# ALMOST QF RINGS WITH $J^{3}=0$ 

Manabu HARADA

(Received June 2, 1992)
(Revised September 16, 1992)

In this paper we always assume that $R$ is a two-sided artinian ring with identity. In [3] we have defined right almost QF rings and showed that those rings coincided with rings satisfying (*)* in [2], which K . Oshiro [5] called co-H rings. We shall show in Section 2 that right almost QF rings are nothing but direct sums of serial rings and QF rings, provided $J^{3}=0$. Further in Section 5 we show that if $R$ is a two-sided almost QF ring and $1=e_{1}+e_{2}+e_{3}$, then $R$ has the above structure, provided $J^{4}=0$, where $\left\{e_{t}\right\}$ is a complete set of mutually orthogonal primitive idempotents. Moreover if $1=e_{1}+e_{2}+e_{3}+e_{4}$, we have the same result except one case. We shall study, in Section 3, right almost QF rings with homogeneous socles $\mathrm{W}_{k}^{n}(Q)$ [7] and give certain conditions on the nilpotency $m$ of the radical of $\mathrm{W}_{k}^{n}(Q)$, under which $\mathrm{W}_{k}^{n}(Q)$ is left almost QF or serial. In particular if $m \leqq 2 n, \mathrm{~W}_{k}^{n}(Q)$ is serial. We observe a special type of almost QF rings such that every indecomposable projective is uniserial or injeative in Section 4.

## 1. Almost QF rings

In this paper we always assume that $R$ is a two-sided artinian ring with identity and that every module $M$ is a unitary right $R$-module. By $\bar{M}$ we denote $M / \mathrm{J}(M)$, where $\mathrm{J}(M)$ is the Jacobson radical of $M$. We use the same notations in [3]. We call $R$ a right almost QF ring if $R$ is right almost injective as a right $R$-module [3] and [4]. We can define similarly a left almost QF ring. If $R$ is a two-sided almost QF ring, we call it simply an almost QF ring. It is clear that $R$ is right almost QF if and only if every finitely generated projective $R$-modlue is right almost injective. Hence the concept of almost QF rings is preserved under Morita equivalence and we may assume that $R$ is basic.

In this section we shall give some results which we use later. First we give a property of any right almost QF rings.

Proposition 1. Assume that $R$ is right almost QF . Let $e_{1} R$ be injective, $e_{1} J^{i}$ be projective, i.e., $e_{1} J^{i} \approx e_{\rho(i)} R$ for all $i \leqq($ some $k)$ and $e_{1} J^{k+1} / e_{1} J^{k+2} \approx \bar{e}_{a} \bar{R} \oplus \cdots$.

Then if $e_{a} R$ is not injective, $e_{1} J^{k+1} \approx e_{a} R$, and hence $\left|e_{1} J^{k+1} / e_{1} J^{k+2}\right|=1$, where $\bar{e}_{a} \bar{R}={ }_{c_{a}} R / e_{a} J$.

Proof. Let $x_{a} R$ be a submodule in $e_{1} J^{k+1}$ such that $\left(x_{a} R+e_{1} J^{k+2}\right) / e_{1} J^{k+2} \approx$ $\bar{e}_{a} \bar{R}\left(x_{a} e_{a}=x_{a}\right)$. Suppose that $e_{a} R$ is not injective. Then $e_{a} R \subset e_{p} R$ (isomorphically) for some $p \neq a$, which is injective by [3], Corollary to Theorem 1. Let $\rho: e_{a} R \rightarrow x_{a} R \subset e_{1} R ; \rho\left(e_{a}\right)=x_{a}$, be the natural epimorphism. Since $e_{1} R$ is injective, there exists $\rho^{\prime}: e_{p} R \rightarrow e_{1} R$, which is an extension of $\rho$. Put $y=\rho^{\prime}\left(e_{p}\right)$; $\left(y=y e_{p}\right)$ and $e_{a}=e_{p} r ; r \in R$. We note that the $e_{1} J^{i}$ are all waists for $i \leqq k+1$ by assumption. If $y \in e_{1} J^{k+1}$, then $\bar{x}_{a}=\bar{y} r=\bar{y} e_{p} r e_{a}=\bar{\sigma}$ in $e_{1} J^{k+1} / e_{1} J^{k+2}$, a contradiction. Accordingly $y R=e_{1} J^{t}$ for some $t \leqq k$. However $e_{1} J^{t}$ is projective, and hence $\rho^{\prime}$ is a monomorphism. Consequently $e_{1} J^{k+1}$ contains isomorphically the projective module $e_{a} R$, and $e J^{k+1}$ is local form [3], Corollary to Theorem 1.

Proposition 2. Let $R$ be right almost QF . If $R$ is either a local ring or $J^{2}=0$, then $R$ is serial or QF .

Prof. $R$ is a QF ring in the first case from [3], Corollary to Theorem 1. Assume $J^{2}=0$ and $R$ is basic. If $e R$ is injective for a primitive idempotent $e$, then $|e R| \leqq 2$ and $e R$ is uniserial. Hence $f R$ is injective and uniserial provided $f J \neq 0$ by [3], Corollary to Theorem 1. Hence $R$ is right serial and so $R$ is serial by [5], Theorem 6.1.

Let $\bar{k} \bar{R}$ (or $\bar{R} \bar{g}$ ) be a simple module which appears in the factor modules of composition series of $e R$ (or $R e$ ), where $g$ is a primitive idempotent. In this case we say that $g$ belongs to $e R$ (or $R e$ ).

Lemma 1. Let $R$ be basic and let $\left\{e_{i} R\right\}_{i \leq s}$ be a set of injective and projective modules. Assume that every primitive idempotent belonging to $e_{i} R$ is equal to some $e_{\mu(i)} \in\left\{e_{i}\right\}$ for each $e_{i}$. Then $\Sigma_{i \leqq s} \oplus e_{i} R$ is a direct summand of $R$ as rings.

Proof. We note from the asumption that for each $e_{j} \in\left\{e_{i}\right\}$ there exists $e_{\rho(j)}$ in $\left\{e_{i}\right\}$ such that $\bar{e}_{j} \bar{R} \approx \operatorname{Soc}\left(e_{\rho(j)} R\right)$. Put $E=\Sigma_{i \leq s} e_{i}$ and $F=1-E=\Sigma_{k \leq p} f_{k}$, where the $f_{k}$ are primitive idempotents. Then $E R F=0$ from the assumption. Let $\theta: e_{1} R \rightarrow f_{k} R$ be a homomorphism. If $\theta \neq 0$, there exist a simple submodule $S$ of $f_{k} R$ and a submodule $T$ of $e_{1} R$ such that $S \subset \theta\left(e_{1} R\right)$ and $T / \theta^{-1}(0) \approx S$. We may assume $S \approx \bar{e}_{j} \bar{R}$ for some $e_{j}$ in $\left\{e_{i}\right\}$ by assumption. Accordingly $S \approx \operatorname{Soc}\left(e_{\rho(j)} R\right)$ by the initial remark, and hence we obtain a non-zero homomorphism of $f_{k} R$ to $e_{\rho(j)} R$, since $e_{\rho(j)} R$ is injective. Therefore $f_{k} \in\left\{e_{i}\right\}$ by asumption, a contradiction. As a consequence $\theta=0$, i.e., $F R E=0$ and $R=E R \oplus F R=E R E \oplus F R F$.

The following lemma is essential in this paper.
Lemma 2. Let $R$ be artinian and $F$ a uniform $R$-modlue. Assume that i): $e R$ is injective, ii): eJ is a local quasi-projective module and iii): $\operatorname{Soc}_{2}(F) / \operatorname{Soc}(F)$
$\approx \bar{e} \bar{R} \oplus A_{2} \oplus A_{3} \oplus \cdots$, where $e$ is a primitive idempotent and the $A_{i}$ are simple. Then $A_{i} \approx \bar{e} \bar{R}$ for all $i$.

Proof. Assume $A_{2} \approx \bar{e} \bar{R}$. Then since $\operatorname{Soc}_{2}(F) / \operatorname{Soc}(F) \approx \bar{e} \bar{R} \oplus \bar{e} \bar{R} \oplus \cdots$, $\operatorname{Soc}(F)$ is simple and $e J^{2}$ is a waist by i) and ii), there exist $x_{1}, x_{1}^{\prime}$ in $\operatorname{Soc}_{2}(F)$ such that $x_{1} R \neq x_{1}^{\prime} R, x_{1} R \approx x_{1}^{\prime} R \approx e R / e J^{2}$. Now let $\rho: x_{1} R \rightarrow e R / e J^{2}$ be the isomorphism. Then $\rho\left(\operatorname{Soc}\left(x_{1} R\right)\right)=e J / e J^{2} \approx \bar{e}_{1} \bar{R}$, where $e J \approx e_{1} R / D$ and $D$ is a charateristic submodule of $e_{1} R$ by ii), where $e_{1}$ is a primitive idempotent. Take any element $\alpha$ in $\operatorname{End}_{R}\left(\operatorname{Soc}\left(x_{1} R\right)\right)$. Then $\alpha$ gives an element $\bar{d}_{1}$ in $\operatorname{End}_{R}\left(\bar{e}_{1} \bar{R}\right)$ via $\rho$. Then $\bar{d}_{1}$ is induced by an element $d_{1}$ in $\operatorname{End}_{R}\left(e_{1} R\right)$. On the other hand, since $D$ is characteristic, $e_{1} R / D \approx e J \subset e R$ and $e R$ is injective, $d_{1}$ is extendible to $d$ in $\operatorname{End}_{R}(e R)$. Hence $d$ induces an element in $\operatorname{End}_{R}\left(e R / e J^{2}\right)$ (and in $\operatorname{End}_{R}\left(x_{1} R\right)$ via $\rho^{-1}$, cf. the diagram).


Thus we have obtained a mapping $\theta$ by taking extension, which may depend on a choice of $d$

$$
\theta: \operatorname{End}\left(\operatorname{Soc}\left(x_{1} R\right)\right) \rightarrow \operatorname{End}_{R}\left(x_{1} R\right) .
$$

Let $t: x_{1} R \rightarrow x_{1}^{\prime} R$ be the given isomorphism. Then $t$ induces $\bar{d}_{1}$ in $\operatorname{End}(\operatorname{Soc}(F))$ $=\operatorname{End}_{R}\left(\operatorname{Soc}\left(x_{1} R\right)\right)$ by taking restriction. Put $t^{\prime}=\theta\left(\bar{d}_{1}\right)-t: x_{1} R \rightarrow F$. Then $t^{\prime}\left(\operatorname{Soc}\left(x_{1} R\right)\right)=0$, and hence $t^{\prime}\left(x_{1} R\right) \subset \operatorname{Soc}(F)$. Then $t\left(x_{1} R\right)=\left(\theta\left(\bar{d}_{1}\right)-t^{\prime}\right)\left(x_{1} R\right) \subset$ $x_{1} R+\operatorname{Soc}(F)=x_{1} R$, a contradiction.

## 2. $J^{3}=0$

In this section we shall observe the ring $R$ with following properties: 1) $R$ is a basic and right almost QF ring, 2): $J^{2} \neq 0$ and $J^{3}=0$.

Lemma 3. Assume that $f R$ is injective and $J^{3}=0$. Then we have 1$): f J^{2}$ is simple or zero and 2): $f R$ is uniserial if $f J^{2}=0$.

Lemma 4. Let $f R$ and $J$ be as in Lemma 3 and assume that $R$ is right almost QF . If $f R$ contains properly a projective submodule $P \neq 0$, then $f R$ is uniseria and hence $|f R| \leqq 3$.

Proof. Since $f R \supset f J \supset P \supset \operatorname{Soc}(f R), f J$ is local by [3], Corollary to Theorem 1 , and hence $f R$ is uniserial for $f J^{3}=0$.

Corollay. Assume that $R$ is right almost QF and $J^{3}=0$. If $|e R| \geqq 3$, i.e. $e J^{2} \neq 0$, then $e R$ is injective. Hence $g R$ is injective or uniserial for any primitive idempotent $g$.

Proof. If $e R$ is not injective, $e R \subset f R$ for some injective $f R$ by [3], Corollary to Theorem 1, a contradition to Lemma 4.

Let $e_{1} R$ be an (injective) $R$-module. If $e_{1} J / e_{1} J^{2} \approx \bar{e}_{a} \bar{R} \oplus \bar{e}_{b} \bar{R} \oplus \cdots$ and $e_{1} J^{2} \approx \bar{e}_{c} \bar{R}$, then we denote this situation by

$$
\begin{array}{cc}
a & e_{a} \\
e_{1} R=(1 b c) \text { or } e_{1} R=\left(e_{1} e_{b} e_{c}\right) . \\
\vdots & \vdots
\end{array}
$$

Lemma 5. Let $e_{1} R$ be injective and $e_{1} J^{2} \neq 0\left(\approx \bar{e}_{c} \bar{R}\right)$ in the above. Then $e_{a} J / e_{a} J^{2} \approx \bar{e}_{c} \bar{R} \oplus \cdots$.

Proof. There exists $x_{a} R$ in $e_{1} J$ such that $x_{a} R \supset \operatorname{Soc}\left(e_{1} R\right), x_{a} R / \operatorname{Soc}\left(e_{1} R\right)=$ $\bar{e}_{a} \bar{R}$ and $x_{a} R \approx e_{a} R / A$ for some $A$. Hence we obtain the lemma.

Lemma 6. Let $e_{1} R$ be a non-uniserial and injective module expressed as above. We assume that $R$ is right almost QF and $J^{3}=0$. Then $e_{c} R$ is injective. Further if $e_{a} R$ is uniserial, then $e_{c} R$ is not.

Proof. First we assume $a \neq b$. Now $e_{a} R$ is an injective module with $e_{a} J^{2} \neq 0$ by Proposition 1. We have the same for $e_{b} R$. From Lemma 5 let

$$
\begin{array}{cc}
c \\
e_{a} R=\left(a c_{1} d\right) & \text { and } e_{b} R=\left(\begin{array}{c}
c \\
\vdots \\
\vdots
\end{array} d^{\prime}\right) \\
\vdots
\end{array}
$$

Since $e_{a} R \not \approx e_{b} R, d \neq d^{\prime}$. Then $e_{c} R$ is not uniserial (even though $e_{a} R$ is uniserial in this case), and hence $e_{c} R$ is injective by Corollary to Lemma 4. Next assume $a=b$, i.e.

$$
e_{1} R=\left(\begin{array}{c}
a \\
\vdots \\
\vdots
\end{array}\right)
$$

If $e_{a} R$ is not uniserial, $e_{c} R$ is injective by Lemma 5 and Proposition 1. Hence assume that $e_{a} R$ is uniserial. If further $e_{c} R$ is uniserial, then we can derive a contradiction by Lemma 2. Therefore if $e_{a} R$ is uniserial, then $e_{c} R$ is not uniserial and hence $e_{c} R$ is injective by Corollary to Lemma 4.

Theorem 1. Let $R$ be an aritnian ring with $J^{3}=0$. Then the following are equivalent :

1) $R$ is right almost QF .
2) $R$ is left almost QF .
3) $R$ is a direct sum of serial rings and QF rings.

Proof. Let $\left\{e_{i}\right\}_{i \leq t}$ be the complete set of mutually orthogonal primitive idempotents. We shall prove the theorem inductively on $t$. If every $e R$ is uniserial, then $R$ is right serial. Therefore $R$ is serial by [5], Theorem 6.1. Hence we asaume that there exists an injective but not uniserial module $e_{1} R=\left(\begin{array}{c}a \\ \vdots \\ \vdots\end{array} c\right)$. We have shown in Lemma 6
(1) if $e_{g}$ belongs to $e_{1} R$, then $e_{g} R$ is injective, i.e., $e_{a} R, e_{b} R$ and $e_{c} R$ are injective. We shall show that if we replace $e_{1} R$ with $e_{a} R, e_{b} R$ and $e_{c} R$, then we obtain
(2) the same result as (1) for those $e_{a} R, e_{b} R, e_{c} R$.

If $e_{a} R$ is not uniserial, we obtain (2) for $e_{a} R$. Suppose $e_{a} R$ is uniserial. Then $e_{a} J \approx e_{c} R / B$. Hence
(3) primitive idempotents $\left(\neq e_{a}\right)$ belonging to $e_{a} R$ belongs to $e_{c} R$ if $e_{a} R$ is uniserial.
Since $e_{c} R$ is not uniserial by Lemma 6, from (3) we obtain again (2) for $e_{a} R$. Next consider $e_{c} R$. If $e_{a} R$ is not uniserial, we obtain (2) for $e_{c} R$ from the above (replace $e_{1} R$ by $e_{a} R$ ). Suppose $e_{a} R$ is uniserial, and $e_{c} R$ is not uniserial by Lemma 6. Hence we obtain (2) for $e_{c} R$. Thus we have shown (2). Now starting from $e_{1} R$, we get $e_{a} R, e_{b} R$ and $e_{c} R$ which belong to $e_{1} R$. Next we take primitive idempotents belonging to $\left\{e_{a} R, e_{b} R, \cdots, e_{c} R\right\}$. Continuing this procedure and gathering all such primitive idempotents (use (1), (2) and (3)), we can find finally a set $\left\{e_{1} R, e_{a} R, \cdots\right\}$ satisfying the condition in Lemma 1. Hence $R=$ $\Sigma_{i \leq m} \oplus e_{i} R \oplus \Sigma_{j>m} \oplus e_{j} R$ as rings. Now $\Sigma_{i \leq m} \oplus e_{i} R$ is a QF ring. Thus we can obtain the theorem by induction.

## 3. Right almost $\mathbf{Q F}$ rings with homogeneous socles

In this section we shall study rings stated in the title. Let $\left\{e_{i}\right\}_{i \leq n}$ be a complete set of mutually orghogonal promitive idempotents with $1=\Sigma e_{i}$ and $R$ a basic ring.

Let $Q$ be a local $Q F$ ring with $J$ radical. Put $\bar{Q}=Q / \operatorname{Soc}(Q)$ and $\bar{J}=$ $J / \operatorname{Soc}(Q)$. According to [7], Theorem 1 we denote a right almost QF ring $R$ with homogeneous socle by

We note from [1] that there is only one projective and injective module $e_{1} R$ (resp. $R e_{k}$ ) in $R$.

Lemma 7. Assume $k<n$ on $R=\mathrm{W}_{k}^{n}(Q)$. Then if $R$ is left almost QF , $R$ is serial.

Proof. Let $e_{i}=e_{i i}$ be the matrix unit in $R$. Then $e_{i} \mathrm{~J}(R) \approx e_{i+1} R$ for $i<n$ and $e_{n} \mathrm{~J}(R)=(J \cdots J \bar{J} \bar{J} \cdots \bar{J})$. Now assume $k<n$ and $R$ is left almost QF. Then since $\mathrm{J}(R) e_{s} \approx R e_{s-1}$ for $s \leqq k, \mathrm{~J}(R) e_{1}=(J J \cdots J)^{t}$ is isomorphic to $R e_{q}=(\bar{Q} \bar{Q} \cdots \bar{J})^{t}$ for some $p>k$ from the remark before Lemma 7 and [5], Theorem 3.18 (see [3], Corollary to Theorem 1), where ( $)^{t}$ is the transposed matrix of ( ). Hence since $e_{1} \mathrm{~J}(R) e_{1} \approx \bar{Q}$ as left $Q$-modules, $J$ is local and hence $Q$ is serial (cf. Lemma 9 below). Then $J \approx Q / \operatorname{Soc}(Q)=\bar{Q}$ and $J / \operatorname{Soc}(J)=J / \operatorname{Soc}(Q)=\bar{J} \approx Q / \operatorname{Soc}_{2}(Q) \approx$ $\bar{Q} / \operatorname{Soc}(\bar{Q})$ as right $Q$-modules. Put $A=(\operatorname{Soc}(Q) \operatorname{Soc}(Q) \cdots \operatorname{Soc}(Q) \operatorname{Soc}(\bar{Q}) \cdots$ $\operatorname{Soc}(\bar{Q}))$ in $e_{1} R$. Then $e_{n} \mathrm{~J}(R) \approx e_{1} R / A$ from the above observation and hence $e_{n} \mathrm{~J}(R)$ is local. Therefore $R$ is right serial, and hence $R$ is serial by [5], Theorem 6.1.

Lemma 8. Assume $k=n$ on $R=\mathrm{W}_{k}^{n}(Q)$. Then $R$ is left almost QF .
Proof. This is clear from (4)
Theorem 2. Let $R$ and $n$ be as in the begining. Assume that $R$ is a right almost QF ring with homogeneous socle and $\mathrm{J}(R)^{m-1} \neq 0, \mathrm{~J}(R)^{m}=0$ (and hence $R=$ $\mathrm{W}_{k}^{n}(Q)$ and $\left.m \geqq n\right)$. Then

1) if $m \leqq 2 n, R$ is serial,
2) if $m=n r, r \geqq 3, R$ is left almost QF , and
3) if $m=n r+k, r \geqq 2$ and $o<k<n, R$ is left almost QF if and only if $R$ is serial.

Proof. By assumption and [7], Theorem $1 R=\mathrm{W}_{t}^{n}(Q)$ and we have $e_{i} \mathrm{~J}(R)$ $\approx e_{i+1} R$ for $i<n-1$. By a direct computation of $\mathrm{J}(R)^{p}$ we have
i) $e_{n} \mathrm{~J}(R) / e_{n} \mathrm{~J}(R)^{2} \approx \bar{e}_{1} \bar{R} \oplus \cdots \oplus \bar{e}_{1} \bar{R}$ (cf. Proposition 1).
ii) $e_{1} \mathrm{~J}(R)^{t n}=\left(J^{t} \cdots\right)$.
1). Since $m \leqq 2 n, 0=e_{1} J(R)^{2 n}=\left(J^{2} \cdots\right)$ by ii). Hence $J^{2}=0$ and so $Q$ is serial. Accordingly $R$ is seiral from the proof of Lemma 7.
2) and 3). From i) we know

$$
e_{1} R=\left(\begin{array}{lllll} 
& 1 & 1 & 3 & 3
\end{array}\right]
$$

Further $J^{m}=0$ if and only if $e_{1} \mathrm{~J}(R)^{m}=0$. Hence $\operatorname{Soc}\left(e_{1} R\right) \approx \bar{e}_{n} \bar{R}$ if $m=n r$ and $\operatorname{Soc}\left(e_{1} R\right) \approx \bar{e}_{k} \bar{R}$ if $m=n r+k, o<k<n$. Therefore $R \approx \mathrm{~W}_{n}^{n}(Q)$ if $m=n r$ and $R \approx$ $\mathrm{W}_{k}^{n}(Q)$ if $k \neq o$. As a consequence we obtain the theorem from Lemmas 7 and 8.

Corollary. Assume $n=2$ and $R$ is right almost QF . Then if $\mathrm{J}(R)^{2 m-1} \neq 0$, $\mathrm{J}(R)^{2 m}=0, R$ is left almost QF . If $\mathrm{J}(R)^{2 m} \neq 0, \mathrm{~J}(R)^{2 m+1}=0, R$ is QF or serial if and only if $R$ is left almost QF. Further if $J(R)^{4}=0, R$ is QF or serial.

Proof. If $R$ is QF or serial, the corollary is clear by [5], Theorem 4.5. Assume that $R$ is not QF. Since $n=2$, we can suppose that $e_{1} R$ is injective and $e_{1} \mathrm{~J}(R) \approx e_{2} R$. Hence we obtain the corollary from Theorem 2.

## 4. Rings with (\#-i)

In the previous sections we have observed a ring which is a direct sum of QF rings and serial rings. In this case
(\#-1) eR is injective or uniserial for each primitive idempotent e.
We consider two more conditions. Let $e R$ be injective but not uniserial. Then we may assume that there exists an integer $s$ such that $e J^{i} / e J^{i+1}$ is simple for all $i(o \leqq i \leqq s-1)$ and $e J^{s} / e J^{s+1} \approx \Sigma_{j \leq k} \oplus \widetilde{f}_{j} \bar{R} ; k \geqq 2$, where the $f_{j}$ are primitive idempotents. Here we consider the second condition
(\#-2) the $f_{j} R$ is injective for all $j$.
Assume that $R$ is a right almost QF ring with (\#-1). In the above we put $e J^{i} / e J^{i+1} \approx \overline{g_{i}} \bar{R} ; g_{i}$ is a primitive ideomptent. Since $e R$ is not uniserial, $g_{i} R$ is injective by (\#-1). In particular $e J^{s-1} \approx g_{s-1} R / A$ for some $A$ in an injective $g_{s-1} R$ and hence $e J^{s} / e J^{s+1} \approx g_{s-1} J /\left(g_{s-1} J^{2}+A\right) \leftarrow g_{s-1} J / g_{s-1} J^{2}$. Since $\left|e J^{s}\right| e J^{s-1} \mid \geqq$ 2 , (\#-2) is satisfied from Propostion 1. From the above observation we know that

Assume that $R$ is right almost QF , the (\#-1) is satisfied if and only if every non-injective projective $g R$ is contained in a uniserial injective $e R$ and in this case (\#-2) and (\#-3) below are satisfied.

Taking some non-serial right serial rings, we can get rings with (\#-1, 2) which are not right almost QF. Hence we consider the third condition. Here we assume temporarily that $R$ is an algebra over a field $K$ with finite dimension. We further assume that $R$ satisfies (\#-1) as right as well as left $R$-modules. Let $g R$ be not injective, and hence uniserial. Then $\mathrm{E}(g R)$ is indecomposable. Take $\mathrm{E}(g R)^{*}=\operatorname{Hom}_{K}(E(g R), K)$. Then $\mathrm{E}(g R)^{*}$ is indecomposable and projective. Therefore $\mathrm{E}(g R) \approx \mathrm{E}(g R)^{* *}$ is local. We consider this property for any ring.
(\#-3) $\mathrm{E}(g R)$ is local for each primitive idempotent $g$.
Now we study rings with (\#-1, 2, 3). We always assume that $R$ is basic.
Lemma 9. Assume eJj $/ e J^{i+1} \approx \bar{e}_{1} \bar{R} \oplus \bar{e}_{2} \bar{R} \oplus \cdots \oplus \bar{e}_{s} \bar{R}$. Then $e J^{i+1} / e J^{i+2}$ is a homomorphic image of $\bar{e}_{1} \bar{J} \oplus \bar{e}_{2} \bar{J} \oplus \cdots \oplus \bar{e}_{s} \bar{J}$.

Proof. We can express $e J^{i}$ as $x_{1} R+x_{2} R+\cdots+x_{s} R+e J^{i+1}$, where $x_{j} e_{j}=x_{j}$. Hence $e J^{i+1}=x_{1} e_{1} J+\cdots+x_{s} e_{s} J+e J^{i+2}$. Thus we obtain the lemma.

Lemma 10. We assume that (\#-3) is satisfied. Suppose that eR is injective and $e J / e J^{2} \approx \bar{g}_{1} \bar{R}, g_{1} J / g_{1} J^{2} \approx \bar{g}_{2} \bar{R}, \cdots, g_{s-1} J / g_{s-1} J^{2} \approx \bar{g}_{s} \bar{R}$, where the $g_{i}$ is a primitive idempotent and $g_{i} R$ is not injective for all $i$. Then $e R \supset g_{1} R \supset \cdots \supset g_{s} R$ isomorphically.

Proof. We shall show $e J^{i} \approx g_{i} R$ for all $i$ by induction on $i$. Assume $e J^{t} \approx g_{t} R$ if $t \leqq($ soem $k-1)$. Then $e J^{k} / e J^{k+1} \approx g_{k-1} J / g_{k-1} J^{2} \approx \bar{g}_{k} \bar{R}$ by assumption. Let $e J^{k}=x_{k} R\left(x_{k} g_{k}=x_{k}\right)$ and $\rho: g_{k} R \rightarrow e J^{k}\left(\rho\left(g_{k}\right)=x_{k}\right)$ the natural epimorphism. Take a diagram


Since $e R$ is injective, we have $\rho^{\prime}: E\left(g_{k} R\right) \rightarrow e R$ which commutes the diagram. $\mathrm{E}\left(g_{k} R\right)$ being local from (\#-3), $\rho^{\prime}\left(\mathrm{E}\left(g_{k} R\right)\right) \supseteqq x_{k} R=\rho^{\prime}\left(g_{k} R\right)$ for $g_{k} R \neq \mathrm{E}\left(g_{k} R\right)$. Further $e J^{t}$ is a waist for all $t \leqq k$ by induction hypothesis. Consequenctly $\rho^{\prime}\left(\mathrm{E}\left(g_{k} R\right)\right)$ is projective. Therefore $\rho^{\prime}$ is a monomorphism, and hence so is $\rho$.

Lemma 11. We assume that (\#-1), (\#-2) and (\#-3) are satisfied and that eR is injective and $g_{1}$ belongs to $e R$. If $g_{1} R$ is not injective, then $g_{1} R$ is contained isomorphically in an injective and uniserial module $e_{1} R$.

Proof. Since $g_{1}$ belongs to $e R$, we may suppose $e J^{s} / e J^{s+1} \approx \bar{g}_{1} \bar{R} \oplus \cdots$ for some $s$. $g_{1} R$ being not injective, $s \neq o$. If $s=1$, then $\left|e J / e J^{2}\right|=1$ by (\#-2) and $g_{1} R \approx e J$ from Lemma 10 and $e R$ is uniserial by (\#-1). Hence assume $s>1$. From Lemma 9 there exists $g_{2}$ such that $e J^{s-1} / e J^{s} \approx \bar{g}_{2} \bar{R} \oplus \cdots$ and $g_{2} J / g_{2} J^{2} \approx \bar{g}_{1} \bar{R}$ $\oplus \cdots$. If $g_{2} R$ is not uniserial, $g_{2} R$ is injetive by (\#-1), and then $g_{1} R$ is injective by (\#-2), a contradiction (cf. the remark after (\#-2)). Accordingly $g_{2} R$ is uniserial and hence $g_{2} J / g_{2} J^{2} \approx \bar{g}_{1} \bar{R}$. Next assume that $g_{2} R$ is not injective. Then $g_{2} R$ satisfies the same condition as on $g_{1} R$, and hence similarly to the above we can find $g_{3} R$ such that $e J^{s-2} / e J^{s-1} \approx \bar{g}_{3} \bar{R} \oplus \cdots$ and $g_{3} J / g_{3} J^{2} \approx \bar{g}_{2} \bar{R} \oplus \cdots$. Repeating this process, we obtain finally an injetive and uniserial module $e_{1} R$ such that $e_{1} J / e_{1} J^{2} \approx \bar{g}_{s} \bar{R}$ for some $t$ (and $g_{t} J / g_{t} J^{2} \approx \bar{g}_{t-1} \bar{R}, \cdots g_{2} J / g_{2} J^{2} \approx \bar{g}_{1} \bar{R}$ ). Hence $e_{1} R$ contains isomorphically $g_{1} R$ from Lemma 10.

Proposition 3. (\#-1), (\#-2) and (\#-3) are satisfied if and only if $R$ is right almost QF and every non-injective projective $g R$ is contained in a uniserial and injective eR.

Proof. We assume (\#-1,2,3). First we shall show that $R$ is right QF-3. Let $e R$ be not injective. Then $\mathrm{E}(g R)$ is local by (\#-3), i.e., $\mathrm{E}(g R) \approx f R / A$ and
$f R$ is uniform from (\#-1). Further $f R / A \supset g R$ and $g R \approx B / A$ for some $B(\supset A)$ in $f R$. Therefore since $g R$ is projective and $f R$ is uniform, $A=0$ and $f R=$ $\mathrm{E}(g R) \supset g R$. Accordingly $R$ is right QF-3. Let $h R$ be injective and suppose $h R \supset k_{1} R$, where $h$ and $k_{1}$ are primitive ideompotents. Then form the last part of the proof of Lemma 11 there exists a uniserial and injective module $h_{1} R$ such that $h_{1} R=\left(h_{1} k_{s} \cdots k_{1} \cdots\right)$ and $h_{1} R \supset k_{1} R$. Hence $h R \approx h_{1} R$. Thus $R$ is right almost QF by [3], Corollary to Theorem 1. The converse is clear from the remark before Lemma 9.

## 5. $J^{4}=0$

In this section we assume that $R$ is an (basic) artinian ring with $J^{4}=0$. Let $1=\Sigma_{i \leq n} e_{i}$ be as in §3. We studied almost QF rings with $n=2$ in Corollary to Theorem 2. We study almost QF rings with $n=3$ or 4 in this section.

Lemma 12. Let $R$ be two-sided almost QF . If $R$ is not QF , then there exists an injective and projective e $R$ such that $e R / \operatorname{Soc}(e R)$ is again injective.

Proof. $R$ is right almost $Q F^{*}$ by [6], Theorem 3.7. Hence we obtain the lemma from [2], Theorem 2.3.

Theorem 3. Let $R$ be an (basic) artinian ring. Assume that $J^{4}=0$ and $n \leqq 3$, where $\left\{e_{i}\right\}_{i \leqq n}$ is a complete set of mutually orthogonal primitive idempotents. Then the following are equivalent:

1) (\#-1), (\#-2) and (\#-3) are satisfied as right as well as left $R$-modules.
2) $R$ is a two-sided almost QF ring.
3) $R$ is a direct sum of serial rings and QF rings.

Proof. 1) $\rightarrow 2$ ). This is given by Proposition 3.
$2) \rightarrow 3$ ). From Corollary to Theorem 2 and Theorem 1 we can suppose $n=3$ and $J^{3} \neq 0$. First we note that if $R$ is a direct sum of two rings, then $R$ is a direct sum of serial rings and QF rings from Propostion 2 and Corollary to Theorem 2. We call this situation $R$ splits. Let $R$ be two-sided indecomposable and neither serial nor QF. Then we shall derive a contradiction for all possible situations. If $e_{1} R \supset e_{2} R \supset e_{3} R, R$ is serial by Theorem 2 . Thus we may suppose from [3], Theorem 1
(5) $e_{1} R, e_{3} R$ are injective and $e_{1} J \approx e_{2} R$.

First we assume that $e_{1} R$ is uniserial.
i) $e_{1} R$ is uniserial and $e_{3} J$ is local.

Then $e_{i} J / e_{i} J^{2}$ is uniserial for all $i$. Hence $R$ is right serial, and $R$ is serial by [5], Theorem 6.1.
Thus we may assume
ii) $e_{1} R$ is uniserial, but $e_{3} J$ is not local, i.e.,


Then $\{a, b\} \subset\{1,3\}$ from Propostion 1. First we note that if $a=b=3$, then $R$ splits from Lemmas 1 and 9. Hence we can skip the case $a=b=3$.

$$
\left|e_{1} R\right|=2 . \quad \text { i) } e_{1} R=(12) .
$$

$a=1$. Let $e_{3} J / e_{3} J^{2} \approx \bar{e}_{1} \bar{R} \oplus \cdots$. Then there exists $x_{1}$ in $e_{3} J$ such that $x_{1} e_{1}=$ $x_{1}$ and ( $\left.x_{1} R+e_{3} J^{2}\right) / e_{3} J^{2} \approx \bar{e}_{1} \bar{R}$. (We use this notation in the following arguments.) Suppose that $x_{1} R$ is simple. Then $x_{1} R=\operatorname{Soc}\left(e_{3} R\right) \subset e_{3} J^{2}$ for $e_{3} J^{2} \neq 0$, a contradiction. Hence $x_{1} R \approx e_{1} R$ is injective, again a contradiction.

$$
\left|e_{1} R\right|=3 . \quad \text { ii) } e_{1} R=\left(\begin{array}{lll}
1 & 2 & 1
\end{array}\right) .
$$

$a=1$. Then we take $X_{a}$ in $e_{3} R$ such that $X_{a} \supset e_{3} J^{2}$ and $e_{3} J / X_{a} \approx \bar{e}_{a} \bar{R}$. Since $e_{3} J / X_{s} \approx \operatorname{Soc}\left(e_{1} R\right) \approx \bar{e}_{1} \bar{R}$ and $e_{1} R$ is injective, $e_{2}=e_{3}$, a contradiction.
iii) $e_{1} R=\left(\begin{array}{ll}1 & 2\end{array}\right)$. Then $e_{1} J / e_{1} J^{2} \approx \operatorname{Soc}\left(e_{1} R\right)$. Hence $e_{1}=e_{2}$, a contradiction.
iv) $e_{1} R=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$.
$a=3$. We obtain the same contradiction as in iii).
$a=b=1 . \quad x_{a} R \approx\left(e_{1} R / \operatorname{Soc}_{2}\left(e_{1} R\right)\right.$ or $\left.e_{1} R / \operatorname{Soc}\left(e_{1} R\right)\right)$. Hence $\left(x_{a} R+e_{1} J^{2}\right) J^{2}=0$. Accordingly $0=\left(\Sigma_{a} x_{a} R+e_{1} J^{2}\right) J^{2}=e_{3} J^{3}$, a contradiction to $J^{3} \neq 0$.
$\left|e_{1} R\right|=4 . \quad$ v) $e_{1} R=(121 x)$. Then $x=2$.
$a=1$. Then $x_{a} R$ in $e_{3} J$ is a homomorphic image of $e_{1} R$, and hence $x_{a} R \approx$ $\left(e_{1} R / e_{1} J^{3}\right.$ or $\left.e_{1} R / e_{1} J\right)$. If $x_{a} R \approx e_{1} R / e_{1} J, x_{a} R \subset \operatorname{Soc}\left(e_{3} R\right) \subset e_{3} J^{2}$, a contradiction. Hence we obtain a homomorphism $\psi: \operatorname{Soc}_{2}\left(x_{a} R\right) \rightarrow \operatorname{Soc}_{2}\left(x_{a} R\right) / \operatorname{Soc}\left(x_{a} R\right) \approx \bar{e}_{2} \bar{R} \rightarrow$ $\operatorname{Soc}\left(e_{1} R\right)$. Since $e_{1} R$ is injective, we obtain an extension of $\psi$, which is a contradiction to the structure of $e_{1} R$ and $e_{3} R$.
vi) $e_{1} R=(122 x)$.

Then $x=2$ and $e_{1} J / e_{1} J^{2} \approx \operatorname{Soc}\left(e_{1} R\right)$. Hence $e_{1}=e_{2}$, a contradiction.
vii) $e_{1} R=(123 x)$. Since $\{a, b\} \subset\{1,3\}, x=1$ or 3 , and $d \neq x$.
vii-i) $\quad x=1$ and $d=2$. Then $a=1$.
$\alpha) b=1$. Let $e_{3} J / e_{3} J^{2} \approx \bar{x}_{1} \bar{R} \oplus \bar{x}_{1}^{\prime} \bar{R} \oplus \cdots$. Since $d=2$, we may assume $x_{1} R \approx$ $x_{1}^{\prime} R \approx \cdots\left(\approx e_{1} R / e_{1} J^{2}\right.$, which is uniserial). Hence $x_{1} R, x_{1}^{\prime} R \cdots$ are contained in $\operatorname{Soc}_{2}\left(e_{3} R\right)$. Therefore $e_{3} J=\operatorname{Soc}_{2}\left(e_{3} R\right)$ for $\operatorname{Soc}_{2}\left(e_{3} R\right) \supset e_{3} J^{2}$. As a consequence

$$
e_{3} R=\left(\begin{array}{c}
1 \\
\vdots \\
1
\end{array} 2\right) .
$$

Then we obtain a contradiction to Lemma 2.
$\beta$ ) $b=3$. $e_{3} J$ contains a submodule $x_{1} R$ isomorphic to $e_{1} R / e_{1} J^{2}$ as in $\alpha$ ). Hence $x_{1} R \subset \operatorname{Soc}_{2}\left(e_{3} R\right)$ and $x_{1} R \nsubseteq e_{3} J^{2}$. Since $b=3, e_{3} J^{2} / e_{3} J^{3}$ has to containa a
simple submodule isomorphic to $\bar{e}_{1} \bar{R}$ by Lemma 9 and its proof. Hence since $x_{1} R \not \subset e_{3} J^{2}, \operatorname{Soc}_{2}\left(e_{3} R\right) / \operatorname{Soc}\left(e_{3} R\right) \approx \bar{e}_{1} \bar{R} \oplus \bar{e}_{1} \bar{R} \oplus \cdots$, a contradiction to Lemma 2.
vii-ii) $\quad x=1$ and $d=3$ (and hence $a=1$ ).
$\alpha) b=1$. Since $\operatorname{Soc}\left(e_{1} R / \operatorname{Soc}\left(e_{1} R\right)\right) \approx \operatorname{Soc}\left(e_{3} R\right), e_{3} R / \operatorname{Soc}\left(e_{3} R\right)(=E)$ is injective by Lemma 12. Further $\operatorname{Soc}_{2}\left(e_{3} R\right)=e_{3} J^{2}$ and $\operatorname{Soc}_{2}(E) / \operatorname{Soc}(E) \approx e_{3} J / e_{3} J^{2} \approx$ $\bar{e}_{1} \bar{R} \oplus \bar{e}_{1} \bar{R} \oplus \cdots$, a contradiction to Lemma 2.
$\beta$ ) $b=3$. From the structure of $e_{3} R$ and Lemma 9 we know $\operatorname{Soc}_{2}\left(e_{3} R\right) / \operatorname{Soc}\left(e_{3} R\right) \approx \bar{e}_{2} \bar{R}$ or $\approx \bar{e}_{3} \bar{R}$. Then $\operatorname{Soc}_{2}\left(e_{1} R\right) / \operatorname{Soc}\left(e_{1} R\right) \approx \operatorname{Soc}\left(e_{3} R\right)$ as above, a contradiction.
vii-iii) $\quad x=3$, i.e. $e_{1} R=\left(\begin{array}{llll}1 & 2 & 3 & 3\end{array}\right)$.
Since $e_{1} R / \operatorname{Soc}\left(e_{1} R\right)$ is not injective, $\left|\operatorname{Soc}_{2}\left(e_{3} R\right) / \operatorname{Soc}\left(e_{3} R\right)\right|=1$ by Lemma 12. Hence

$$
e_{3} R=(3 \underset{1}{\dot{1}} x y) \text { or }\left(3{\underset{3}{\vdots}}_{\stackrel{1}{3} x y)}\right.
$$

(note $e_{3} J^{2} \subset \operatorname{Soc}_{2}\left(e_{3} R\right)$ ). If $e_{3} J^{3} \neq 0, y=3$, a contradiction. If $e_{3} J^{3}=0$, $\left|\operatorname{Soc}_{2}\left(e_{3} R\right) / \operatorname{Soc}\left(e_{3} R\right)\right| \geqq 2$, a contradiction.

Thus we have shown that $R$ is a direct sum of serial rings and QF rings, provided $e_{1} R$ is uniserial.

Finally we observe the structure of $R$, when $e_{1} R$ is not uniserial. Assume that an injective module $e R$ contains a projective proper submodule and is not uniserial. Then eJ is local by [3], Corollary to Theorem 1, and hence

$$
e R=\left(a b \stackrel{c}{\vdots} \begin{array}{c}
\left.c^{\prime} d\right) ; e J^{3} \neq 0 . \\
\vdots
\end{array}\right.
$$

Now from i), ii), (5), Proposition 1 and Lemma 12, we may assume
iii) $e_{1} R=\left(\begin{array}{cc}a & \left.\begin{array}{l}a^{\prime} \\ \vdots \\ \dot{b} \\ \vdots\end{array}\right)\end{array}\right)$ and $e_{3} R=\left(\begin{array}{ll}3 \\ \dot{b}^{\prime}\end{array} h g^{\prime}\right)$ are injective, $e_{1} R$ is not uniserial and $e_{2} R \approx e_{1} J ;\{a, b\} \subset\{1,3\}$.

From Lemma 12 we have
Lemma 13. Let $R, e_{1} R$ and $e_{3} R$ be as above. Then $e_{3} R / \operatorname{Soc}\left(e_{3} R\right)$ is injective.

First we assume that $e_{3} R$ is not uniserial. We note that if $a^{\prime}=b^{\prime}=3$, then $R$ splits from Lemmas 1 and 9 .
iii-1) $e_{1} R$ and $e_{3} R$ are not uniserial, and hence $e_{3} J^{3} \neq 0$ from Lemma 13.
i) $a=1$. Then $g=2$.
$a^{\prime}=1$. Then $h=2$ and $\operatorname{Soc}\left(e_{3} R / \operatorname{Soc}\left(e_{3} R\right)\right) \simeq \operatorname{Soc}\left(e_{1} R\right)$, a contradiction from

Lemma 13.
ii) $a=b=3$.
a) $a^{\prime}=b^{\prime}=1$. Then $h=2$ and $g^{\prime}=3$, i.e.,

$$
e_{1} R=\left(\begin{array}{c}
3 \\
1 \\
2 \\
\vdots
\end{array}\right), e_{2} R=\left(\begin{array}{c}
3 \\
\vdots \\
3
\end{array}\right) \text { and } e_{3} R=\left(\begin{array}{c}
1 \\
\vdots \\
\vdots
\end{array} 23\right) .
$$

Then $e_{3} R / \operatorname{Soc}\left(e_{3} R\right)(=E)$ is injective by Lemma 13 and $\operatorname{Soc}_{2}(E) / \operatorname{Soc}(E) \approx \bar{e}_{1} \bar{R} \oplus$ $\cdots \oplus \bar{e}_{1} \bar{R}$. Since $e_{3} R$ is not uniseial, $\left|\operatorname{Soc}_{2}(E) / \operatorname{Soc}(E)\right| \geqq 2$, a contradiction to Lemma 2.
$\beta$ ) $a^{\prime}=1$ and $b^{\prime}=3$. Then $h=2$ from $e_{1} R$ and $h=1$ or 3 from $e_{3} R$, a contradiction.
iii-2) $e_{1} R$ is not uniserial and $e_{3} R$ is uniserial.
$\alpha) a=b=1$. Then

$$
2 \stackrel{1}{\vdots} 2), \text { which contradicts Lemma } 2 .
$$

ק) $a=1, b=3$. Then

$$
e_{1} R=\left(\begin{array}{c}
1 \\
1 \\
\vdots
\end{array} \frac{1}{3} \text { ), and hece } e_{3} R=\left(\begin{array}{llc}
3 & 2 c d
\end{array}\right) .\right.
$$

If $e_{3} J^{3}=0\left(\right.$ resp, $\left.e_{3} J^{2}=0\right), \operatorname{Soc}_{2}\left(e_{3} R\right) / \operatorname{Soc}\left(e_{3} R\right) \approx \operatorname{Soc}\left(e_{1} R\right)$ (resp. $\operatorname{Soc}\left(e_{3} R\right) \approx$ $\operatorname{Soc}\left(e_{1} R\right)$ ), a contradiction from Lemma 13. Assume $e_{3} J^{3} \neq 0$, then $c=1$ or 3, and hence $d=2$, a contradiction.

子) $a=b=3$.
i) $g=1$. Then

$$
e_{1} R=\left(\begin{array}{c}
1 \\
\hline \\
2 \\
3
\end{array} 1\right) \text { and } e_{3} R=\left(\begin{array}{lll}
3 & 1 & c
\end{array}\right)
$$

We know as above $e_{3} J^{3} \neq 0$, and so $e_{3} R=\left(\begin{array}{lll}3 & 1 & 2\end{array}\right)$. Here we shall again make use of the argument in the proof of Lemma 2. Since $e_{3} R$ is uniserial, there exist two submodules $y R, y^{\prime} R$ in $e_{1} J^{2}$ such that $y R \approx y^{\prime} R \approx e_{3} R / e_{3} J^{2}$. Let $\alpha$ be an element in $\operatorname{End}_{R}(\operatorname{Soc}(y R))$. We shall find an extension of $\alpha$ in $\operatorname{End}_{R}(y R)$. Since $y R \approx e_{3} R / e_{3} J^{2}, \operatorname{Soc}(y R) \approx \operatorname{Soc}\left(e_{3} R / e_{3} J^{2}\right) \approx e_{1} R / e_{1} J$. Hence we may assume that $\alpha$ is given by an element $p$ in $e_{1} R$ via the above isomorphism. Then $p$ inducees an endomorphism $\bar{p}$ of $e_{1} R / e_{1} J^{2} \approx \operatorname{Soc}_{2}(E) \subset E\left(\approx e_{3} R / e_{3} J^{3}\right)$. Further $\bar{p}$ is extendible to $q$ in $\operatorname{End}_{R}(E)$. Finally since $E / \operatorname{Soc}(E) \approx e_{3} R / e_{3} J^{2}, \bar{q}$ induces an element in $\operatorname{End}_{R}\left(e_{3} R / e_{3} J^{2}\right)$, which is an extendion of $\alpha$ (see the diagram below)

$$
\begin{array}{rl} 
& E \approx e_{3} R / e_{3} J^{3} \xrightarrow{\rho} e_{3} R / e_{3} J^{2} \longrightarrow 0 \\
U & U \\
e_{1} R / e_{1} J^{2} \approx & \operatorname{Soc}_{2}(E) \approx X \xrightarrow{\rho} \operatorname{Soc}\left(e_{3} R / e_{3} J^{2}\right) \rightarrow 0,
\end{array}
$$

where $\rho$ is the natural epimorphism.
Using this extension, we can derive a contradiction.
$\beta$ ) $a^{\prime}=1$ and $b^{\prime}=3$. Then $h=2$ from $e_{1} R$ and $h=1$ or 3 from $e_{3} R$, a contradiction.
$3) \rightarrow 1$ ). This is trivial.
Theorem 4. Let $R$ and $n$ be as in Theorem 3. Assume that $R$ is a twosided almost QF and two-sided indecomposable ring with $J^{4}=0$ and $n=4$. Then $R$ is either serial or QF if and only if $R$ is not of the followihg: there exist exactly three injective and projective modules $e_{i} R$ and some one among $e_{i} R$ is not uniserial.

Proof. Suppose that $R$ is not QF. Then we have the following four cases:

1) $e_{1} R$ is injective and $e_{1} R \supset e_{2} R \supset e_{3} R \supset e_{4} R$ (isomorphically).
2) $e_{1} R$ and $e_{4} R$ are injective and $e_{1} R \supset e_{2} R \supset e_{3} R$.
3) $e_{1} R$ and $e_{3} R$ are injective and $e_{1} R \supset e_{2} R, e_{3} R \supset e_{4} R$.
4) $e_{1} R, e_{2} R$ and $e_{4} R$ are injective and $e_{1} R \supset e_{2} R$.

Case 1) Since $J^{4}=0, R$ is serial by Theorem 2.
Case 2) Then $e_{1} R$ is uniserial by [3], Corollary to Theorem 1, i.e., $e_{1} R=$ $\left(\begin{array}{ll}1 & 2 \\ 3\end{array}\right)\left(\right.$ or $\left.=\left(\begin{array}{ll}1 & 2\end{array}\right)\right)$ and $e_{4} R$ are injective. If $e_{4} J$ is local, $R$ is right serial. Suppose that $e_{4} J$ is not local. Then from Proposition 1 we have the following:

$$
\text { a) } e_{4} R=\left(\begin{array}{c}
1 \cdots \\
\vdots \vdots \\
\vdots \cdots
\end{array}\right), \text { b) } e_{4} R=\left(\begin{array}{c}
1 \cdots \\
4 \\
4 \cdots
\end{array}\right) \text { or c) } e_{4} R=\left(\begin{array}{c}
4 \cdots \\
\vdots \vdots \\
4 \cdots
\end{array}\right)
$$

$R$ splits if c) occurs. Hence we assume a) or b).
i) $e_{1} R / \operatorname{Soc}\left(e_{1} R\right)$ and $e_{1} R / \operatorname{Soc}_{2}\left(e_{1} R\right)$ are injective (see the proof of Lemma 12).

Let $x R$ be a submodule in $e_{4} J$ with $\left(x R+e_{4} J^{2}\right) / e_{4} J^{2} \approx \bar{e}_{1} \bar{R}$. Since $e_{1} R$ is uniserial, $\operatorname{Soc}\left(e_{4} R\right)=\operatorname{Soc}(x R) \approx \bar{\epsilon}_{2} \bar{R}$ or $\bar{e}_{3} \bar{R}$ if $e_{1} J^{3} \neq 0$. However $\operatorname{Soc}\left(e_{1} R / \operatorname{Soc}\left(e_{1} R\right)\right.$ ) $\approx \bar{e}_{3} \bar{R}$ and $\operatorname{Soc}\left(e_{1} R / \operatorname{Soc}_{2}\left(e_{1} R\right)\right) \approx \bar{e}_{2} \bar{R}$, a contradiction. If $e_{1} J^{3}=0$, we obtain the same result as above.
ii) $e_{1} R / \operatorname{Soc}\left(e_{1} R\right)$ and $e_{4} R / \operatorname{Soc}\left(e_{4} R\right)$ are injective.
a) $e_{1} J^{3} \neq 0 . \quad \mathrm{e}_{1} R=(123 d)$.

Assume a) or b). $\operatorname{Soc}\left(e_{4} R\right)$ and $\operatorname{Soc}_{2}\left(e_{4} R\right)$ are waists by assumption. Since $\operatorname{Soc}\left(e R / \operatorname{Soc}\left(e_{1} R\right)\right) \approx \bar{e}_{3} \bar{R}$, there exists a submodule $x R$ in $e_{4} J$ such that $x R \approx$ $e_{1} R / e_{1} J^{2}$, i.e., $e_{4} J^{3}=0$, and hence $e_{4} R$ is uniserial.
B) $\quad e_{1} J^{3}=0 . \quad \mathrm{e}_{1} R=\left(\begin{array}{ll}1 & 2\end{array} 3\right)$.

Then $x R$ is simple, i.e. $\left|e_{4} R\right| \leqq 2$, a contradiction.
iii) $e_{4} R / \operatorname{Soc}\left(e_{4} R\right)$ and $e_{4} R / \operatorname{Soc}_{2}\left(e_{4} R\right)$ are injective. Then $e_{4} R$ is uniserial and hence $R$ is serial.

Case 3) i) $e_{1} R / \operatorname{Soc}\left(e_{1} R\right)$ and $e_{1} R / \operatorname{Soc}_{2}\left(e_{1} R\right)$ are injective. Then $e_{1} R=$ $(12 c d)($ or $=(12 c))$ and

$$
e_{3} R=(34 \stackrel{g}{\stackrel{g}{h}} k) \text { or }(34 g k)
$$

In the latter case $R$ is serial. Hence assume the former. Then $\{g, h\} \subset\{1,3\}$. Assume $e_{1} J^{3} \neq 0$.
$\alpha) g=1$. There exists $x R$ in $e_{4} J^{2}$ with $x R \approx e_{1} R / A$ for some $A$ in $e_{1} R$. However $\operatorname{Soc}\left(e_{3} R\right)=\operatorname{Soc}(x R) \approx \bar{e}_{2} \bar{R}$, a contradiction.
B) $g=h=3$. Then

$$
e_{4} R=(34 \stackrel{3}{\vdots} 4),
$$

which is a contradiction to Lemma 2.
We obtain the same result in a case $e_{1} J^{3}=0$.
ii) $e_{1} R / \operatorname{Soc}\left(e_{1} R\right)$ and $e_{3} R / \operatorname{Soc}\left(e_{3} R\right)$ are injective. Then $e_{1} R$ and $e_{3} R$ are uiserial, and hence $R$ is serial.

Case 4) If $e_{1} R, e_{3} R$ and $e_{4} R$ are uniserial, $R$ is right serial.

## 6. Examples

In this section we shall give several examples related to the previous sections.

1. We shall give a two-sided almost QF ring with $J^{4}=0$ and $n=4$ but neither QF nor serial. This is an example of exceptional algebras in Theorem 4. Let $K$ be a field and $R=\Sigma_{i \leq 4} \oplus e_{i} R$, where $\left\{e_{i}\right\}$ is a set of mutually orthogonal primitive idempotents with $1=\Sigma e_{i}$. We define $e_{1} R=e_{1} K \oplus a K \oplus a b K \oplus a b c^{\prime} K$, $e_{2} R=e_{2} K \oplus b K \oplus b c^{\prime} K, \cdots$, whose multiplicative structur is given below, where ${ }_{1} a_{2}$ means $a=e_{1} a e_{2}$, and so on.
(In the previous sections we expressed horizontally the structure of $e_{i} R$, however we shall do vertically here.)

where the other products among $a, b, \cdots$ are zero, e.g. $b c=d c^{\prime}=o$. Then $\left(R e_{4}\right)^{*} \approx e_{1} R,\left(R e_{2}\right)^{*} \approx e_{4} R$ and $\left(R e_{3}\right)^{*} \approx e_{3} R$ are injective and $e_{1} R \supset e_{2} R\left(R e_{2} \supset R e_{1}\right)$. Hence $R$ is the desired algebra, which satisfies (\#-1,2,3).

In the above example we replace $e_{3} R$ with


Then we obtain a two-sided almost QF-algebra with $J^{4}=0$ and any $n \geqq 4$, which is neither QF nor serial. We shall give another type of exceptional algebras, where $e_{1} R\left(\supset e_{2} R\right)$ is not uniserial.

where the other products among $a, b \cdots$ are zero, e.g. $\left\{b, b^{\prime}\right\}\left\{c, c^{\prime}\right\}=o, b d e=$ $b^{\prime} d^{\prime} e^{\prime}=o,\left\{e, e^{\prime}\right\}\left\{d, d^{\prime}\right\}=o, d e c=d^{\prime} e^{\prime} c^{\prime}=o$ and so on. Then $\left(R e_{4}\right)^{*} \approx e_{1} R \supset$ $e_{2} R,\left(R e_{3}\right)^{*} \approx e_{4} R$ and $\left(R e_{2}\right)^{*} \approx e_{4} R$. This ring is almost QF, but (\#-1) is not satisfied.
2. We shall give an algebra which is a two-sided almost QF -algebra with $J^{4} \neq 0$ and $n=3$, but $R$ is neither QF nor serial (cf. Corollary to Theorem 2). $R=\Sigma_{t \leq 3} \oplus e_{t} R$ as above.


Then $e_{1} R, e_{3} R$ and $R e_{2}, R e_{3}$ are injective and $e_{1} R \supset e_{2} R, R e_{2} \supset R e_{1}$.
3. There exists a right almost QF algebra with $J^{4}=0$ and $n=3$, which is not left almost QF (cf. Corollary to Theorem 2). Put $b c a=o$ in the above. Then $R e_{3} \supset R e_{2}$ and $J e_{3}$ is not local.

## References

[1] K.R. Fuller: On indecomposable injectives over artinian rings, Pacific J. Math. 29 (1969), 115-135.
[2] M. Harada: Non small modules and non co-small modules, Ring Theory, Proceeding of 1978 Antwerp Conference, Marcel Dekker Inc. (1979), 669-687.
[3] 892.
[4] ——: Almost projective modules, J. Albegra 159 (1993), 150-157.
[5] K. Oshiro: Lifting modules, extending modules and their applications to QF-rings, Hokkaido Math. J. 13 (1984), 339-364.
[6] -: On Harada rings I, J. Math. Okayama Univ., 31 (1989), 161-178.
[7] K. Oshiro and K. Shugenaga: On Harada rings with homogeneous socles, Math. J. Okayama Univ. 31 (1989), 189-196.

Department of Mathematics
Osaka City University
Sugimoto-3, Sumiyoshi-ku
Osaka 558, Japan

