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In [6, Theorem 6], arbitrarily many 2-bridge knots sharing the same Jones
polynomial are constructed. The construction is as follows (See Example

2.): Two 2-bridge knots 1022 and 10^ [15, Table] are obtained as symmetric
skew unions [11] of 52. They have the same Jones polynomial [4] but have
distinct genera, and so have distinct Alexander polynomials [3,14]. From these
knots, we get four 2-bridge knots as symmetric skew unions. Continuing this
construction, we have 2N distinct 2-bridge knots with the same Jones polynomial
for any positive integer N. The question is whether the Alexander polynomi-
als, or genera, of these 2-bridge knots are mutually distinct or not.

In [7, Theorem 5], we constructed a pair of 2-bridge knots which have the
same Kaufϊman polynomial and so have the same Jones polynomial, but have
distinct Alexander polynomials. In fact, in the set of all the 2-bridge knots
through 22 crossings, there are 239 pairs sharing the same Kauίfman polynomial,
among which 58 pairs also share the same homfly polynomial and the rest have
distinct Alexander polynomials [9]. Also in [8], we constructed arbitrarily many
skein equivalent 2-bridge knots with the same Kauffman polynomial, and so
they have the same homfly, Jones and Alexander polynomials. We refer [13] for
the definition of the skein equivalence and the homfly polynomial, and [10] for
the Kauffman and L polynomials and the writhe. In this paper, we prove:

Theorem, For any positive integer N, there exist N 2-bridge knots with
the same Kauffman polynomial but distinct genera.

Also for 2-bridge links, we can construct a similar example. In Section
1, we give a geometric algorithm ((8) and Proposition 2) deforming a 2-bridge
knot or link in the form of a 4-plat or Conway's normal form C(al9 az, •••, an)

[2] into the special form D(bly b2> •••, 62*+μ-ι)> where £ is the genus and μ the num-
ber of the components. Throughout the deformation, the 2-bridge knot or link
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is kept in a 4-plat. In Section 2, we prove the theorem using this algorithm

and the method to construct many 2-bridge knots sharing the same Kauffman
polynomial given in [8],

1. Genus of a 2-bridge link

Let Sj and S2 be the elementary braids generating the 3-braid group as shown
in Fig. 1. We denote by C(alt a2, •••, an) the unoriented 2-bridge knot or link
(or diagram, according to the context) as shown in Fig. 2 [2]. There P and

Q are the 3-braids Sfr SΓ* Sa

2* Sτa» and Sji Srβ» Sζ*—Sί*, respectively, de-
pending as whether n is even or odd. However, allowing the augmentation

, xn— 8, £=±1,

we may fix the parity of n.

Fig. 1

c c
Q

Fig. 2

odd

We shall use the following without mention: If α, =0, then

2<t<ίn—

We get the coprime integers ^>(>0) and # from the continued fraction
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p , i

which we shall denote by [al9 #2, •••, #„]. Then the following is well-known (cf.

1, Chap. 12]): The 2-fold covering space of S3 branched over C(α1? a2, •••, an)
is the lens space L(p, q). C(aly a2, •••, αΛ) is a knot iff ^ is odd. C(alt a2, •••, #n)

is ambient isotopic to the 2-bridge knot or link in the Schubert's normal form

S(py q'} [16] as an unoriented knot or link, where q' = q mod p with q' odd and

\q'\<p.
These integers p, q are also calculated as follows: For integers aly a2, •••,

αΛ, let E[al9 a2, •••, an] be the function defined by E[0]=E[ ]=1, £[0^=^ and

(2) E[aly a2, ,an] = £[>!, «2, — , αn.2]+^K ̂ , -, αn_J ,

which is called the Euler bracket function in [12] and is denoted by p^-k i*1

[17]. Then the following hold :

(4) £[«!, α2, --, an] = E[an, •••, ̂  a^

(5) Et-α,, -α2, .-, -αj = (-l)" ,̂ β,, -, αΛ]

/I α Λ / 1 OW1 α,\/ l 0\ / I ON
v ; \o iA«2 iΛo ι / \ α 4 i/ x i/

l o ι\a4 υ vo i
= m^ -ffl..J £K. ,αM]\ wisodd

\£K -.,αΛ.1] E[a2, . ,an]/

Since a 2-bridge knot or link is invertible (cf. [1, Proposition 12.5]), if

C(aι> &2> •"> an) ιs endowed with any orientation, it is ambient isotopic to either

C(aly a2, y an) or C(al9 a2, -, an) as shown in Fig. 3.

Proposition 1. For an oriented 2-bridge knot C(aly a2, ••-, an) with (1), q is

even, and for C(aly a^, •••, an) with (I), q is odd.

Proof. We prove for the case n is even. Let @3 be the symmetric group
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c
Q

C(a1,a2,. .,an)

C
Q

Fig. 3

on 3 letters. There is a homomorphism Φ: S3->@3 defined by Φ(Si)=(ii-i-l),
ί=l, 2. Let SL(2, 2) be the group of all 2x2 matrices of integer (mod 2) of
determinant 1. Then the map Ψ: @3-^£L(2, 2) given by

) = (J j),

Ψ ( 1 3 2 ) = (J j), Ψ ( 1 2 3 ) = (J I), Ψ(13) = (J J)

is an isomorphism. Consider the equation (6) in £L(2, 2), we have

0\

wherep0=p, <7o=? πiod 2. If p is odd and q is even (resp. odd), then φ(P)=l

or (2 3) (resp. (I 2) or (1 3 2)), and so C(aly d^ •••> «n) is oriented as C(aly a2y ••-,

αΛ) (resp. C(aly (%, •••, ^»)). See Fig. 4. This completes the proof.

Let us consider the ambient isotopy:

where £=±1. Fig. 5 illustrates the case where ^=3, #2=4, 6=1, and R and
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(1) (23)

032) (12)

(13) (123)

Fig. 4

R are the 3-braids S^SΓ^ S^-iSf** and SίsS^ S^-^Γ**, respectively,
with k even. Note that if 8=x1/\x1\, then this isotopy does not change the
crossing number of the diagram.

Let us consider another ambient isotopy:

(9) C(xl9 -, xk9 a+£, -(b+β), -yly -, -yt)

^ G(XI, •••, Xky a, £, ft,yl9 •••,yι),

where £=±1 Fig. 6 illustrates the case where α=3, b=2, β=l, and P, Q, and
Q are the 3-braids SfiSf**—Sr**, SϊιSϊy*—Syιi9 and iSJiiSΓ^ 5J/, respectively.
Using (9) twice, we obtain

if /=!;

£, Sr2, —, Zm)
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Fig. 5

c
Q

Fig. 6
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where 6=^1. In particular, if /—I and yl=2ζ, then

(10) C(xl9 -,**, -2S,*!, ...,*,)

» C(xl9 •••, #*-!, xk—e, 2£, *!— £, #2, •"> *»)

Lemma 1. 7%e following isotopies are realized by a finite sequence of the

deformation (9).

(11)

(12)

where a\a\ -

Proof. We only prove (11) for α>0. Using (10), we have

» C(Λ?!, —,Λ?A, #, 2,0, α—2, y,^, - ,v/)

» C(Λ?!, — ,Λ?A,Λ?+1, -2, l,α— 2,̂ !, - ,j/)

» C(̂ , •••, xk, x+1, -2, 1, 2, 0, α-4, j,^, — ,y,)

»(?(#!, — ,Λ? A ,A?+1, -2,2, -2, l,α— 4,y,Λ, — ,

If ^ is even, then we have

C(xι,—,xk,x,a,y,yl9 — ,y,)

?!, — ,Λ? A ,Λ?+1, —2,2, ••-, —2, 1,0,^,^, - ,

α-l

If Λ is odd, then by (9), we have

C(χl, —,Xk,χ,<*,y,yι, •• ,3;/)
?!, — ̂ a+l, — 2,2, »", —2, 1, l,y,y l f -- ,

β-2

and this completes the proof.

We denote by D(bl9 b2, •••, bm) the oriented 2-bridge knot or link C(2b^ 2b2,

•• ,2δm). This is of genus (m— μ+l)/2, μ is the number of the components,

if ά
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Proposition 2. An oriented 2-bridge knot or link C(alί a^, •••, an) can be de-
formed into D(blt b2ί •••> bm) by a finite sequence of the deformation (9).

Proof. If each a{ is even, then we have nothing to do. Suppose that
a\> a2> "•> ap-\ are even and ap is odd. If we deform C(alt a2y •••, an) into C(el9

fyy •"> £/) such that eι,e2> Ά-ι are even and eq is odd, and n—p>l—q, then the
proof is complete by induction.

Considering the orientation, we see pφn. If p=n— 1, then by (12),

C(al9 a2, ~,an) is deformed into C(al, ,̂ •••, att_2> an^+an> \\an\\), where an=

anl\an\. Thus l=n-ρ>l-q=Q. If \<tp-^n~2, then by (11), C( ,̂ α2, — ,

βΛ) is deformed into C ,̂ 02, •-•, ̂ ^ α^+α^+i, H^+JI, (— l)β*+1K+2+<**+ι)»
(— l)Λί+ι^+3, ••-, (— l)%+ιαn), where a^+i=^+i/lei+il Thus n—p—l>l—q, and
the proof is complete.

REMARK. In a similar way, we can prove: A 2-bridge knot or link diagram
C(a1)o2y -• >an) can be deformed into an alternating diagram C(el9 e2, •••, em),
£, >0, by a finite sequence of the ambient isotopy:

l9 •••, Λ?A, a+S, —(b+6), —yl9 •••, — y,)9

which is an unoriented version of (9).

Proposition 3. (i) If \xly x2, , xk] =Pl<l> then

[—£, G—XI, —x* — , -Xk] =Pl(q—Gp)

(ii) [Λ?J, —, xkί a, 8, b,yί9 —yyi\=[xlf — , ΛΓA, β+f, —(b+€), -yly — , —

Proof, (i) By using (2), (4) and (5), we have

E[6~xl9 —x2ί — , — Λ?J = (— I)*(^[Λ?!, — , xk]—€E[x2, •

and

E[-S, 8-xl9 -x2, -, -*J = (-l)*

Then by (3), the proof is complete.
(ii) We can prove the following formula [12, Lemma 9] by induction

on /:

, -(4+1), -Λ,

Using this and (3), (5), we obtain the result.
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4—

Suppose that a 2-bridge knot or link L is given in the form C(al9 #2, •••,

an) or C(al9 α2, •••, an) with (1), from Propositions 1, 2 and 3, we have:

Proposition 4. Let

ί if L = C(θ!, 02, — , α,)
=

~" i/ L = fa,^,— ,aΛ),

mod 2/>, wdλ | # ' |

L& D(bl9b2, •••,

EXAMPLE 1. We apply (8) and Propositions 2 and 4:

(i) C(l,-l,2,3)«C(0,||-l||,-(2-l),-3) = C(0,-l,-3) (11)

« C(0, -2, II-3H) = C(0, -2, 2, -2) (12)

On the other hand, [1, -1, 2, 3]=3/(-4)=[0, -2, 2, -2].

(ii) qi,2,3)«C(-l,0,-2,-3) = C(-3,-3) (8)

« C(-4, II-3H) = C(-4, 2, -2) = Z>(-2, 1, -1)

On the other hand, [1, 2, 3]= 10/7, and 10/(-3)=[-4, 2, -2].

For

A = (20,, 2blt 20,, 2b2, -, 2aΛ, 2bn)

and£=±l, let

A-1 = (-2ft., -2β., -, -2ft,, -2β|, -2 ,̂ -2β,)

and

1, 2&,+α1+α2( ||2α2||, -, 2ft._1

2ft.+α.-e, ||2αJ|,2ft._1+α,_1+αf,, -,

where α, =α, /|α ( |. Then we have:

Lemma 2. C(^4, £, A-l)~C(A(ε)).

Proof. By (8),
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δ(A,ε,A-1)
« C(-α,, α,-2o,, -2*,, -2o2, -24,, -, -2β,, -2*., -£,

2ft,, 2β., -,24,, 2a2,2bl,2al).

Using (9), (11), and (12), we deform this as follows:

C(-2α1, ||α,-2α,||, 24,+«,, 202, 262, -, 2oB, 24., 6,

-24,, -2aB, -, -24» -202, -24,, -2o,)

« C(||2βJ|, 2bl+a1+a2, ||2α2||, 2ό2+α2, 2o3, 203, -, 2an, 2ba, £,

-24., -2αΛ> .... -24,, -2β,, -24^, -

3, ||2β3||, -,

26B_ι+«»-ι+α,, II2Λ.H, 24,+α., e,

-24,, -2β« .... -24j, -2α2, -24,, -2β,)

241+α,+α1, ||2o2||, 2ό2+α2+«3, ||2o3||, -,

24..1+α._1+α,, ||2β,||,24.+α.+C,

24.-e, 2oΛ( 2V, , 2oB_,, -.., 24,, 2o2, 2ά,, 2β,)

26,+α,+α2, ||2o2||, 2b2+az+<x3, ||2β,||, -,

2όa.,+αs.1+αB, ||2e.||,24.+flf.+6,

δB+αs-£, I |2o,,| I, 2όB_,+«B, 2oΛ_,, -, 2&2) 20,, 24,, 2o,)

2i,+α,+α2, ||2β,||, 2&2+α2+α3, ||2o3||, •-,

, ||2o2||, 2δ,

This completes the proof.

EXAMPLE 2. Let K be a 2-bridge knot D(al9 b^ 02, b2, •••, any bn)=C(A) of

genus n. Then C(A, 6, ^""^and C(A~l, 6, A), £=±1, have the same Jones poly-
nomial [6, Lemma 6.2], which are symmetric skew union [11] of K. Let g1 and
g2 be the genera of these knots. Then by Lemma 2, we have

2Σ \ai\-2n+\<gl<2± |α, | ,
ί=ι ;=ι

and
n n

ι*,ι.
ί=ι

Let
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Lemma 3. // 6,- = ± 1 ,

φr, clf A £2, A-\ £3, Y) ** C(Xy aι+εl9 A(ε2)y αι-e3, - y) .

Proof. Using (9) and (11), we calculate as follows:

C(Xy ε19 Ay ε2, A" , £3, y)
||, 20,+ ,̂ 2α2, 2 ,̂ .», 2αβ> 2*., €2, ̂ 'S £3, Y)

2( ||2α2||, 262+α2> 2α3) 2 ,̂ -,

2aa, 2bΛ, 62, A~\ εa> Y)

\\2an\\,2A.+an,6»A-\£a>Y)

HI, 262+α2+, α,, -,

, 2bα-£2, 2αn, 2bn.l, 2a..lt -,

H2e.ll, 2ά1+α,+α2,

, 2bn+aa-£2,

), aι-S3, - Y).

This completes the proof.

Using this lemma twice, we get:

Corollary. // £,.= ± 1, <fow

, 6ίt A , £2> •«, £3, ^4 , £4, A, €5, A , £6, Y )

Γ, ε.-β^ (A-1) (62), -ε3-βmy -A~\ -64-al9 (-^)(-£5), ε6-a19 Y).

EXAMPLE 3. The oriented 2-bridge link LΛ=C(2βlJ 2bl9 •••, 2 ,̂ 2ft^, 2ag+l)

is obtained from the 2-bridge link L=C(2a1, 261, , 2α^, 2bg, 2ag+1) of genus ̂  by
reversing the orientation of one of the two components. As in Example 2, let
us compute £Λ, the genus of LΛ:
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C(-alt -2β,+α1, -2b,, -, -2ag, -2bg, -2ag+l)

, 2^+cd, 2«2) 2δ2, .... 2α,, 2ft,, 2ag+1)

,||, 2b1+a1+a2, \\2at\\, 2b2+a2+a3, -,

where α,=α,/ 1 a, \ . Let /=# {i 1 26,.+α,.+α,.+1=0} . Then ^Λ=Σf U I a, \ -7-1.
Since 0<^I<^g, we obtain

Note that Σfiί |Λ, | — 1 is just the ίrdegree (=£2-degree) of the Alexander poly-
nomial of L Δ^j, t2), that is, (maximum Zrpower of any term of ΔL(^, t2)) minus
(minimum ίrpower of any term of ΔL(^, t2)). Cf. [5, Corollary 2].

2. Proof of Theorem

For A=(2a,, 2agy 2a2, 2ag.lί -, 2ag9 2^), «,•=*= 0, we define (2^-
tuple of integers

19 62y .-, 6J = (A, 619-A, 6* -, (-l)*-1^, €>, (-

where ^, = ±1 and

-^ - ̂ ί"1 = (-2^, -2ag, -2a2, -2af-l9 •-, -2α f̂ -2^).

Then C(-4[£!, f2> *' >^A]) is a 2-bridge knot iff & = 0, 1 mod 3, which we may
orient as follows:

C(A[S19 £ 2, > €k]) i f k = Q mod 3

C(A[619 6* -, βj) if A= 1 mod 3.

We define An=A<pQyp19 •• ,Λ-ιλ^ = ±1> as follows:

- (^.,^.-4,A,4,A-Λ>A,4)> *'= 0,1, -,n.

7=0 mod 5* and j^O omd 5t+1, put

if y/5'ΞΞ 1,2, 3, 4 mod 10;

9 mod 10.

= tp, if JIS< = 1,2,3,
9i I-A if y/S's6,7,8,

Then yln=^4[91( j2) •••, jw], «=5*—1. We shall consider the oriented 2-bridge

knots C(An) (n is even) and C(An) (n is odd).
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We divide the proof of Theorem into:

Assertion 1. All the 2-bridge knots

share the same Kauffman polynomial.

Assertion 2. Suppose that n is odd and al>2. Let gn=g(pQ,pι, •••,/>»-!

ft* the genus ofC(A^pQ)plf -,£,-!». Then

gn

where h is the genus of C(A(l)).

Let n be an odd integer with n>N and Kp be one of the 2-bridge knots

l9 — ,jp»-i» with p==pQ+pι-i ----- \-pn-\- Then by these assertions,
-„, K-n+2> ••*> K-n+2N-2Ϊ is the desired set of the 2-bridge knots for Theorem.

We use the following notation:

whence C/("+1> is the disjoint union nl.e{*+*'5"|*ei7(e)}II{5", 2-5", 3 5",
4-5"};

Tψ = {x e W> I x = i mod 6} ,

whence T^T

Sft = Γίi-Tίi+i

Lemma 4. ΓAe ίeί 5(("* 1} w equal to the disjoint union

where r=0, 1, •••, n— \, and 8=(—1) +1.

Proof. Suppose thatyeS^J"1^ Then y^ί7(n+1),y = z mod 6, y = 0 mod 5r,
andyίO mod 5r+1. Thus for some k, 0<k<4,y=x+k 5", x^U(n\ and so x=
y—k 5* = ί—k (—\)n=i+8k mod 6, x = 0 mod 5r and x^Q mod 5r+1, that is,
x^Sfttk.r The converse can be seen similarly. The proof is complete.

Lemma 5. If n is odd, then

J O ,yί=0,5;

'*. \pr ifi=l,2,3,4,
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and if n is even, then

f O f f i=0,l ;

*eS}«> * (A i/'ι'=2,3,4,5,

where 0<r<w—1.

Proof. We prove by induction on w. Since

J0 if *=(), 5;
I i 0 ~ ~ ' ~ t{i} if i= 1,2, 3,4,

the lemma is true for n=l.
Suppose that the lemma is true for n~L By Lemma 4,

Σ n v* ( V1 n ι\<ix — 2-ι ( 2^ t/x+k'S1)'

where £=(-1)'+1. If *e 5$, then

\ρr i f jc/5 r =l,2,3,4modlO;
9* ' —pr if x/5"=6, 7, 8, 9 mod 10.

Put *=/ 5f, where j = l, 2, 3, 4, 6, 7, 8, 9 mod 10. Then x+k 5'=5r(j+k 5'-r),
whence ;+Λ 5'-r=y+ 5ft mod 10. Thus

-q, i f f t=1.3;
... , 0 .

q, if ft=2, 4.

Therefore we obtain

Σ q,= Σ 9x+ Σ (-?,)+ Σ ?,+ Σ (-?,)+ Σ ?..

We consider for ί=0. If / is even, then £= — 1 and

Σ q,= Σ q,- Σ ?,+ Σ qf- Σ ?,+ Σ

= 0,

where we use inductive hypothesis. If / is odd, then £=1 and

Σ q, = Σ q,- Σ q,+ Σ q,- Σ q,+ Σ

-0,
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For i=l, 2, 3, 4, 5, we can prove similarly. This completes the proof.

Proof of Assertion 1. This is divided into two lemmas:

Lemma 6. Let ^A<ρQ,ρlt ",ρH-1> be the L polynomial of the unoriented 2-bridge
knot diagram €(&<#* p» -,ρή-S)=C(Au). Then

Lemma 7. The writhes of C(An) (n odd) and C(An) (n even) are zero.

Proof of Lemma 6. First we note

», A-ι> A. ->ί«-ι> = (A<P*> -> A-ι» <A* •", A.-ι>

By [8, Proposition 3], the 2-bridge knot diagrams C(A[qί> q2y •••, qm]) and

[— qm> •••, — ί2> ~?ι]) have the same L polynomials. Thus we have

In the same way, we can prove

So we have

and the proof is complete.

REMARK. This proof of Lemma 6 is essentially the same as that of [8,

Theorem 1],

Proof of Lemma 7. We only prove when n is odd . It is easy to see that

the writhe of C(A[6l9 £2> — > £34+1]) is

1 = 1

Thus the writhe of C(An) is

Σ3 ?,-. Σ3 q*
» U T™

Since Γί^Πϋ-oS^, we obtain the result from Lemma 5.
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Proof of Assertion 2. Suppose that n is odd. Then m=5n—1 = (— 1)Λ—

1=4 mod 6. Since #j>2, using (8) and Corollary, we have

C(AU) = C(A, ft, -A, fo ̂ , -, qU9 A)

— A, — 96*-3

Since α1>2, the genus of C(A(— 1)) equals A, the genus of
Thus we have

m— 1 , w+2, , 1 / vn XΓΊ
gn = —, τ—g^ -- ^—h+-^-( Σ qx- Σ3 3 2

We obtain the desired formula by Lemma 5.
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