Arakawa, T.
Osaka J. Math.
31 (1994), 79-94

ON SPECIAL VALUES AT s=0 OF PARTIAL
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1. Introduction

1.1 Let F be a totally real algebraic number field with finite degree, a a frac-
tional ideal of F, and F,, the maximal abelian extension of F. We define a map
£q from the quotient space F/a to the group W(F,;) of roots of unity of F,;, using
the deep results of Coates-Sinnott [C—S1], [C—S2] and Deligne-Ribet [D—
R] on special values of partial zeta functions of F. Under the action of the
Galois group Gal(F,,[F) of F,, over F this map behaves formally in a manner
similar to Shimura’s reciprocity law for elliptic curves with complex multiplica-
tion. This reciprocity law for the map &, is also a direct consequence of
those results of Coates-Sinnott and Deligne-Ribet. On the other hand we
have studied in [Arl] a certain Dirichlet series and its relationship with parital
zeta functions of real quadratic fields. In particular the special values at s=0
of partial zeta functions of real quadratic fields essentially coincide with the
residues at the pole s=0 of our Dirichlet series. Using those residues, we give
another expression for the map &, in the case of F a real quadratic field. We
also show that the expression works in a reasonable manner under the action
of the Galois group Gal(F,,/F).

1.2 We summarize our results. For an integral ideal ¢ of a totally real alge-
braic number field F, denote by Hy(c) the narrow ray class group modulo c.
For each integral ideal b prime to ¢, we define the partial zeta-function &¢(b, s)
to be the sum 33(/Na)™%, a running over all integral ideals of the class of b
in Hp(c). Let a be a fractional ideal of F. For each class Z of the quotient
space F/a, we take a totally positive representative element 2 F of the class Z,
and write

(1.1) za-l=f1p

with coprime integral ideals f,b of F. Thanks to some results of Coates-
Sinnott ([C-S1], [C-52], [Co]) and Deligne-Ribet ([D-R]), one can define a
map &,: Fla—W(F,;) as follows;

(1.2) £4(2) = exp(2rit;(b, 0)),
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where the value on the right hand side of the equality depends on the class 2
and not on a representative element 2 of Z. Denote by F the idele group of F
and by F . the subgroup of F consisting of ideles x whose archimedean com-
ponents ., are totally positive. Each element s of F§ induces a natural isomor-
phism s: Fla=~F/sa. We denote by [s, F] the canonical Galois automorphism of
the extension F,;/F induced by s€F%. The following theorem is a reformula-
tion of a part of the results due to Coates-Sinnott and Deligne-Ribet ([C-S1],
[C-S2], [D-R]).

Theorem A (Coates-Sinnott, Deligne-Ribet)
Let s€F} , and set o=[s, F]. Then the following diagram is commutative.

Fla —53» W(F,;)

ls" lo-
Fs7'a —Eia» W(F ;)
Namely,
Ea(2)” = Es1a(s72)
where s~z stands for the image of Z by the isomorphism s~': Fja=Fsa.
In particular if we write, with Z being specialized at 0=0 mod aq,
E(a) = £40)

then, £(a) is a root of unity contained in the narrow Hilbert class field of
F. 1In this case the Galois action is described in the simple maner:

E(a)eT1 = E(s'a)  for any s€F% . .

Theorem A will be interpreted as a formal analogy to Shimura’s reciprocity
law for elliptic curves with complex multiplication (see Theorem 5.4 of [Shm]).

For a real number x, we denote by <x)> the real number satisfying x— <{x>&
Z and 0<<{x><1. Let F be a real quadratic field embedded in R. We set,
for e F—Q and (p, 9) €Q?,

(1.3) o, s, p, g) = ) me-1. EXP(Zmin(part q)
n=1 1—exp(2zina)
and
(1.4) H(a, s, (p, 9)) = n(et, s, <p>, Q) +e“n(et, 5, <—pD, —q) -

This type of infinite series has been intensively studied by Berndt [Bel], [Be2],
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if o is a complex number with positive imaginary part. In our case we have pro-
ved in [Arl] that the infinite series %(e,s, p, q) is absolutely convergent for
Re(s) <0 and moreover that H(a, s, (p, )) can be analytically continued to a mero-
morphic function of s in the whole s-plane which has a possible simple pole at
s=0. Let h_i(a, (p, q)) denote the residue at the pole s=0 of this function
H(a, s, (p, q)) (see §3 of this paper). We set

B(et, (2, ) = - (h-1(at (8 D) —hos@’, (2, D)

where o’ denotes the conjugate of @ in F. This quantity (e, (p, q)) satisfies
the transformation law under the action of SL,(Z):

(1.3) by(Va, (9, 9)) = b(e, (p,9)V)  forany VESLY(Z).

We denote by F* the group of of invertible elements of F. Let a be a fractional
ideal of F{with an oriented basis {ay, a,} (i.e., a=Za,+Za,, oyob—afja,>0).
Denote by ¢q: F*—GL,(®) the injective homomorphism of F* into GL,(Q) defined
via the basis {a, a,} as follows;

(16) | w(G)=a(5)  wer).

This homomorphism g is naturally extended to that of F into the adele group
G,=GLy®Q,). Denote by G, , the subgroup of G, consisting of all elements
x& G4 whose archimedean components x. have positive determinants. By the
transformation law (1.5) of (e, (p, ¢)), one can define an action of any x&G .
on the coefficient (e, (p, ¢)). This action will be denoted by H*(«, (p, ¢)) (for
the precise definition see (3.12)). For an integral ideal f of F, we denote by
E_(f) the group of totally positive units # of F' with u—1&f. Another expres-
sion for the map &£,(Z) is given by the following theorem.

Theorem B Let the notation be the same as above. Let a be a fractional
tdeal of a real quadratic field F with the oriented basts {a,, a,}. Choose a repre-
sentative element 2 EF, 2+0 of a class ZEF|a and determine the ideal § by (1.1).
Denote by n the generator of the group E () with n>1. Write 3=pa,+qa,
with (p, ) EQ? and set a=ay/ct,. Then,

(1.7) £a(?) = exp(log 7-H(a, (2, 9))) -
Let s€F}, .. The Galois action on E,(Z) is given by the equality
(1.8) Ea®) 7 = exp(log 75" (a, (p, 7)) -

In Theorem 3.3 we obtain a stronger result than (1.7); namely, the special
value (b, 0) is explicitly given by the value B(a, (£,9)). We note that, as
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is essentially known, the value &(a)=£q(0) is a twelfth root of unity in the
narrow Hilbert class field of F (see the end of §3).

2. Partial zeta-functions for totally real number fields

We recall a part of the results of [C-S1, 2], [Co], and [D-R] concerning
special values at non-positive integers of parital zeta-finctions for totally real
algebraic number fields.

Let p,, denote the group of m-th roots of unity. Let L be an algebraic num-
ber field. If K is a Galois extension of L, we write Gal(K/L) for the Galois
group of K over L. For a positive integer n, we define w,(L) to be the largest
integer m such that the exponent of the group Gal(L(p,)/L) divides n (see
2.2 of [Co]). In particular if =1, w,(L) is nothing but the number of roots
of unity of L. We denote by W(L) the group of roots of unity of L. »

Let F be a totally real algebraic number field with finite degree throughout
this paragraph. For an integral ideal f of F, denote by H(f) the narrow ray
class group modulo f. Namely, Hg(f) is the quotient group I(f)/P.(f), where
I(f) is the group of fractional ideals of F prime to f and P,(f) is the group of
principal ideals of F generated by totally positive elements 6 of F such that the
numerators of §—1 are divisible by f. We set, for each class C of H(f),

£(C,s) = % (Na)-s (Re(s)>1),

where a runs over all integral ideals of C and Na denotes the norm of a. The
partial zetafunction {(C, s) is analytically continued to a meromorphic function
in the whole s-plane which is holomorphic at non-positive integers. If bis a re-
presentative ideal of C, we often write &y(b, s) in place of £{(C,s). Let K=Kg(f)
be the maximal narrow ray class field of F defined modulo f. We write [C, K/F]
for the Artin symbol of the class C of Hi(f). By the class field theory there
exists a canonical isomorphisms of Hy(f) to the Galois group Gal(K|F) given by
the correspondence: C—[C, K/F]. If b is a representative ideal of the class C,
we write [b, K/F] for [C, K/F]. The following theorem is due to Coates-Sinnott
[C-S1,2] in the case of real quadratic fields and to Deligne-Ribet [D-R] in
general.

Theorem 2.1. (Coates-Sinnott, Deligne-Ribet) Let f be an integral ideal
of F and b, ¢ integral ideals of F which are prime to f. Set K=K(f). For each

non-negative inetger n,
(i) w,(K)Eyb, —n) is an integer.
(if) Moreover if ¢ is prime to w, . (K), then the value
(NC)”-H' ;i(b, —n)—ff(bc, -—n)

is also an integer.
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In the case of n=0, we reformulate the above theorem into a slightly dif-
ferent form suitable to our later situation. For that purpose we recall briefly
the class field theory in the adelic language (see [C-F]).

Denote by F the group of totally positive elements of F. Let F} denote
the idele group of F, FX the archimedean part of Fj, and FZ ., the connected
component of the identity of FX, respectively. We denote by F , the subgroup
of F consisting of elements x €F} whose archimedean component x.. are con-
tained in FX ,. For each element x of F} and for a finite prime p of F, we de-
note by x, the p-component of x and define a fractional ideal 7/(x) of F by putting
il(x)o,=x,0, for all finite p, where o, is the maximal order of the completion F,
of Fatp. Set

U= {xeFj|x,E05 for all finite primes p of F},

o, being the unit group of o,. Set, for an integral ideal f,

W(f) = {xEF}|x.EFZ , and x,—1&fo, for all p dividing f},
U,(f)=UnNW,L().

By the class field theory there exists a canonical exact sequence

1 —> FFR%, —> F% —> Gal(F,,|F) —> 1,

s— [s, F]

where F*FZ , is the closure of F*FZ , in F} and where we denote by [s, F]
the element of Gal(F,;/F) corresponding to an element s of F}. If we take an
element u of W.(f), then the Galois automorphism [%, F] coincides with the
Artin symbol [i(u), Kx(f)/F] on the narrow ray class field K(f) over F.

Let a be a fractional ideal of F. To define the map &, of the quotient space
Fla to the group W(F,;) by the equality (1.2), we have to prove that the right
hand side of (1.2) depends only on the class ZEF/a (not on the choice of a re-
presentative element 2 of Z) and moreover that the image of &, is in W(F,;). To
see this we take another element 2; of F with the condition s—=2,€a. Let f, b
be the same coprime integral ideals of F as in (1.1). Then we have

.2‘10_1 = f_lbl

with some integral ideal b, prime to f. We sce easily that b and b, are in the
same class of Hy(f). Therefore,

é‘f(b7 O) = é‘f(bl’ O)
By virtue of the assertion (i) of Theorem 2.1 the value

exp(27ify(b, 0))



84 T. ARAKAWA

is a root of unity of K.(f). Thus the map &, given by (1.2) defines a map of
Fla to W(F,;).

Any element x of F} acts naturally on a fractional ideal a of F. The
ideal xa of F is characterized by the property xa=il(x)a. For each element
u of F, there exists an element v of F such that

v—x#Ex,a,  for all prime ideals p of F,

where a,=ao, in F,. Thus we obtain a natural isomorphism of F/a to F[xa

by the correspondence # mod a—v mod xa. We denote this isomorphism by
x: Fla—F/[xa and write xu mod xa for the image of # mod a.

A part of the theorem of Coates-Sinnott and Deligne-Ribet (Theorem
2.1) can be formulated in terms of the adele language as in Theorem A in the
introduction. For the completeness we give its proof here.

Proof of Theorem A.

We take a representative element s €F of a class ZEF/a and write za~'=
f~'b with coprime integral ideals f, b of F' as in (1.1). Set K=Ky(f). For s&
F} ., we decompose s=au with acF%, uc W (f). Moreover we may choose
u so that #l(x) is an integral ideal prime to w,(K). Set, for simplicity, c=il(u).
Since by definition

Ea(Z) = exp(2ziLy(b, 0)) e W(K),
we have, for o=][s, F],
Ea(?)” = Eo(2)1
= exp(27iLy(b, 0))#/F1
= exp(2wiNc £;(b, 0)) .

Therefore Theorem 2.1 implies that
(2.1) Ea(2)” = exp(2mili(ch, 0)) .
On the other hand since u €W (f) and u,Ep, for all prime ideals p of F, we
see immediately that
l1—u,e(fb~")o, for all prime ideals p of F.
Thus for every prime ideal b of F,

-1 -1,,-1
U, 2—zezfb Uy 0y,
which truns out that
ulz=zmod u'a.

Hence,



SPECIAL VALUES OF PARTIAL ZETA-FUNCTIONS 85

(2.2) s7'z=a"'z mod s7'a,
where we see that
(2.3) az€F} and a'z(s7'a)™'= {'bc.
Therefore,
Es-14(s7'2 mod s7'a) = exp(27ziLy(be, 0)) ,

which together with (2.1) completes the proof of Theorem A. |

3. Special values at s=0 of partial zeta-functions for real quadra-
tic fields

First we recall some results of [Arl]. For a real number x, denote by {x}
(res. <x)) the real number satisfying

0<{x}<l, x—{x}=Z (resp. 0<ia><1l, a—<xpEZ).

We note here that {x} +{—x>=1. In this paragraph let F be a real quadra-
tic field embeadded in R and fix it once and for all. For each « of F, let &’ denote
the conjugate of @ in F. For a €F—Q and (p, 9)=Q°, we define a Lambert
series n(a, $, p, ) by the equality (1.3) in the introduction. The infinite series
n(a, s, p, q) is absolutely convergent for Re(s)<<0O (see Lemma 1 of [Arl]). We
also define the function H(a, s, (p, )) of s by the equality (1.4) in the introduc-
tion. We note that H(a, s, (p, q)) depends on (p, ¢) mod Z% As we have seen
in [Arl1], this function H(«, s, (p, q)) can be analytically continued to a meromor-
phic function of s in the whole s-plane and has a Laurent expansion at s=0 of
the form:

H(a,s, (p,9) = 24E LD L pya, (p, g))+ -

Moreover the first coefficient 4_,(a, (p, q)) satisfies under the action of SL,(Z)
the following transformation law.

Proposition 3.1. Let acF—Q and (p,q)=Q*. Then,

(1) bV, (9 9) = hoser (V) forany V= (¢ 0)esLy2),

__aoc+b
where we put Vo= ctd’
_(ab x_( a —b * k)
Proof. For V=(* D)esLy2), set v*—(_ ~0) and (0%, =2, V"

If ¢>0 and ca+-d>0, then the identity (3.1) is nothing but the first equality in
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Proposition 4 of [Arl]. Let ¢<0 and ca+d>0. In this case since V¥(—a)=
—(Va), we get, by Propositions 3, 4 of [Ar1],

h(Va, (p,q) = —h(—(Va), (—p, 9)+23(8, 9)
= —h_(—a,(—p, 9V *)+28(p, 9)
= —ho(—a, (—p% ¢))+23(p*, ¢%)
= h_y(a, (P*» q*)) ’
where we put

1 ,q)E Z?
8(1”):{ (2,9

0 ... otherwise.

If ¢=0, d=1, then the assertion easily follows from the definition of H(a, s, (9, q)).
Finally let ca+d<0. Since Va=(—V)a, we have

h(Ve, (p, 9) = h-(a, (—p*, —¢%)) .

With the help of Lemma 5 of [Arl], the last term coincides with
h-i(a, (p*, 4%))- u

We set, for positive numbers o, 2,

Gz, o, t) = exp(—3t) @ec),
(I—exp(—1))(1—exp(—wt))
£,(s, @, %) =m§=o(z+m+nm)—s (Re(s)>2)..

The Dirichlet series (s, , 2) is absolutely convergent for Re(s)>2. For a
sufficiently small positive number &, let I,(c0) be the integral path consisting
of the oriented half line (4- oo, £), the counterclockwise circle of radius & around
the origin, and the oriented half line (&, 4 o0). Then as is well-known, the
zeta-function {,(s, w, %) has the following expression by a contour integral:

1

(3.2) EoS, 0, %) = m

S #1G(z, o, )dt ,
Ig(e)

where log ¢ is understood to be real valued on the upper half line (4 oo, &).
This expression (3.2) gives the analytic continuation of &y(s, w, 2) to a mero-
morphic function over the whole s-plane which is holomorphic except at s=
1,2. We put, for rER,

1 .. reZ

X(r):{o - rER—Z.

For each a€F—Q and a pair (p, ) EQ? we choose a totally positive unit 5 of
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F and an element V=<a Z) of SL,(Z) which satisfy the following conditions
c

(3.3) ¢>0, (p 9V =(p,q) mod 22, n(;‘) — (Z‘ 2) (i’)

We have obtained in (3.2) of [Arl] the following expresssion for k_;(«, (2, q))
using the data given in (3.3):

GH bl (2 XX = LX) (5 <)
*T(%;L(a’ 0» (P’ Q)’ G d) ’

where L(a, 0, (p, 9), ¢, d) (s€C) is the special value at s=0 of the function

c d y —
Kas,(pahed)=—35( 61— {Hre ) U=t 4,

i

with p={¢}c— {p}d. Since the above integral on the right hand side of the
equality converges absolutely for any s&C, this function L(«, s, (p, 9), ¢, d) of
s is holomorphic in the whole complex plane.

Proposition 3.2. Let a €EF—Q and (p, q)=Q. Choose a totally positive
wnit » of F and V=(“ 3) of SL(Z) as in (3.3). Then,
c

27

h—l(ar (P’ q))——X(p)X(q) = 10g 7 kmEodc Z.:Z(O: 7 xk+yk’7) ’
(e’ (0, D) —XPXD =~ 3 50,7 5ty

where we put, for each integer k,
(3.5) o= 1— {(k_+1_’)_d_q} and y, — {ﬂ},
c ¢

Proof. We know by Lemma 5 of [Arl] that

hoy(a, (—p, —9)) = hi(a, (P, 9) -
It follows from the identities (3.2) and (3.4) that

_ 2m 1
66 el (2 —) XX = o X(D) (5~ <D)

lo

y c ' * — {
+ 27 S0, 1 {FEE Um0
ogn 7=t 4 c
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where p*={—g}c—{—p}d. A slight modification of the summation in (3.6)
yields

. AL o g
(3.7) ?A';Cz(()’ 7 1_{] _L_P }+ (7 {c P} >_km20dc§2(0, 7 xk+yk7])

= X(P) (60, n, 1—{—q} +7)—E;(0, , 1—{—q})) .

An easy computation with the use of the identity (3.2) shows that
A0, m w+y7) = S BlsYr '+ B y)r+-Bi#)Bi(5)
(see (1.10) of [Sht2]),

where x, y>0 and By(x) is the k-th Bernoulli polynomial. Thus the right hand
side of the equality (3.7) coincides with

1
X(p) (<= ) -
Therefore the identity (3.6) with the help of (3.7) turns out the first identity in

Proposition 3.2. Another identity is similarly verified. |

Let a=(ay, a,) be a pair of positive numbers and x=(x,, x,) a pair of non-
negative numbers with x==(0, 0). Shintani [Sht2] defined the following zeta-
function &(s, a, x):

£, 0, %) = 33 T (at-mt-(tm)ay)™,

which is absolutely convergent for Re(s)>1. It has been proved that the zeta-
function (s, a, x) is continued analytically to a meromorphic function of s in
the whole complex plane which is holomorphic at s=0 and moreover that

(3.8) £(0, a,x) = %(52(0, ay, %+ %,01) 850, @z, x,-+2,a5))

(see [Sht1], (1.11) of [Sht2] and [Eg]).

Let f be an integral ideal of F and E(f) the group of totally positive unit u
of F with u—1€f. We denote by » the generator of the group E,(f) with »>1.
For each class C of Hy(f), take an integral ideal b of C and a basis {8, B,} of
the ideal fb=! with the conditions 3,87—B183,>>0, B,87>0. We represent the
unit » via the basis {3;, B} to get an element V" of SL,(Z) such that

(8) =)&), v=(1).

A pair (p, ) of @ is uniquely determined by the relation



SpECIAL VALUES OF PARTIAL ZETA-FUNCTIONS 89

(3.9) pBi+gB,=1.

Since € E,(f), we necessarily have

(p, QV=(p, g) mod Z*.

Set 8=p:/B,. Then, B, 5, V and (p, q) satisfy the conditions in (3.3) with
o being replaced by 8. We have proved in 4 of [Arl] that the partial zeta-
function ¢4(b, s) has the decomposition

i(b,5) = N(Bb)™ 3% 33 Nlwt-yn+m-+mn)
= NBD)™ | 5 56 1,0 (o 30)

where x4, y, are given by (3.5) (see also p.409, §2 of [Sht1] and [Ar2]). There-
fore it is immediate to see from (3.8) that the special value ;(b, 0) at s=0 is
given by the identity

(310) é‘f(b, O) = kr%dc (gz(oy 7 xk+yk’7)+§2(0) 7},; xk—l—yk’?,)) .

N[ =

The following theorem is immediate from Proposition 3.2 and (3.10).

Theorem 3.3. Let b, be coprime integral ideals of F. Choose a basis
{B1, B} of the ideal §b' with B,Bi—B1B,>0, 8,8:>0. Let 7 denote the
generator of the group E.(f) with n>1. Let (p, q)EQ’ be the same as in (3.9).

Set B=,/B,. Ther,
£4(b, 0) = —IZg (h-o(B, (P, 9)—h-+(8's (9, ) -
7l

Now we descirbe the map &,: F/la—W(F,;) in terms of the coefficient
h_y(et, (p, q)). We set, for a EF—@Q and (p, ) EQ’,

Bat, (2, ) = 5 (hs(et (£ ) —hst’ (8, 0)) -

We denote by G the group GL, defined over . Let G,=GL, 4 be the adelized
group of G. For each x&G,, denote by x.. the archimedean component of
x. Set

G.., = GL, .(R) = {x&GL,(R)|det x>0},
Go.+ = GL, ,(Q) = {xEGL,(Q)|det x>0},
Gy = {xEG,|det x.>0},

and

U= I GL{(Z,)XG.,.,
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where Z, is the ring of p-adic integers. We have the decomposition
(3.11) Gy =G U=UG,, .

Let L be a Z-lattice in Q. Set L,=L®;Z,. For an element x of G4, we de-
fine Lx to be the Z-lattice characterized by (Lx),=L,x, in @ =L®qQ,. More-
over any element x of G4 has a natural action on the quotient space @/L by the
right multiplication and defines an isomorphism of @*/L to @*/Lx We denote by
rx the image of an element 7&E@Q*/L by this isomorphism. For any x=G, ,,
we write

x=ug with u€U, g&lq,.,.
We define the action of x on H(a, (p, ¢)) to be
(3.12) 5 (a, (9, 9)) = b(ge, (P, D)

where we note that the element (p, ¢)u is uniquely determined as an element
of @|Z*. Since Gq  NU=SL,Z), the right hand side of the equality (3.12)
is independent of the decomposition x=ug(u& U, gEG,,,) according to (3.1).

Let a be a fractional ideal of F' with an oriented basis {a;, @,} (namely,
a=Za,+Za,, ayai—aia,>>0). Choose a representative element 20 of the
class ZEF/a and write

za™l= f-1b

with coprime integral ideals f, b of F. A pair (p,q) of rational numbers is
uniquely determined by

2 = pay+qo, .

Let g: F*—>GL,Q) be the homomorphism given by (1.6) in the introduction
which is defined via the basis {a;, a,} of a. We also use the same symbol ¢ for
the natural extension of ¢ to the homomorphism of F} to G4. Obviously,
9(F% )G

A description of the map &.: Fla—W(F,;) in this case is formulated in
Theorem B in the introduction. Now under the above preparations we can
give its proof.

Proof of Theorem B. Let the notation be the same as in the assertion of
Theorem B. The expression on the right hand side of (1.7) is independent
of the choice of an oriented basis {a,, a;} of ain virtue of Proposition 3.1. There-
fore we may assume that

aes—aia,>0, aa;>0,

if necessary, by change of a basis {ay, a;} of a. We choose an element 2, of
F% such that z—z,€a and set 2,=p,a,+qct, with a pair of rational numbers
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(21, 1) We can write
2‘10_1 _ f—lbl
with an integral ideal b, of F prime to the same f. Then,

fbr! = 27'a = Z(au[21)+Z(0,[2) ,
bian/z)+q(ayfz) = 1.

Noticing that 2, is also a representative element of the calss Z, we get, by the
definition (1.2) of the map &,

£q(2) = exp(27iLy(by, 0)) .

By virtue of Theorem 3.3 the special value £y(b;, 0) has the expression

£5(by, 0) =

%81 b(ar, (b1, )

7l

where we put a=ay/a,.  Since (p1, ¢1)=(p, ¢) mod Z?, we immediately have
the identity (1.7). ‘
Next let s€F} , and write

g(s) ' =ug with ueU, geGy, .
Br\ _ (al
(o) =<(2):

BiB:—B16,>0.

We set

Obviously,

Then we see easily that
s7la = qu(s)“‘(al) = Z’g(a‘)
a, a,
= Zﬁl‘f‘zﬁz
and moreover that

s7lz = (p, q)u<g:) mod s~'a,

where (p, q)u stands for an element of @*/Z* and where s~z is not determined
as an element of F but uniquely determined modulo s~'a. Choose a repre-

sentative element 6(6=0) of the class s~'z=s"'2 mod s~'a. We see from (2.2),
(2.3) in the proof of Theorem A that

0(s7la)t = {~'b,
with some integral ideal b, of F prime to f. Set 8=p,/B8,. Thus we have,
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by the expression (1.7) and the definition (3.12),

Es-1a(s7"2) = exp(log »-5(B, (P, Q)u))
= exp(log »-b(ga, (p, Q)u))
= exp(log -5 (e, (2, 9))) -

Finally thanks to Theorem A in the introductoton we obtain the identity (1.8). W

We continue the assumption that F is a real quadratic field. For ae
F—Q, we define £(s, @) to be the Dirichlet series

> cot Zzna
Sy — 2
n=1 n

We have proved in [Ar2] that E(s, ) is absolutely convergent for Re(s)>1
and that it can be continued analytically to a meromorphic function in the whole
s-plane. Moreover, £(s, &) has a simple pole at s=1. We denote by c_,(a)
the residue of &(s, @) at the simple pole s=1. The function H(e, s, (0, 0)) given
by (1.4) has the following obvious connection with &(s, @):

H(a, s, (0, 0) = 1+" CGE(—s, @)—L(1—s))

where &(s) is the Riemann zeta function. Thus we have
h_y(a, (0,0)) = —ic_y(a)+1.
Since ¢_j(a’)=—c-,(a) (see Proposition 2.10 of [Ar2]), it follows that
H(a, (0,0)) = —ic_y(a) .

Let & be the totally positive fundamental unit of F with €&>1. Choose a basis
{ot;, &y} of a fractional ideal a of F such that

oo —aia,>0, aa;>0.
We represent € by the basis {a;, @,} to get a matrix V' of SLy(Z):
() =) 7=(0)
We get, by Theorem B,
£:(0 mod a) = exp(log &-A((a, (0, 0))
= exp(—zlog &-c_4()),

where we put a=a,/a,. Taking the facts Va=«a, ¢>0, ca4-d>0 into account,
we have, with the help of Proposition 2.9, (i) of [Ar2],
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27 < a+d 1
(o) = — —s(d )—~),
e-:() log & \ 12 <) 4>
where s(d, ¢) is the Dedekind sum (for the Dedekind sum we refer the reader to
[R-G]). Hence,
1

£4(0 mod a) — eXp(Zm'( alercd —(d, c)—2~>> .

It is known that the value (a+d)/c—12s(d, c) is a rational integer (see Ch.4 of
[R-G] and Remark 3.2 of [Ar2]). Therefore the value £,(0 mod a) is a twelfth
root of unity.
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