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0. Introduction

In the theory of transformation groups, it is an important problem to dis-
tinguish whether or not a group action is linear. In this paper we would like
to consider linearity of homotopy representations of finite groups in the G-
homotopy category.

Since the study of homotopy representations of finite groups G due to torn
Dieck-Petrie [6], it is known that there exist many homotopy representations
which are not linear (i.e., not G-homotopy equivalent to linear G-spheres).
On the other hand, in [5], torn Dieck proved that any homotopy representation
of a cyclic p-group Cpm is linear under a restricted situation. For its proof, torn
Dieck used the stable theory of homotopy representations.

We first consider the following problem under the general setting. We use
the unstable theory of homotopy representations.

Problem. When is a homotopy representation of G linear ?

If a homotopy representation is linear, its dimension function must be
linear at least. Therefore we mainly discuss homotopy representations with
linear diemsnion functions. (For the linearity of dimension functions, see [1],

[2], [3], [6].)
In Section 1 we recall some definitions and well-known results, in particular,

the unstable Picard group Pic(G τz) and Laitinen's invariant ([7]), which are
the main tools in this paper.

In Section 2 we introduce subgroups jO(G\ n) and Pic/(G; n) of Pic(G; n)
for any linear dimension function n, and put

LH~(G\ n) = Pic(G; n)/jO(G'y n) ,

\ n) = Pic'(G; n)ljO(G; n) .

For any homotopy representation X with dimension function n, we define a
G-homotopy invariant l(X) in LH°°(G;n) by using Laitinen's invariant, and

This work was partially supported by Grant-in-Aid for Scientific Research.



596 I. NAGASAKI

anwser the problem above.

Theorem 0.1. A homotopy representation X with linear diemsnion func-

tion n is linear if and only if l(X) vanishes in LH*°(G\ n).

In Section 3 we compute LH°°(G\ n) and LH(G\ n) for any abelian group

G. We also show the following result by using Theorem 0.1.

Theorem 0.2. Let G be an abelian group. The following are equivalent.
(1) Any (finite) homotopy representation of G with linear dimension func-

tion n is linear.

(2) LH~(G;n)(LH(G n))=l.

In Section 4 we determine finite abelian groups such that LH°°(G;n)

(LH(G\ n))=l for any linear dimension function n. We show

Theorem 0.3. Let G be an abelian group.

(1) LH°°(G; n)=l for any linear dimension function n if and only if G is
isomorphic to Opm(p: prime), C6 or C2xC2, where Cm denotes a cyclic group of o*der

m.
(2) LH(G\ n)=l for any linear dimension function n if and only if G ύ iso-

morphic to Cpm, G2(abelian 2-group], G3(abelιan 3-group) or (C2)"x(C3)
m (n>\,

Since the dimension function of any homotopy representation of G is linear
if and only if G is a p-gτoup ([6], [3]), we get the following corollary which in-

cludes torn Dieck's result mientioned above.

Corollary 0.4. Let G be an abelian group.
(1) Any homotopy representation of G is linear if and only if G is a cyclic

p-group Cpm(m>0) or O2χC2.

(2) Any finite homotopy representation of G is linear if and only if G is Cp™>
G2 (abelian 2-group) or (G3 (abelian 3-group).

1. Homotopy representations and Picard groups

In this section, we recall some definitions and well-knonwn results from

[6], [7], [9].

DEFINITION. A finite dimensional G-CW complex X is called a homotopy
representation of G if, for any subgroup H of G, the //-fixed point set XH is
homotopy equivalent to a (dim JΓ^)-dimensional sphere or empty. Furthermore
if X is G-homotopy equivalent to a finite G-CW complex, it is called finite^ and
if X is G-homotopy equivalent to a linear G-sphere (i.e., a sphere of a real re-
presentation of G), it is called linear.
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Let S(G) denote the set of subgroups of G and φ(G) the set of conjugacy
classes of subgroups of G. The dimension function is defined by

We call a dimension function Dim^ί linear if there exists a linear G-sphere

S(V) such that ΐ>iτnX=ΌimS(V).
Let V°°(G) be the homotopy representation group of G, which is defined by

the Grothendieck group of G-homotopy types of homotopy representations of
G under join operator. Similarly V(G) and JO(G) are defined for finite and
linear homotopy representations respectively. It is known ([6]) that there are
the natural inclusions

/O(G)cF(G)cF"(G).

We define subgroups ^°°(G), v(G),jO(G) as follows.

v"(G) = {X-Y^V°°(G)\ΌimX = DirnY},

jO(G) = {X- Fe/O(G) | Dim^Γ = Dim Y} .

Theorem 1.1 ([6]). The subgroups v~(G), v(G),jO(G) are the torsion sub-
groups of V°°(G)y V(G), JO(G) respectively, and v°°(G) is isomorphic to the
Picard group Pic(G).

The Picard group Pic(G) is defined as follows. Let C(G) be the set of in-
teger-valued functions on φ(G) and A(G) the Burnside ring of G. We regard

Λ(G) as a subring of C(G) by the usual way. We define finite rings

C(G) = C(G)I\G\C(G) ,

A(G) = A(G)I\G\C(G).

and denote their unit groups by C(G)*, Ά(G)*.

DEFINITION ([4], [6]).

Pic(G) = C(G)*IC(G)*A(G)* .

Homotopy representation groups and Picard groups play important roles
in the stable theory for homotopy representations.

E. Laitinen introduced the unstable Picard group to study the unstable
theory for homotopy representations. For any dimension function /z— DimJf,
the following lemma holds.

Lemma 1.2 ([7, Lemma 2.1]). For any subgroup H, there exists a unique
maximal subgroup H including H such that n(H)=n(H).
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If n(H)>0 and H=ΐt, then H is called an essential isotropy subgroup. We
denote by Iso(n) the set of essential isotropy subgroups.

DEFINITION ([7]). We say that a function d^C(G) satisfies the unstabi-
lity conditions for n if d satisfies the following conditions:

(1) </(#)= 1 when Λ(#)=0,
(2) rf(flT)=-l, 0, 1 when n(H}=\,
(3) d(ff)=d(H) for any (#) <Ξφ(G).

We call d(ΞC(G) ίnvertible if </(#) is prime to | G | for any (#) The Picard
group Pic(G w) is defined as follows Let O(G n) (resp. A(G'yn)) denote the
subset of C(G) (resp. A(G)) which consists of all functions satisfying the unstabi-
lity conditions. Let C*(G;w) (resp. A*(G',n)) denote the subgroup of C(G)*
(resp. ^4(G)*) which consists of all elements represented by invertible functions
in C(G; n) (resp. A(G\ n)). Similarly C*(G; ra)cC(G)* is defined.

DENINITION ([7]).

Pic(G; n) = C*(G; n)/C*(G; n)A*(G; n) .

Laitinen's invariant that distinguishes G-homotopy types of two homo-
topy representations is defined in Pic(G w). For convenience we recall this
here.

Let X, Y be homotopy representations with the same dimension function
n. There is a G-map /: Y-+X such that deg/^ is prime to | G | for any H. If
we choose orientations of X and Y in the sense of Laitinen, the degree function
d(f) defined by d(f)(H)=degfff is well-defined, and satisfies the unstability
conditions. Laitinen defines the invariant by

Theorem 1.3 ([7]). X and Y are G-homotopy equivalent if and only if
Dn(X,Y)=linPic(G;n).

2. The groups jO(G\ n) and LH°°(G\ n)

We assume that n is linear throughout this section.
We first introduce yθ(G; n), which is considered as the unstable version of

JO(G). We define yθ(G w) as the subset of Pic(G w) which consists of all
Dn(S(V), S(W)) for linear G-spheres S(V), S(W) with dimension function n.

We need the following lemma in order to show thatyθ(G; n) is a subgroup
ofPic(G n).

Lemma 2.1. For any x&jO(G; n) and for any S(V) with dimension func-
tion n, there exists S(W) with diemension function n such that Dn(S(V), S(W))=x.
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Proof. Take linear G-spheres S(T) and S(U) with dimension function n

such that Dn(S(T)y S(U))=x. We set y=Dn(S(V), S(U)). Let

U=U1®. ®U,

be the irreducible decomposition. Since S(V) and S(U) have the same dimen-
sion function, by [14, Proposition 1.11]

for some A!, •••, kr^Z which are prime to |G | , where i/Λ are the Galois con-

jugations. We may assume that &,. = ! (4) since ^k=^~k on RO(G). By [14,

Theorem 4.1], there exists a G-map/,-: 8(^11^3(17^ such that

where [ ] indicates integer part. It is easy to see that d(fi) is invertible and

satisfies the unstability conditions for nf=DimS(E7f.). Hence Dn.(S(U{)9 S(-ψA '[/,.))

= KΛ)] Similarly

for some ίlf -, tr£ΞZ, (ti9 |G|) = 1, t{ = \ (4), and

We set

Since Dim S( C7,.)= Dim S(7f ), it follows that

Therefore

Dn(S(V), S(W)) = Π a.^D.WV,),

= Π a

= D«(S(U), S(T)) = x ,

where <xntίn'. Pic(G; /ιf )— >Pic(G; w) are the natural maps. This shows Lemma

2.1. ~"~

Proposition 2.2. Tλe subset jO(G, n) forms a subgroup of Pic(G; n).

Proof. Take any x,y<=jO(G\n). By Lemma 2.1, there are S(V), S(W)
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and S(U) with dimension function n such that Dn(S(V), S(W))=x and Dn(S(V),
S(U))=y. Using [11, Lemma 1.6],

Xy-l = Dn(S(V), S(W))Dn(S(V),

= Dn(S(U), S(W))ejO(G; n) .

We next define the group Pi</(G; n).
It is known ([6], [8]) that there exists the finiteness obstruction homomor-

phism

p: Pic(G)->*(G) := 0 KQ(ZWH) .
Off)

Here WΉ=NH/H and NH is the mormalizer of H in G. &Q(ZWH] denotes
the reduced projective group of ZWH. Let ρn be the composite of p and
the natural homomorphism Pic(G; w)->Pic(G). We define Pic/(G; n) as Kerpn.

Since a linear G-sphere is a finite homotopy representation, it follows that

yO(G;n)cPic'(G;ii).

We define groups LH°°(G\ n) and LH(G\ n) for any linear dimension func-
tion n.

DEFINITION.

LH~(G\ n) = Pic(G; n)/yθ(G; n) ,

; n) - Pic^(G; n)/jΌ(G; n) .

Let ^Γ be any homotopy representation with linear dimension function n.
We define l(X)<=LH~(G; n) by

where 5(F) is any linear G-sphere with dimension function n. This definition
is independent of the choice of S(V). Indeed let S(W) be another linear G-
sphere with dimension function n. Then

Dn(S(V), X)Dn(S(W), X)-1 = Dn(S(V), S(W))ejO(G; n) .

We now prove Theorem 0.1.

Proof of Theorem 0.1. lfl(X) = l9thenDn(S(V)9X)*=jO(G ,fί). ByLemma
2.1, we can take S(W) such that Dn(S(V)9 S(W))=Dn(S(V), X). This implies
that Dn(S(W), X)=l. By Theorem 1.3, X is G-homotopy equivalent to S(W).
The converse is trivial.

We state the following theorem which follows from [11, Theorem 2.1].

Theorem 2.3. Suppose that n satisfies the following condition (H).



LINEARITY OF HOMOTOPY REPRESENTATIONS 601

(H): n(H) = n(G) mod 2 for any
(1) For any a^LH°°(G\n}ί there exixts a homotopy representation X with

dimension function n such that l(X)=a.

(2) Furthermore if a^LH(G\ n), then X can be taken to be finite.

Proof. (1): Let #ePic(G; n) be a representative of a. By [11, Theorem
2.1], there exist X and S(V) with dimension function n such that Dn(S(V), X)—χ.
(Note that conditions of [11, Theorem 2.1] are satisfied because of the condi-
tion (H) and linearity of n.) This implies that ί(X)=a.

(2): Since the finiteness obstructions of x and S(V) vanish, the finiteness
obstruction of X also vanishes. Hence X is finite.

3. Computation of LH°°(G; n) for abelian groups

Throughout this section, a dimension function n is linear and G is abelian.
We first compute yθ(G; n) and Pic/(G; n). From [11], there is the following

commutative diagram.

Pic(G w) - > Pic(G) -£-* κ(G)

Π ZI\GIH\*I±I — > π z/|G/#ι*/±ι

Here SG/H: Z\\ G\H\ * / ±l-^K0(Z[G/H]) is the Swan homomorphism and p is
the finiteness obstruction homomorphism. The maps ~μ and fin are isomor-
phisms which are defined as follows. The ff-part u(H) of ~μ([d]) is defined by

u(H)= Π d(K)μ(H>κϊ (or equivalently d(K)= Π u(H)), where μ(H, K) de-
ff^J^^β J£^H<sGf

notes the Mΰbius function on the subgroup lattice. The Mobius function is
characterized as integers satisfiying the equations:

for any ίί, L (H^L). The isomorphism ~βn is defined as the restriction of
~μ to Pic(G; n). Hence we have

Proposition 3.1. The isomorphism jZn induces an isomorphism

= Π ZI\GIH\*!±IX Π KerSc/ff.
HeisoC«) Hel*oc»)

<?/H : cyclic G jH : non-cyclic

Proof. Since SG— 0 for a cyclic group G ([12]), the second equality fol-
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lows.

Let S(V) have the dimension function n. Let V(K) denote the direct sum
of irreducible subrepresentations of V with kernel K. Then V decomposes into

for some K{.
Let JC(n) denote the set of such X/s. We notice that JC(n) is independent

of the choice of V with dimension function n. One can also see the following.

Lemma 3.2.
(1) If KG JC(n), then G/K is cyclic.
(2) JC(n)cIso(n).
(3) For any set JC={Kly •• ,Xr} o/ subgroups such that G/K^s are cyclic,

there exists a linear dimension function n such that JC(n)=JC.

We next show

Proposition 3.3. The homomorphism jzn induces an isomorphsim

Proof. Let

V=V(K1)® ~®V(Kr),

W=W(K1)®-®W(Kr),

where DimS(F)=DimS(WO=M. There are G-maps /,: S(V(Ki))^S(W(Ki))
such that (d(fi)(H), |G|)=1 for any H. Then the degree function d(f) of
/=/!*...*/, represents D»(S(W), S(V)), and

It is seen that

( 1 otherwise.

Therefore

= Π

=

11

It follows that
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Π

Next, take any (aκ)^ Π Z/ |G//iΓ |*/±l . Let W be a representation

of G with DimS(ϊΓ)=n. Then S(W(K)) has a free G/^-action and G/K is
cyclic. It is seen that there exists a G/^-map /# : S(ΓΛ:)->Sf(W;(^)) (for some
Ftf) such that degfκ=aκ. Then Jϊn(d(*fκ))=(aκ). Thus τ&» induces an iso-

/r
morphism.

Consequently we obtain

Corollay 3.4.

Π
o(«)\JC(w)

; n) X (G; n) ,

M(G;n)= Π
eIso(«)
G//ί: cyclic

Π
lsofe)

f: non-cyclic

We now prove Theorem 0.2.

Proof of Theorem 0.2. (2)-*(l): This follows from Theorem 0.1.
(l)=ϋ>(2): Let J£ be a homotopy representation with linear dimension func-

tion n. When n satisfies (H) in Theorem 2.3, this direction follows from Theo-
rem 2.3. When n does not satisfy (H), we put n'=n+4. Then n' is linear and
satisfies (H). Furthermore Iso(n')=Iso(w) or Iso(w)U {G}, and JC(n')=JC(n) or
JC(n)U{G>. Therefore, by Corollary 3.4, LH(oo\G',n') and LH(oo\G\n) are
isomorphic, and so LH(°°\G\ n)=l.

4. Abelian groups with LH°°(G; n)=l

Throughout this section, a dimension function n is linear and G is abelian.
In this section, we prove Theorem 0.3.
In order to prove Theorem 0.3, we show several lemmas.

Lemma 4.1. For any H&lso(n), there exist K{^JC(n) such that H= Γ\Kf.

In particular Iso(n) = { Γ) K{ \ K{ e JC(n), r > 1} .
ί = l

Proof. Since n(H)>0, it is seen that there exists at least one K^JC(n)
including H. Let Hr be the intersection of subgroups in <JC(n) including H.
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Then H' is in Iso(w) since Iso(n) is closed under intersection. Furthermore one
can see that n(H)=n(H'). In fact, let us choose V such that n=Όim S(V).
Then

n(H) = dim VH = Σ dim V(K)

)

dim

= dim V*' = n(H').

Therefore H=H'.

Lemma 4.2. If KlyK2^JC(n) and if GIK1Γ\K2 is a cyclic p-group, then
or K! > K2. In particular Klf\K2^ JC(n).

Proof. There are two subgroups K,/^ Π K2 and KJ^ Γ) K2 of G/K, Π K2.
Since G/K1Γ\K2 is a cyclic ^-group, it follows that K1IK1Γ(K2>K2IK1Γ(K2 or

Hence K,<K2 or K, > K2.

Corollary 4.3. // H<=ΐso(n) and G/H is a cyclic p-group, then

In particular if G is a cyclic p-group, then ϊso(n)=JC(n).

Proof. This follows from Lemmas 4.1 and 4.2.

Proof of Theorem 0.3. (1): In the case where G=C>, LH~(G', n)=l by
Corollaires 3.4 and 4.3.

In the case where G=C6 or C2xC2, LH°°(G\ n) = 1 by Corollary 3.4.
In the case where G is cyclic and | G \ is neither prime power nor 6, there

exists K such that G/K^Cpq, where p, q are distinct primes, and there exist
K19 K2>K such that G\K^CP and G/K2^Cq. By Lemma 3.2 (3), there exists
n such that JC(n)= {Kly K2}. Since K1Γ\K2=K^ϊso(n)J it follows from Corel-

lary 3.4 that lΦZ/|G/ΛΓ|*/±lcL^-(G;n).
In the case where G is neither a cyclic group nor C2 X C2, let -Γ be the set of

subgroups K such that G/K are cyclic and n a the dimension function such that

JC(n)=-£. Since 1 e Iso(»)\cX(n) by Lemma 4. 1 , it follows that 1 Φ Z/ 1 G | * / ±

(2): In the case where G=Cpm, since LH(G\n}c:LH00(G\n), it follows

that Ltf(G;«)=l.
In the case where G is G2 or G3, since KeriSG/^^l if G//ί is cyclic ([10,

Lemmas 3.9 and 3.10]), it follows from Corollary 3.4 that N(G\n)=l. By
Corollary 4.3, M(G; n)=l. Therefore L#(G; n) = l.

In the case where G=(C2)
Λx(C3)

w, since Ker SG/a=l if G//f is cyclic ([10,
Lemma 3.11]), it follows from Corollary 3.4 that N(G; n) = l. If GjH is cyclic,
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then G/#^ 1, C2, C3 or C6. Therefore it follows that M(G\ n)=1 and LH(G\ n)
Λ

In the case where G is cyclic and | G \ is neither prime power nor 6, by the

same argument as in (1), one can see that LH(G\ »)φl.

In the case where G is a non-cyclic p-group (^>Φ2, 3), by the same argument
as in (1), one can see that KerSGcΛΓ(G; n). By [13], the order of ImSG is

\G\lp. Hence |Z/ |G|*/±l |> |ImS G | and so KerSGΦl.
Finally we consider the case where G is neither cyclic nor of prime power

order and furthermore G is not (O2)
n X (C3)

w. Assume that a prime p (>5) di-
vides |G| . Then there exists K such that G/K^Cpq(p, q are distinct primes)

and there exist Kl9K2>K such that G/K^Cp and G\K2^Cr As in (1) one

can see that LH(G\ »)Φ 1. Next assume that the order of G is 2"3m. Since G
is not (C2)

n X (C3y, there exists K such that G/^^C4xC3 or C2xC9. Assume

that G/K^C4X C3. Then there exist K19 K2>K such that G/K^C4 and G/K2

^C3. Take n such that JCfe)= {K19 K2}. Since K=K, n J^2elso(n)\JC(w), if
follows that l*ZI\GIK\*l±lcLH(G',n). In the case where G/K^C2xC9,
by the same argument, one can see that LH(G\ n)Φ 1.

Thus the proof is completed.

Proof of Corollary 0.4. Since the dimension function of any homotopy re-
presentation (not necessarily finite) is linear if and only if G is a p-group ([6],
[3]). Therefore the first assertion is clear from Theorem 0.3. Foi the second

asseition, it suffices to show that there exists a finite homotopy representation
of (C2)

nX(C3)
w with nonlinear dimension function. By the theorem mentioned

above, there exists a homotopy representation X of C6 with nonlinear dimension
function. Since the finiteness obstruction of a homotopy representation of a
cyclic group vanishes, the homotopy representation X is finite. We consider
X as a finite homotopy representation of (C2)

ΛX(C3)
m da a surjective homomor-

phism from (C2)*x(C3)
m to C6.
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