper, inspired by his work, we
introduce set functions Cp, pE(1, ), on B specifying holomorphically excep-
tional sets as null sets under a suitable assumption on J, which is weaker than
assuming the extendability of J to a closed operator of B to B.

We shall call a holomorphic function on B entire as on C. The set function,
moreover, enables one to think of skeletons as restrictions to H of entire functions.
In fact, we shall establish an Egorov theorem for entire functions with respect to the
set function ; every holomorphic function #E L?(B, C; 1) possesses a u-version
# so that # is continuous on each F; for some increasing sequence of closed sets
in B with Co(B\F.)—0. We shall, further, see that # coincides with the skeleton
of # on H. In this sense, the skeleton can be regard as a restriction of « to H, since
H C\UnFu. These observations will be given in Section 4. In the same section, also
given will be studies of entire functions ; an approximation theorem, a uniqueness
theorem and a Liouville theorem for holomorphic functions will be seen. The first
two theorems are generalizations of those studied by Shigekawa [10] and Fang-
Ren [2] in the case where J extends to an isometry of B.

ACKNOWLEDGEMENT. The author is grateful to Professor Hiroshi Sugita for
several stimulus discussions.

2. Complex structures

Let (B, H, 1) be an abstract Wiener spece ; B is a real separable Banach space
with norm | - |5, H is a real separable Hilbert space wih norm | + |x, which is
imbedded continuously and densely in B, and g is a probability measure on B
such that
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ﬁexp[«f—_Kz, D)u(dz)=expl—||%/4], € B*,

where < ¢+, * > stands for the natural pairing of B and its dual space B*, and we
have used the standard identification of H* and H so that B*xCH*=HCRB. If
B and H are complex Banach and Hilbert spaces, respectively, then the triplet is
called a complex abstract Wiener space. The space of almost complex structures
AG(H) on (B, H, p) is defined by (1.1) following the definition of almost
complex structures on finite dimensional manifolds ;

AG(H)={]: H—H: ] is an isometry and J>= —idx}.

As for assuming for J to be an isometry, it should be recalled that if a linear
mapping K : V—V on finite dimensional real vector space V satisfies that K*=
—idy, then dim V is even and there exists a basis {ex, en}o™''? such that Ke,=en
and Ken= — en, and hence one can introduce an inner product on V so that K is
an isometry. In this sense, no additional assumption is imposed on 6 (H)
compared with the definition of almost complex structure on finite dimensional
manifolds. In [10], for J to be an almost complex structure, it is additionally
assumed that J extends to an isometry of B.

Let JEA4 6(H). For & H*, define a continuous R-linear mapping 7% :
H—C by 7"¥=p—J/—=1]*5. Put

n;(h)=sup{|u<h, 14| : 1€ B*, |I||s-=1},

where #<-, *>ux stands for the pairing of H and H*, and extends to that of H and
H*®J/—1H* so that x<h, 7+ V=17 Due=u<h, 7dus++—1u<h, O, hEH, 3, 7
€ H*. By the Hahn-Banach theorem on B, #; enjoys that

2.1) Ihflz<n;(h)<[h|z+|/hls<2Cu.slhlx, h=H,

where Cpy,s is a constant such that |h|z< Cu,slh|x, hE H. Hence %, is a norm on
H. Recall that |J+|z is a measurable norm on H in the sense of Gross [3,6].
Hence, (2.1) yields that #; is also a measurable norm in the sense of Gross. Let B;
be the completion of H with respect to #; and denote by the same #; the extension
of n; to By. Tt also follows from (2.1) that H is imbedded in (B;,n;) densely and
continuously. By a standard method, one obtains a Gaussian measure £ on Bj so
that ((By, ny), (H, ||*|x), &) is an abstract Wiener space.

Now observe that (B, #;) turns to be a complex separable Banach space. To
do this, notice that x<Jh, /*>g:=y—1x<h, I""> 4, and then that

2.2) n;(Jh)=n;(h), hEH.

Hence J : H—H has an extension to a continuous linear operator of Bj to By,
which will be denoted by J again. In particular, one has

Jxx=—x and #n;(Jx)=n,(x), XEB;.
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Now, define the multiplication by complex numbers by
(2.3) (a+V/—1b)x=ax+bJx, a, bER, XEB,.

It is then easy to check that B, turns to a complex vector space with the original
addition and this multiplication by complex numbers. Since x<{¢h, /P> g:= x<h,
[Py, it holds that #;(¢h)=|¢|n,;(h) for ¢€C, h&H. Combined with the
continuity of J on Bj, this implies that

n(&x)=|¢|n,(x), (EC, xEB;.

Thus (By, #ny) is a complex separable Banach space with the complex multiplica-
tion given by (2.3).

Mention that <h, J/h>x=<Jh, /?h>x=—<Jh, hDx and then that <h, Jh>x=0.
Hence

I(a+v—=T1o)h[%=a’|hlz+ o°I/hlE=|(a++=16)hl% o, 6R, heH,

which means that (H, |+|#) is a complex separable Hilbert space. It therefore has
been seen that ((B;, #ny), (H, |*|x), 1) is a complex abstract Wiener space.

By (2.1), there exists a continuous linear mapping ¢ : B;— B such that ((h)=
h for any h& H. It follows from (2.1) and (2.2) that

(2.4) S (Ills+1/hls) <, (h) < [+ | 7R

This implies that ¢ is injective if and only if / : H— H has an extension to a closed
operator J': B—B. Thus (By, n;) is imbedded in (B, ||lz) continuously and
densely if and only if J extends to a closed operator /': B—B. In this case, By
coincides with the completion of H with respect to the graph norm of J'.

A subset LC B* is said to separate the points of B if, for any X, yE B with
x+y, there is an /€ L so that <x, />+<y,/>. A necessary and sufficient condition
for JE 4 € (H) to extend to a close operator J': B— B is that the subspace L;=
{/€B*: ]Ji< B*} separates the points of B, where we have used the identification
B*CH*=H to operate / : H— H on elements in B*. In fact, the sufficiency can
be seen easily. To see the necessity, observe that /*=—7 on H and (J))*=J* on
Dom((J")*), J': B— B being a closed extension of J, and hence that Dom((J")*)C
L,. Recall now that the domain Dom( 7 *) of the adjoint operator 7* of a closed
operator 1" : B— B separates the points of B, which can be seen in the same way
as the density of Dom(7T*) in B* is verified when B is reflexive (cf. [1, Theorem
III. 21]). Thus L; separates the points of B.

Now suppose that /€« 6 (H) admits an extension to a continuous linear
mapping J : B—B. According to (2.4), this assumption is equivalent to assuming
sup {n;(h)/||hlz: h€H, *+0}<oo. In this case, (2.1) reads as

(2.5) Ihlls<n;(h)<(1+| J |op)Ihlls, hE H,
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where | J |lop is the operator norm of J : B—B. It then holds that B=B; as a set.
Conversely, if J has an extension to a closed operator /': B—B and B= By, then,
by (2.4) and the closed graph theorem, /' is a continuous operator, and hence J
extends to a continuous linear operator of B to B.

Summarizing up, one has

Theorem 2.6. Let JE 4 6(H), and define a Banach space (B;, n;) and a
probability measure 1; on B; as above. Then, (B, n;), (H, |*|&), ) is a
complex abstract Wiener space with complex multiplication given in (2.3) and J=
J—1idu. Further, the following three conditions are equivalent ;

(a) (By, ny) is imbedded in (B, |+||5) continuously and densely,

(b) J extends to a closed operator J': B—B,

(c) the subspace L;y={lEB*: Ji€B*} of B* separates the points of B.
Finally, assume that one of the above conditions is satisfied. Then, B;=B if and
only if J admits an extension to a continuous linear mapping f : B—B. In this
case, ny is equivalent to |||z in the sense (2.5) and (B, ny), (H, |*|x),) is a
complex abstract Wiener space.

As an application of Theorem 2.6, studied will be holomorphic functions on
open sets in B and their skeletons. To do this, let JE A 6 (H). We shall first
define the Cauchy-Riemann operator 6 on B. Set

H**={p: H—C: 7 is a continuous R-linear mapping}=H*®v/—1H*.

In a standard manner, H*° turns to be a separable complex Hilbert space. Extend
the dual operator J*: H*—>H* to H*® as J*(m+v—1n)=]*m++v/—1]*7, and

set
H*WO={pe H*¢: J*p=/=17} and H**O={pH*®: J*p=—/—1p}.

Obviously H*¢=H*"@H*"V,
A measurable function F': B—C is said to be smooth if there are an fE
Cy(R™; C) and 71, ***, 72 B* such that

F(z)=1(z, 7, -, <z, 7).

The totality of smooth functions are denoted by FC:(B; C). For a separable
complex Hilbert space E, FC5(B; E) stands for the space of linear combinations
of finite number of measurable functions of the form Fe, FEFCy(B; C), e€E.
Sobolev spaces Di(B; E), rER, p=(1, ), are the completions of FC5(B; E)
with respect to the norm

|| G” o= “([ —-£ )NZG”LP(B.E;@)

respectively, where £ denotes the Ornstein-Uhlenbeck operator. Put
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Di(B; E)= U U )Dz(B; E).

7€(—00,») pe(l,eo

For GEZFC§(B; C), the gradient DG(z)E H*C is defined by
a<h, DG(z)>H*=liftol%{G(z+eh)— G(2)}.

Since it holds ([11]) that
2.7) Sup{lDGlr-15/|Glrp: GEF CF(B; C), GF0}< +00, »ER, p(1, o),

D extends to a continuous linear mapping of DB ; C) to D; (B ; H*), and
hence to that of Diy*(B ; C) to Dix(B; H*°), which continues to be denoted by the
letter D.

Let 7, be the projection of H*® onto H

a_u(z)=7ro,1(Du(Z)), zEB, u€F C5(B ), 0.

@D “and set

By the continuity of D in (2.7), d extends to a continuous linear operator of D7y
(B; C) to Di*(B; H*™Y), which is again denoted by 4.

Let G be an open set in B. AvEUp>2LP(B, C; du) is said to be holomor-
phic on G, dv=0 on G in notation, if <dv, ¢>=0 for any p=DL_(B; H**)=
Npea,mD(B; H*°) with p=9¢l¢ g-a.e. Set

Hol(G; B)Z{uEpLJZL"(G, C; du): d(ule)=0 on G}.

To study the skeleton of #SHol(G ; B), we now assume that there is a closed
operator J': B—B with /=] on H. By Theorem 2.6, one obtains a complex
abstract Wiener space ((B;, #;), H, ;) so that By is included in B continuously
and densely. There exists a subset BoC B; satisfying that

(2.8) Boe B(B)U B(By)),

(2.9) {ANBy: A= B(B)}={ANBy: A= B(B))}
(2.10) #(Bo)=1y(Bo)=1

(2.11) wW(ANBo)=u(ANB,), A€ B(B)U B(By),

where B(Y) stands for the topological Borel field of a topological space Y.
Namely, recall that there is an abstract Wiener space (Bo, H, ) such that By is
reflexive, and is imbedded in B; densely and continuously. See [7]. It now suffices
to show that, if (X, H, v) is an abstract Wiener spaces such that By is included in
X continuously and densely, then Bo& B(X), B(Bo)={ANBo: A€ B(X)}, and
V(A)=wm(ANB,), A€ B(X). To do this, notice that X* is dense in Bf and B§
is separable, because of the reflexivity of Bo. Hence there exists a countable set
{/;}7-1C X* which is dense in Bf. One then has that |y|lz,=sup{|<y, |/ llze*:
JEN}, yEBo.  Set g(x)=sup{[Kx, I>|/|lilze: JEN}, xEX. It follows the
reflexivity of Bo that Bo={xE X : ¢q(z)<0}. As is easily seen, Bo< B(X), v(Bo)
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=1, and B(Bo)D{ANBy: A€ B(X)}. Taking advantage of the density of X* in
B¢# and a characterization of B(Bo) by cylindrical sets, one can further show that
B(Bo)={ANBy: A= B(X)} and v(A)=u(AN By), A€ B(X).

Let ucHol(G; B). Putting B/(x,7)={yEB;: n,(y—x)<r}, XEBy, and
Bo,,(r)=BoN Bs(0, 7), we claim that the Lebesgue density

SN 1
(2.12) u(h)=llmm‘ BD'J(r)u(Z‘f'h)d,u(Z)

ri0

exists for every hE HN G (we call # the skeleton of u). It should be mentioned
that the definition of the skeleton is independent of a particular choice of Bo
enjoying (2.8)-(2.11). To see the existence of the limit, notice that GN By is also
open in B;. Hol(GN By ; Bj) is now constructed in exactly the same manner as
above, only this time relative to B; and the complex structure / on B;. Then, by
(2.10) and (2.11), it is easily seen that 13, EHol(GN B;; B;). Let »(h)=sup{t:
B;(h, t)CG}. If »<7(h), then (u1s,)(- +h)EHol(B,(0, ); B;). Apply [14,
(3.2)] to (#13,)(+ +h), and observe that

1 _ 1
/l(B](O, 7,)) B/(O,T)<u180)(z+h)dﬂj(Z)_ /l(Bj(O, S)) B/(O.s)(ulBO)(Z+h)dﬂI(Z)
0<s, »<r7(h).
Combined with (2.8)-(2.11), this implies that

1 . 1
@1 oy f @t Nd@) =l [ u(ath)du(a)
heGNH, 0<s, »r<r(h),

which yields the existence of the limit.
As an application of [14, Corollaries 2.2 and 2.4], one can conclude that

Theorem 2.14. Suppose that ] A 6 (H) extends to a closed operator | :
B—B. Let G be an open subset of B, and u€Hol(G ; B). Define @ as above.
Then the following assertions hold.

(i) The mapping GNH>h— #(h)EC is continuous with respect to the topology
inherited from H.

(ii) As before, define th=(Re{)h+(Im¢)Jh, {=C, h&H. For any ho, --, hx
€GN H, there exists an open set UCC" so that {ho+2%1&h:: (&, -+, &)E U}
CGNH and the mapping

U=, -, Cn)‘_’ﬁ<h°+gl§hi>ec

is holomorphic.
(iii) If there are he GNH and 0>0 such that KEGNH and u(k)=0
whenever |[k—h|x <9, then u=0p-a.e. on G.
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3. Abstract Wiener space of Brownian bridge

In this section, we give an example of /€ 4 6 (H) possessing no extension to
a continuous linear mapping of B to B. Throughout this section, let

Bon={z: [0, 1]>R%: z is continuous and z(0)=z(1)=0},
h is absolutely continuous and possesses}

Hpm_{hEBpm: a derivative h such that /:Ili(t)lzdt<00
and fpin be the image measure on Boi of the Brownian bridge on R starting at 0
and pinned at 0 at time 1. The norm ||*| 8, 0f Bpin and inner product <+, *>s,,, on
Hoin are given by ||zl|s,n=sup{|z(¢)| : t€[0, 11} and <h, KD gpa=S3<h(2), k(£)dredt,
respectively.

We now introduce an almost complex structure J < # 6 (Hpin) following [9].
To do this, let &=(0, -+, 0, 1, 0, -+, 0)ER? and put

cos(2nmt)—1
2nw

sin(2nnt)

ei,i(t)z s

&: and es,(t)= & for nEN, 1<i<d.

Every h& Hpi, is expanded as

d
h=23 5 {<h, € dmnei+<h, €.dmesii] in Hon
One can then define a continuous linear operator J : Hpin— Hpin so that
3.1 Jes.=es: and Jeq:=—e;,..

In particular, one has a series representation of Jh as
d
(32) =2} §0{<h, €5, i — <h, e;,i>Hp,nez,,~} in Hon.

As is easily seen, it holds that
J?h=—h and Jh, JK>u,n=<h, KDy, h, KE Hpin.
Thus JE # 6 (Hpim). The aim of this section is to establish that
Theorem 3.3. Let JE 4 6 (Hpn) be as above.
(i) J extends to a closed operator ]’ : Bpin— Bpin.
(i) J admits no extension to a continuous linear mapping of B to B.
(iii) J(Bfn)\B#n+0; there exists an | B, such that J*1& Bin.
Proof. (i) Define LC H by

L={e;.;, e5,:: nEN, 1<i<d}.
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Then LC B* in the sense that
1 2
@, 1y=— [ <a(t), Ly i(O)>wdt, IEL.

where <-,+.> stands for the pairing of Bpin and Bgin. It is then an elementary
exercise of Fourier series to see that z=0 if and only if <z, />=0 for every /E L.
In particular, L separate the points of Bpin.

Since Jen,;= —ex,: and J*=—J under the identification H*=H, one has that
J*(L)=LC B*. Hence, on account of Theorem 2.6, J extends to a closed operator
]/ : Bpm—’Bpln.

dealt with in exactly the same manner.
Let h.(¢)=sin(at)—tsine, a<[0, ©)\27Z. To see the first assertion, it
suffices to show that

(3.4) lim inf [/hellzpm=00.
To see this, notice that

Jh(t)=y/—-1 Eo(sgn n)(/o‘lh(s)e‘z””snds>(e2"”tﬁ~1), he Hyp,

where sgn #=1if #>0 and =—1if #<0. By a simple computation, one has that
1 5 .
—2mns =T ;. _a(1—cos @) a*sin a
A‘ ha(s)e ds P—An 21n(— )/ =1

and hence that

_ 2.
Jho(t)=—-2 Eo—ch_:—%;z—)sinﬂ nt) +%§On—((%(cos(2 mnt)—1).

In particular,

1\_ 22 o’ sin @
]h“(7>_ 7TmZ=0(2m+1)((12—47l'2(2m+1)2).

Set 5j=(2]’+1)+% and @;=2nB;. Then

1\__1¢ B
(3:5) The 5 )=~ TN T

By a straightforward computation, one has that

2

,. 8 6 1
O T B —CmI1) = 2 om 1=

- log(2j +3),

and that
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> B2 B; > B
m§+1(2m+1)((2m+1)2—33) = (27 +3)*— B2 +sz:+2 @Cm+1)*— B?
2 1 4 +%
ST—{—I log 7
4

Plugging these into (3.5), one obtains that
]ha;< >—> O gs ]——-—)OO

and which implies that (3.4) holds.

To see the last assertion, define /€ Bin by <z, />=2(1/2) and suppose that J*/
€ B, and hence that there exists a constant C such that [<z, J*/>|< C|z/ s
Combined with the above observation, this implies that

2C=C|ha,

Bpmle<]haj, l>H*|=‘]hd,(%>‘—)oo as j—*)OO’
which is a contradiction. Thus, J*/ € Bgn. [

As was seen in Section 2, the almost complex structure J : Hpin— Hpin extends
to a continuous linear operator on (Bon), say J again, in an abstract manner. In
the remainder of this section, given will be an explicit representation of /X, X&
(Boin);.

Apply [5, Theorm 4.1] to see that

hmzz 2 {(X en z>en z+<X en z>en z} X in Bpin for upin-a.e. XEBp]n,

N-o i=1n=1

and that there is a measurable Y : Bpin— Bpin so that

11m22 PN {(x en, e —<X, eﬁ.i>e2,f}= Y (x) in Bomn for fpin-a.e. XE Bpn.

N-o i=1n=1

Let J : Bpiw—Bpin be the minimal closed extension of /. On account of the
observation made in the paragraph containing (2.4), one sees that

(3.6) (Boin);=Dom(J) and J=J on (Bon);.

Moreover, as observed in (2.8)-(2.11), there exists a Borel set Bo& B(Bpin) such that
toin(Bo)=1 and BoC(Bpin);. Thus, due to (3.6) and the closedness of J, there
exists a Bo& B(Bpin) such that gpin(Bo)=1, BoC(Bon);, and, for any X< By,

d N
lim2 3} 3 {<x, ef.dedt<x, ehoeh =x in Bon,
m222

d N
lim2 3! 1 Cx, e ek — Cx.eh ek} =/x in Bo.
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In particular, one has that

d
/x=23 20{<x,ef,,i>es,,i—<x, ez,,»>ef,,,-} for XE B,

i=1n>

where the convergence of series takes place with respect to the norm of Bpin.

4. Entire functions

Let (B, H, ) be an abstract Wiener space, /<. 6 (H), and define the
Cauchy-Riemann operator 0 on B as in Section 2. In the section, studied have
been holomorphic functions on open sets in B. In the present section, investigated
will be L*-entire functions, i.e. L?-functions on B which are holomorphic on
whole space B, where p=(1, ).

Set
HP(B)={usL?(B, C; dv): du=0 on B}, p=(1, o).

One has that Up>27?(B)=Hol(B; B). as is well knows, there is a continuous
linear mapping % : H*—L* B, R; du) such that £(7)=<-, >, 7&B*. For a
subset LC H*, put

a= g (F (")) for some nEN,
Pu(L)= qEPEQm)L”(B, C; du): holomorphic polynomial ¢ on C”,,
' and 71, -, 7,EL

where 7*0=7—y=1J*7 and $(7"")=4(n)—v—1F(J*7). Mention that
Pw(L)CH?(B) for any pE(1, ).

One obtains the following approximation theorem ;

Proposition 4.1. Let LC H™ be a dense subspace of H*. Then, for each u
EJ*(B), there is a sequence {q»} " Px(L) so that gi—u in L*(B, C; du).

Proof. Let L'={p+J*p : », n”€L}. Obviously J*(L)YCL’. Moreover,
since (J*)?= —idgs, one has that (7+J*" )30 =710+ /—T1(7")**. Hence L x(L)
=P,(L’). Thus, without loss of generality, one may assume that J*(L)C L.

Since <7, J*7>u+=0 and J*(L)CL, one can choose {7;}51CL so that {7;,
J*7;}51is a CONB of H*. Let B be the o-field generated by {.#(7;), ¥ (J*7;)}}=1
and denote by E[u|B,] the conditional expectation of u given B, By the
martingale convergence theorem, E[«| 8] converges to « in L?(B, C; du). Thus
it suffices to approximate E[#|B.] by elements of P4(L).

It is easily seen that E[«|B.]€#?(B), and hence, by the splitting property of
1, E[u|B.] can be thought of a holomorphic function on C. which is L*-
integrable with respect to the Gaussian measure duc($)=(1/r)expl—|¢l1d¢ on
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C". Then, applying Proposition 4.2 in [10] to the complex abstract Wiener space
(C*, C", uc), one obtains a sequence {gx} of holomorphic polynomials on C”
converging to E[«|B.] in L?(C*, C*; duc), and which implies the desired asser-
tion. [

For u€%*(B), put
42) 7(h)= fB u(z+h)du(z), hE H.

If / admits a closed extension J': B—B and u<Up>25?(B), then, on account of
(2.13), @ is nothing but the skeleton of # introduced in Section 2.

Applying Proposition 4.1, one can now conclude the following analogue of
Theorem 2.14. A similar assertion in the case where (B, H, 1) is a complex
abstract Wiener space can be found in [2].

Proposition 4.3. Let pE(1, ) and us¥#*(B). Then the mapping H>h
— @ (h)EC is continuous. Moreover, for any hy, ..., hnE H, the mapping C"=
(&, ..., &) —u(Xi18:h,) is holomorphic. Finally, if there are h& H and 6 >0
such that u(k)=0 for k€ H with |h—k|xz<0, then u=0 p-a.e.

Proof. Let g€ P (H*), ie. g=g(F ("), ..., £(3%™)) for some nEN,
holomorphic polynomial 3 on C*, and 7, ..., 7.EH™*. Since
q(++h)=g(F (") +u<h, s, .., F(E0)+u<h, 78 us) poace.,

on account of the rotation invariance of the Gaussian measures ¢ on C”, one has
that

(4-4) [f(h)Z 5(;1(11, ?7f1’0)>H*, veny H<h, 77§zl'o)>m).

As an application of the Cameron-Martin formula, one obtains that

4.5)  sup|@(h)— (W)= Corlu— 0l m, u, vEH(B), 0<R< 0,

where Cy,r is a constant depending only on p and R. Now the first and the second
assertion follows from Proposition 4.1.

Recall vE€L?(B, C; dy) vanishes p-a.e. if and only if 4/;v(z+h)d/1(z)=0 for

every h&H. Hence, the last assertion is an immediate consequence of the
definition of # and the second assertion. [

As an application, one has a Liouville theorem on B ;

Corollary 4.6. Let uS7*(B) and suppose that
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Lw log R|h||,,sp_/|u(z+h)\d#(z) 0.

Then u=constant u-a.e. In particular, if u€3?(B) is bounded, then u is a
constant function.

Proof. Notice that | Ch|z=|¢|[h]x for any {EC and hE H. Fix an arbitrary
hE H, #0. Then, by Proposition 4.3 and the assumption, a function v({)=#(¢h)
is holomorphic on C, and moreover, enjoys that

. 1 _
i og REERIVOI=0

As is well known, this implies that v=constant. Then, by the second assertion of
Proposition 4.3 and the uniqueness theorem on C", one obtains that # =constant
on H. Apply the third assertion of the proposition, and conclude that z=
constant g-a.e. [

If J extends to a closed operator of B to B, then, by Proposition 4.1 and (4.5),
(2.13) remains valid for #E#?(B), 1<p<0, and 0<s< 7 <co, In particular, in
this case, # is the restriction of # to H whenever # is continuous on B. Arises
a question if one may regard # as a restriction of # to H in general. To answer
to the question affirmatively, we shall introduce a set function and establish an
Egorov theorem with respect to the set function. It should be mentioned that the
desired answer does not follow from the Egorov theorem with respectto the
measure , since #(H)=0.

Set

M;={M : M is a dense subspace of H* with M U J*(M)C B*}.
and, in the sequel, assume that
4.7) M0

This hypothesis is satisfied if / extends to a closed operator J': B—B. In fact,
Dom((J')*) separates the points of B, in particular, those of H. Thus Dom((J)*)
is dense in H*. Since J*=(J)* on Dom((J)*), Dom((J)*)EM;.

Define a dense subspace M; of H* by

M;= the subspace of H* spanned by MEJM M

={flnzi§eajlj: a;ER, ;€ U M}

MeM,;
It is easily seen that

M]E/%] and ]*(M])CMJCB*
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In general, M;& B*. For example, let J be the almost complex structure on the
abstract Wiener space of Brownian bridge introduced in Section 3. Then, by
Theorem 3.3 and the remark after (4.7), #(;¥0 but M;& B*.

If /EM;, then /, J¥*/EB* and $(/*)(z)=(z, [*?”>, zEB. Hence exery ¢
€ P 4(M;) is defined on B without any z-null exceptional set, and the mapping B
>5z—¢(z)EC is continuous. For 1< p< oo, define

Lo(B.Cdn) = 1},

§p={{qn}3§’=1C73h(M;): g}"fln
CiA)= inf sup{exp[— §1|qn(z)|]: zeA}, 6= ACB, and Co(8)=0.

Proposition 4.8. Suppose that (4.7) is fulfilled.
(i) It holds that

0< Cp(A)g Cp(A,) fOI‘ ACACB.
(ii) For any sequences {&:} and {as} of positive numbers with 2 rar=1,
Cp(kgjl Ak>£ 21(CP(AIQ)+ €k)ak.

In particular, if n€EN, bi+--+by,=1, then

Cp( LnJ Ak>£ zn: (Co(Ar))®*

k=1 k=1

(iii) Cp(A)=0 if and only AC{z: X5-ilgn(z)|=0} for some {qn}E G».
Especially, a Borel set ACB is p-null if Cp(A)=0.
(iv) For zEB, Co({z})=0 if and only if z&H.

Proof. (i) The assertion follows from the definition of Cp immediately.
(ii) For each €x>0, choose {¢/"}5-1€ G » so that

sup{exp[—ni:‘,llqif’(z)l} : zEAk}é Co(Ax)+én.
Renumber {axq : n, REN} to obtain {gn}. Then {gn}E &, and it holds that
San(@)|= ax 31a|> — ar logl Co(An)+eu] for 2E Au.
Hence one has that
Cp(Ql Ak>ésup{exp[ —ni:!llqiz(Z)l] P 2E Q} Ak} < ;:71 explax log(Cp(Ar)+en)],
which means that the former inequality holds.

To see the latter inequality, for 8 >0 and mEN, set ax(m)=(1—1/m)bs, k<
n, =2""*Im, k>n, ex(m, 8)=(27%6)"**"™ and Ar=0, k>n. Apply then the
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former inequality, and let 6 { 0 and m T oo,
(iii) The “if” part is an immediate consequence of the definition of C,. To see the

“only if” part, suppose that ACB enjoys C»(A)=0. For each 2EN, take a
sequence {g+}5-1€ G » such that

sup{exp[ - "gllqﬁ"’(z)l] : zEA}Sexp[—k], ie., inf{gllqﬁk’(z)l : zEA} >2k.
Renumber {(6/7%)k7%¢%"} to have {g7}. Obviously {gn}€ & ». Further, one has that

Slaa)l= 2 Lrtr Rla@)=Fr F 1=c0 224,

k=1

and hence AC{z: X.|qu(z)|=c0}.

Since u({z: 2ulga(z)|=0})=0 for {g.}E & », the second assertion follows
from the first one.
(iv) It was seen in [13] that zE B\H if and only if zE{x: X.|g.(x)|=0} for
some {¢g»} € G », under the assumption that J extends to an isometry of B to B. The
argument there still works under the assumption (4.7), once one notice that

sup{|<z, /")|: I€M; and |/|ux=1}=00 for any zE B\H.

Hence the above equivalence remains valid under (4.7), and the desired assertion
follows from (iii). [J

A measurable function f: B—R is said to be Cp-quasi continuous if, for
every € >0, there exists an open set G such that C,(G)< e and flsne: B\G—R is
continuous. For measurable v: B—R, its Cp-quasi continuous version 7 is a
Cp-quasi continuous function ¥ with v=9p-a.e. If 7 is a Cp-quasi continuous
version of v and h&€ H, then, on account of Proposition 4.8 (i, iv), there is a closed
set I such that h& F  and f is continuous on F. In this sense, measurable functions
possessing a Cp-quasi continuous version can be restricted to H.

One has the following Egorov theorem for holomorphic functions with respect
to Cp.

Theorem 4.9. Assume (4.7). Then, every u<H#?(B) admits a Cpr-quasi
continuous version . Further, there exists a sequence {gn}CPu(M)) and a
subset NC B such that |gn— i | sca—0, Co(N)=0, and lim, gn(z)= @(z) for z
€&N. Finally, @ coincides on H with the skeleton @ given in (4.2); #(h)=1d(h),
heH.

The second assertion says that # is p-regular in the sense of Sugita [13].

Proof. Let u<¥*(B). According to Proposition 4.1, there exists a sequence
{gn}SPw(M;) such that
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(4.10) | Lifg"(h — ullrs.0a0=0 and Elnl}nﬂ — Gl 8. ca < .
Define

Nz{zeB : §1|Qn+1(z)_qn(z)l =0°},

limg.(z) if ZEN,
i(z)={n"
0 if zZEN.

Due to (4.10) and Proposition 4.8 (iii), one has that
(4.1 Co(N)=0 and #=wu p-ae. on B.

In order to see the first and second assertions, it now suffices to show the Cp-quasi
continuity of #. To do this, let

- -1
g,(z’")=<'§mlqn+1 —qn |L"(B;C.xz>> (gn+1—qn)

and notice that {g¥"}5-1E G, mEN. Then, by the very definition of Cp, one
obtains that, for any mEN and >0,

(412) cl[z€B: £ lar@-a)l>e))

Ssup{exp[ - ’glgﬁf"’(z)l} : ZEB, n§m|0n+l(Z) —qn(z)|> 6}

-1
L"(B;C./x)> E:l-

Sexp[—<n§mllqn+1—qn

For 2EN, choose m.EN so that

(4.13) ”gnJIQnH*Qn e < (k4*)7,
and define a subset AxC B by

Av={2€B: 3} gnem(®)— aa@)| >27*}.
Then A, is open in B and open sets Gj, /€N, are given by

G,= Q,Ak, jEN.

By (4.12) and (4.13), it holds that
Cp(Ak)Sexp[—kZ"], kEEN.

Apply Proposition 4.8 (ii) with @x=1/2* e,=exp[—£2*] and conclude that
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(4.14) Co(Gy)< g (2expl — k2*])1? < eil e for every JEN.

Note that
NC( A,
k=1
and hence that #(z)=1im, ¢(z) for any z& B\G; and j&N. Further, it holds that

~ _ had _ < __l'
zgggcjlu(Z) qmi(Z)Iézgggh ngjmlqm(Z) an(z)| <277,
for every 7, JEN with >/

This implies that, on each closed set B\G;, /€N, {gm,}7-1 converges to # uniform-
ly, and hence # is continuous on it. Thus, by (4.14), @ is Cp-quasi continuous.
The first and second assertions has been verified.

To see the last assertion, apply the second assertion and choose {g»} C.P (M)
and NCB so that ||gr— #llix5,c; a9, Co(N)=0, and lim». g.(z)=(z), z&N. It
follows from (4.4) that g»(h)= g.(h), hE H. By (4.5) and Proposition 4.8 (iv), one
obtains that #Z(h)=#(h) [
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