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0. Introduction

Let E be an associative ring spectrum with unit. For any CW-spectra
X and Y we say that X is quasi Ex-equivalent to Y (see [15] or [16]) if there ex-
ists a map f: Y—E,X such that the composite map (upl) (1of): EAY—=E\X
is an equivalence where p: EAE—E denotes the multiplication of E. Let KO,
KU and KT be the real, the complex and the self-conjugate K-spectrum respec-
tively (see [3] or [7]). It is known that there is no difference among the KOx-,
KUy- and KT-localizations ([11], [5] or [13]). So we denote by Sy the K-
localization of the sphere spectrum S=3°. These spectra KO, KU, KT and
Sy are all associative ring spectra with unit.

In [15] we studied the quasi Ky-equivalences, especially the quasi KO-
equivalence, and in [16] and [17] we determined the quasi KOy-types of the
real projective spaces RP" and the stunted real projective spaces RP"/RP".
In this note we will be interested in the quasi Sk,-equivalence in advance of the
quasi KOx-equivalence. According to the smashing theorem [6, Corollary
4.7] (or [13]), for any CW-spectrum X the smash product Sg X is actually the
Ky-localization of X. Hence we notice that two CW-spectra X and Y have
the same Ky-local type if and only if X is quasi Sy,-equivalent to Y.

For any map f: X—Y its cofiber is usually denoted by C(f). Let 5: S'—>X3?
be the stable Hopf map of order 2. The KO-homologies of the cofibers C(z)
and C(x?) are well known as follows: KO,C(n)=n,KU==Z or 0 according as
i is even or odd, and KO,C(*)=n,KT=Z, Z|2, 0 or Z according as =0, 1, 2
or 3 mod 4. A CW-spectrum X is said to be a Wood spectrum if it is quasi
KO4-equivalent to the cofiber C(z), and an Anderson spectrum if it is quasi KO-
equivalent to the cofiber C(»?) (see [12], [15] or [18]).

Let 7: 3'SZJ2—3° and #: 3*—SZ|2 be an extension and a coextension of
n with 7i=y and jij=2, where SZ/2 denotes the Moore spectrum of type Z/2

2 _
constructed by the cofiber sequence 2°—>2°—1>SZ/21>21_._ Choose two maps h:
338Z/2—C(7) and k: 3°SZ/2—C (%) with jh=7j and jk=#n where j: C(7)—
3*SZ/|2 denotes the bottom cell collapsing. Using a fixed Adams’ Kx-equiva-
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lence A,: 388Z/2—SZ|2 in [2] we can introduce four kinds of maps f, (¢=1) as
follows:

a, = jAsi: ¥ —> 30, apay = 7 Ay iz S > 50
Ayip=hA31: 3% > C(7) and my,,., = kA3 ¥ —> C(7).

Setting @, =jA}, Ty 1=71A4%, @4y ,=hA} and i, ;—=FkAj, we can also introduce
four kinds of maps f_, (¢=1) as follows:

Q_yy: 2741 C(a,) — 2, MH—gr-1° %783 C(Bsrs1) — >,
Ayr-2: 2—8'—5 C(a4r+2) - 20 and M_gyr-3: 2—87‘—7 C(m—4r+3) - 20

of which each cofiber C(f-,) coincides with Z~#C(f,).
In §1 and §3 we will determine the Ky-local types of Wood and Anderson
spectra as our results (Theorems 1.7 iii) and 3.4 ii)):

Theorem 1. Let X be a Wood spectrum whose rationalization X,SQ is
(Z°VE*)A\SOQ for some odd integer t=1. Then X has the same Ky-local type as
the following cofiber C(u,) or C(m,) according as t=4r+1 or 4r+3.

Theorem 2. Let X be an Anderson spectrum whose rationalization X \SQ
is (Z°VZHY SO for some odd integer t. Assume that t+—1. Then X has the
same Ky-local type as the following cofiber C(nu,) or C(ym,) according as t=
+(4r+1) or 4-(4r+3).

For the Moore spectrum SZ/2! of type Z/2! we denote by 7,: 3'—-SZ/2! and
Je: SZ|2!—3! with the subscript “#”’ the bottom cell inclusion and the top cell

projection. Abbreviating the cofiber C(¢,-, %) to be V' we have a cofiber se-
o1z . .

quence 2°—+C(7;)—2—>V2:ﬂ 3! In §4 the Ky-local types of the real pro-

jective spaces RP" (2=n=co) will be determined as our main result (Theorem

4.6 ii)):

Theorem 3. The real projective space Z'RP" has the same Ky-local type as
the following elementary spectrum: SZ|2¥, C (iy,poap+1), Varr+1, C(Gy sr41 Qupsz), Vatr+2,
C (T 4r42 Muprs)s SZ[2'43, Cigyys Oupys) according as n=38r,8r+1, -, 8r+7. In
addition, Z'RP* has the same Ky-local type as SZ|2= (cf. [8, Theorem 4.2] or [13,
Theorem 9.1]).

In order to prove the above theorems we will need the following powerful
tool due to Bousfield [7, Theorems 7.11 and 7.12].

Theorem 4. Let Y be a certain CW-spectrum satisfying either of the fol-
lowing two conditions: i) KUY is either free or divisible and Hom(=;Y QQ,
;1Y ®Q)=0 for each i; ii) KU, Y=0 (or KU, Y=0). Assume that a CW-
spectrum X is quasi KOy-equivalent to Y, and the real Adams operations % in
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KOyX and KOyY behave as the same action for each k=0 when KOy X is iden-
tified with KO Y as a KOgy-module. Then X is quasi Sg,-equivalent to Y, thus
X has the same Ky-local type as Y (cf. [7, 9.8]).

In §1 we will mainly deal with CW-spectra X satisfying the following pro-
perty:
(I) KU,X=Z with ¥t=1 and KU, X=0;
(Ln) KU, X=2Z[2m with 1\t =1 and KU, X=0; or
(II), KU, X=Z®DZ with =4, , and KU, X=0.

1/ 0
1—Fk! 2k 1
After investigating the behavior of the real Adams operation % for CW-spectra
X with the above property we will determine their Ky-local types (Theorems 1.2
and 1.7). In 82 and §3 we will next deal with CW-spectra X satisfying the
following property:

(L,); KU X=Z®BZ[2m with yt=4,, and KU, X=0; or
(II), KU,X=Z with y=1and KU, X=Z with yk=1/k.

As in §1 we will also determine the Ky-local types of such CW-spectra X
(Theorems 2.6 and 3.4). In §4 we will finally deal with the symmetric squa-
res SP:S” of the n-spheres and the real projective n-spaces RP". After investi-
gating the behavior of the Adams operations ¢ and % for the spaces SP2S”
and RP", we will determine their Kx-local types (Theorem 4.6) by applying
Theorems 1.2, 1.7 and 2.6.

In the forthcoming paper [19] we will completely determine the Ky-local
types of the stunted real projective spaces RP"/RP" (0<m<n<= o) along our
line.

Here A,,,———( ), which operates on (ZPZ)RZ[1/k] as left action.

1. Ky-local types of Wood spectra

1.1. Let X be a CW-spectrum with KUy X=Z and KU,X=0. For such
a CW-spectrum X we may assume that the stable complex Adams operation
Yk acts identically on KU, X®Z[1/k] for each k0. Thus X satisfies the fol-
lowing property:

(I) KU,X==Z in which yt=1 and KU,X=0.

Whenever a CW-spectrum X satisfies the property (I), it is quasi KOx-equival-
ent to either of =° and =* (see [7, Theorem 3.2] or [15, Theorem 1.2.4]). In
this case it is easily seen that the stable real Adams operation % acts always
on KO, X®Z[1/k] (0=:<7) for each k=0 as follows:

(1.1) +%=FR? or 1 according as i=4 or otherwise.
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The Moore spectrum SZ/2m of type Z/2m is constructed as the cofiber of
2m __ 1
multiplication by 2m on Z°. Thus we have a cofiber sequence Z°— 50587 2m

LEI. Let %;y,: Z'SZ/2m—3" and #,,,: S*—>SZ/2m be an extension and a coex-
tension of » satisfying #,,, =27 and j#,, =7 respectively, where »: 3'—=3° denotes
the stable Hopf map of order 2. The maps %, and #, are often abbreviated to
be 77 and 4. Consider the two cofiber sequences

siszehz0 b cmy b wszp ad b szpt cm

in which the cofibers C(%) and C(%) are denoted by P; and P, respectively in
[15, 1.4.1]. Between these cofibers there holds a Spanier-Whitehead duality
as C(#)==°DC(75). By observing [15, Propositions 1.4.1 and 1.4.2] we verify
that

(1.2) both C(%) and Z73C(#) satisfy the property (I), and they are quasi KOy-
equivalent to =*.

Let X be a CW-spectrum with KU, X==Z/2m and KU, X=0. In this case
we assume that the Adams operation ¢ acts identically in KU, X for each
k=+0. Thus we here deal with a CW-spectrum X satisfying the following prop-

erty:
(L) KU,X=2Z|2m in which ¥¢=1 and KU, X=0.

Consider the cofibers C(i3) and C (%) of the composite maps i%: 3'SZ/2—SZ|m
and #j: Z'SZ|m—SZ|2, which are denoted by V,, and V. respectively as in
[15, 1.4.4]). Between them we have a Spanier-Whitehead duality as V.=
33DV,,. Since there exist cofiber sequences

ml, . N . .y m':'
22 emEvnls ad 2%l cm S 2,

it follows from [15, Corollaries 1.4.6 and 1.5.4] that

(1.3) both V,, and =72V}, satisfy the property (I,,), and Z?V3, is quasi
KOy-equivalent to V,,, whose KO-homology KO,;V,,=Z|m, 0, Z|2, Z|2, Z|4m,
Z|2, Z|2, 0 according as =0, 1, -+, 7.

Notice that a CW-spectrum X is quasi KOx-equivalent to one of the four
elementary spectra SZ/2m, 3*SZ/2m, V,, and 3*V,, whenever it satisfies the
property (I,,) (see [15, Theorem II1.2 or Theorem 1.5.2]).

Lemma 1.1. Let W and Y be CW-spectra satisfying the property (I),
and g: W—Y be a map whose cofiber C(g) satisfies the property (1,,). Then the
cofiber C(g) is quasi KOx-equivalent to W SZ[2m or WAV, according as W is
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quasi KOy-equivalent to Y or not. In the latter case the Adams operation %
acts normally in KO,C(g)=KO,W\V,, (0<i<7) for each k=40 as follows:
W=k or 1 according as i=4 or otherwise.

Proof. The induced homomorphism gy: KO,W—-KO,Y is trivial in di-
mension =1, 2,5 or 6 because gy: KU, W—KU,Y is multiplication by 2m on
Z. Therefore it is immediate that KO4C(g)=0 if both W and Y are quasi
KOy-equivalent to =%, and KO,C(g)=Z|2 and KO,C(g)=0 if W and Y are
quasi KOg-equivalent to =° and 3* respectively. Thus C(g) is quasi KOx-
equivalent to SZ/2m in the first case, and it is quasi KOx-equivalent to V,, in
the second case. In the other two cases we can similarly observe the quasi
KOy-type of C(g). When C(g) is quasi KOy-equivalent to either of V,, and
SV ym, 1t is easily checked that k=1 or k? in KO; C(g) for each k=0 accord-
ing as 1=0 or 4.

Since the maps 7: Z'SZ/2—3° and #: 3?—>SZ/2 have order 4 [4, (4.2)], we

can choose maps
Tampe: 22822 — SZ[4m and  #,,),: S2SZ[4m — SZ|2

with j%,,=% and #,,,i=7%. Denote by U,, and Uj, their cofibers C (%)
and C(#,,,,) respectively. Between them there holds a Spanier-Whitehead du-
ality as U4w=3!DU,,. Using the cofiber sequences

S ) ) S y .,
coy=s L U, e md 2% om' usd s
with X=4 and jA=4, we can easily show by the aid of Lemma 1.1 that

(1.4) both U,, and Z'Uj, satisfy the property (I,,), and they are quasi KOx-
equivalent to 3 V,,.

If a CW-spectrum X satisfies the property (L,,), then the smash product
XAC(7m) does the same property, but it is quasi KOx-equivalent to =*X because
of (1.2). Whenever X=S8Z/2m, V,p, =72V m, Upy or Z7*U}m, the Adams oper-
ation % behaves normally in KO, X and KO, X,C(5) (0=i<7) for each k=40
as follows:

(1.5) k=Fk? or 1 according as i=4 or otherwise.

Because the X=SZ/2m case is well known, and the other four cases are im-
mediately shown by Lemma 1.1.
Let X be a CW-spectrum satisfying the property:

(L) KU,X=Z[2> in which ¥¢=1 and KU, X=0.
Such a CW-spectrum X is quasi KOx-equivalent to either of SZ/2* and
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2*8Z[2= (see [7, Theorem 3.3]). In this case it is easily seen that the Adams
operation yr% behaves always in KO,X (0=<¢<7) for each k=0 as follows:

(1.6) =K or 1 according as i=4 or otherwise.

Use (1.1), (1.5) or (1.6) to apply Theorem 4 for CW-spectra X with the
property (I), (I ,) or (I;=). Then we obtain

Theorem 1.2. i) Let X be a CW-spectrum satisfying the property (I).
Then it has the same Ky-local type as either of Z° and C(7).

ii) Let X be a CW-spectrum satisfying the property (L,,). Assume that the
real Adams operation % behaves normally in KOxX in the sense of (1.5). Then
X has the same Ky-local type as one of the following spectra SZ|2m, SZ[2mxC (7),
Vom and U,

iii) Let X be a CW-spectrum satisfying the property (I~). Then X has the
same Ky-local type as either of SZ|2* and SZ|2=,\C (%).

1.2. Let X be a CW-spectrum with KU X=Z@PZ and KU, X=0. For
such a CW-spectrum X we may assume that X,SQ=(Z*VZ°),SO for some
integer t=0. In this case the complex Adams operation ¢ on KU, XQZ[1/k]
is represented as the matrix C™'4,; ,, C for each k40 where the matrix CEGL
1/k* 0

0 1/
When ¢ is odd, we may regard that the conjugation Yrc'on KUy X=ZPZ is ex-
pressed by either of the matrices (_(1] (1)) and (_1 (1)> (see [7, Proposition 3.7]
or [15, 1.2.1]). This observation implies easily that the Adams operation ¢ in
KU,X for each k==0 can be expressed by the following matrix

1R 0 Uk 0
Ao=\g 1) o A=\ _por 1

according as 1IrEI=<_(1) (1)) or (:1 (1)), whenever ¢ is odd.

Let X be a CW-spectrum satisfying the following property:

(2, Q) associated with the Chern character is independent of 2 and 4 ,,,,,oz(

(1), KU,X=Z@®Z in which ¥t=4, ,,and KU,X=0.

Then X is quasi KOx-equivalent to one of the wedge sums Z°V =, Z°V3* and
Z*V=* when ¢ is even, and it is quasi KOx-equivalent to one of the wedge sums
PV I, SEV A SOV E? and 0V St when ¢ is odd (see [7, Theorem 3.2] or [15,
Theorem 1.2.4]). By an easy argument using the long exact sequence induced
by the Bott cofiber sequence Z'KO—-KO—->KU—-3?KO we can show that in
the case when ¢ is even the Adams operation % behaves always in KO; X
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(0=:<7) for each k=0 as follows (cf. [2, Proposition 7.14]):

(1.7) i) If X is quasi KOx-equivalent to either of 3°VZ° and 3*VZ*, then
We=A, 1.0, K44 1, 0t 1 according as i=0, 4 or otherwise.

ii) If X is quasi KOx-equivalent to Z°V 3¢, then Yg=A, ., kK24, ;e or 1
according as :=0, 4 or otherwise where (&, €")=(0, 0), (0, 1) or (1, 0) and 4, ;=
Ay ;.

Let X be a CW-spectrum satisfying the following property:
(I1), KU, X=Z®Z in which ¥t=4, , and KU, X=0.

Then X is quasi KOx-equivalent to one of the wedge sums Z°V =’ 3V 3¢ and
Z*V=* when t is even, but it is only quasi KOx-equivalent to the cofiber C ()
when £ is odd (see [7, Theorem 3.2] or [15, Theorem 1.2.4]). Thus X is always
a Wood spectrum in the case when ¢ is odd. By a similar argument to (1.7) we
can also show that the Adams operation % behaves always in KO; X (0=i<7)
for each £=0 as follows:

(1.8) i) If X is quasi KOx-equivalent to either of Z°VZ° and 'V, then
Vr=A,; ;, k*A4,; ; or 1 according as i=0, 4 or otherwise.
ii) If X is quasi KOg-equivalent to 3°V 3¢, then k=44 ; ¢, B4 1 5-c 01 1
according as =0, 4 or otherwise where €&=0 or 2 and 4, , j:( 1]k . 0).
" 1—Fk 2R 1
iii) If X is a Wood spectrum, then k=1, 1/k*~}, k? or 1/k*~® according
as 1=0,2,4 or 6.

For any map a,,;: Z%~'—3° whose ec-invariant ec(Qy;)=1/2’ mod 1, we
notice that the Adams operation ¢ in KU, C(atp;)=ZDZ is represented by
the matrix A, ,, ; as given in (1.8) ii) for each k=0 [2, Proposition 7.5]. Con-
sider the maps

(1.9)  argg: 471 > 30ttty 347> C(7) and a2 SETHC(H) = =°
where s=1 and a,,, is abbreviated as .

Proposition 1.3. The cofibers C(uy,), C(iQyp) and C(0ypj) satisfy the
property (I1),,, and they are quasi KOx-equivalent to the wedge sum Z*\V/Z=°,
4V E and 2474V Z° respectively.

Proof. The first half is easy, and the latter half is immediate bacause
T4s—1 KO=0.

1.3. Let us fix an Adams’ Kx-equivalence 4,: 335Z/2—SZ|2 [2]. We first
consider the composite maps A3 i: Z%—SZ[2 and jA4;: Z¥7'SZ[2—3° (r=0).
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Lemma 1.4. The cofibers %' C(A51) and C(jA3) satisfy the property
(I), and they are quasi KOy-equivalent to 3.

Proof. Since the Adams’ Ky-equivalence 4,: 38SZ/2—SZ|2 induces an
isomorphism in KU-homology, we obtain that KU, C(A4}¢)=KU, Z¥"'=Z,
KU, C(jA})=KU,3'=Z and KU, C(A457)=0=KU, C(j4;). Moreover it fol-
lows that 37'C(A43 1) and C(jA43) are both quasi KOx-equivalent to =° but not
to %! because KO, C(A451)=0=KO; C(jA453).

Lemma 1.5. Let X be a CW-spectrum satisfying the property (I).

i) Let f: Z#7'SZ|2—X be a map whose cofiber C(f) satisfies the property
(I). For the composite map fA;i: Z¥ %X its cofiber C(fA%1) satisfies the
property (I1),,.,, and it is quasi KOy-equivalent to *\/ C(f) or C(y) according as
t is even or odd.

ii) Let g: Z*X—->SZ|2 be a map whose cofiber Z*~'C(g) satisfies the prop-
erty (I). For the composite map jA3 g: S¥ 41X 30 its cofiber C(jA} g) satisfies
the property (11),,,,, and it is quasi KOy-equivalent to Z'C(g)V =’ or C(x) ac-
cording as t is even or odd.

Proof. i) Consider the commutative diagram

Ser+a-1 A_Ez) SH-1SZ[2 — SH-IC(Aj i) — St

I Vf VF I
fAsi .
28r+2:—1 — X — C(fA; t) — 28r+2t
Vig Vir
ciH = <)

involving four cofiber sequences. It is obvious that KU, C(fA51)==KU, S+
PKU, X=ZPZ and KU, C(fA57)=0. Observe that the induced homomor-
phism Fy: KU, 3*7'C (43 i{)—KU, C(fA431) is given by Fx(1)=(2, a) for some
integer a. Since the integer @ must be odd, we may take a to be 1. By an easy
argument we can then show that Yt=4, ., in KU, C(fA37) for each k=+0.
Since 37'C(A437) is quasi KOx-equivalent to =° by Lemma 1.4 and C(f)is quasi
KOy-equivalent to either of =° and ¢, the cofiber C(fA457) becomes quasi KOy-
equivalent to the wedge sum C(f)V = in the case when t is even. On the
other hand, it is exactly a Wood spectrum in the case when ¢ is odd, because

¢gl=(:i (1’) on KU, C(fA33).

ii) is similarly shown by a dual argument.

Consider the composite map #75: Z*SZ/2—SZ[2. Since KO, C(37)= KO,
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SZ|2=Z|2 and KO; C(%7)=KO, SZ|2=Z|4, a routine argument with (1.2)
shows that

(1.10) ="2C(#mn) satisfies the property (I,), and it is quasi KOx-equivalent to
SiSZ/4.

Since the composite maps %7 j: Z3SZ|2—3}, ing: 22—>SZ[2, 757: Z°SZ|2
—3! and 75%: Z°—>SZ|2 are all trivial [4, §4] we can choose the following maps
1.11) h: 33SZ|2 — C(%), IC(% )—>SZ/2
(1. k: 3°SZJ2 — C() and k 3C (%) — SZ|2
such that jE=1j, hi=in, jk=#5% and ki =77. Among their cofibers Ehere hold
Spanier-Whitehead dualities as C(%)=3°DC(k) and C(E)=="'DC(k). Since
KU, C(#j)=KU, C(in)=KU, C(#7)=Z|4 by (1.3) and (1.10), we can easily
observe that
(1.12) the cofibers C(k), Z°C(k), C(k) and =~"C(k) satisfy the property (I),
and the first two and the last two are respectively quasi KOx-equivalent to =*
and 39,

because KO,C(h)=KO,C(h)=KO;C(k)=0 and KO,C(k)=KO, SZ|2==Z|2.
By taking f in Lemma 1.5 i) as the map j, %, % or k, and g in Lemma 1.5
ii) as the map i, #, % or k, we can now introduce the following maps of order 2:

o, = jAy: ¥ 30,
a1 = A St 30 Lyt = jJA3: SEr+l_, 0
Qypyp = hAG: S — C(7),  alyso = jAGK: S¥C(7) > =0
Myys = RAGE: 375 — C(n),  miy.s = jAsk: S92 C(7) > 3.

(1.13)

Among their cofibers we may regard that there hold Spanier-Whitehead dualities
as C(f:)ZEZtDC(ft) forft:a4n Hoar+1s Qypy2 OF m4r+3 Where r20 and air:ah-
Combining Lemma 1.5 with (1.2) and (1.12) we obtain

Proposition 1.6. Set fi=a,,, jyy11, pirs1, Qurios Ghraz, Mygys O Mhy s (r=0).
Then each cofiber C(f,) satisfies the property (1I),. Moreover C(a,,), C(ai,.:) and
34C(ay,) are quasi KOy-equivalent to Z°V'3?, and C(usyy1), Cpirer), C(Myys)
and C(m},.s) are all Wood spectra.

Use Proposition 1.6 combined with (1.8) to apply Theorem 4. Then we
obtain the following result, which contains Theorem 1.

Theorem 1.7. Let X be a CW-spectrum satisfying the property (11), with
£=0.
i) If X is quasi KOx-equivalent to 2°\/=°, then it has the same Ky-local
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type as C(at,,) or C(ai,.z2) according as t=4r or 4r+2.

i) If X is quasi KOy-equivalent to 3*\/Z*, then it has the same Ky-local
type as C(a,)\C(7) or C(ay,.,) according as t=4r or 4r+2.

iii) If X is a Wood spectrum, then it has the same Ky-local type as C(pq41)
or C(my,3) according as t=4r-+1 or 4r+-3.

2. Ky-local types of spectra with the property (IL,,),

2.1. Consider the cofibers C(i5), C(7y,) and C(%°7z,) of the maps in: Z'—
SZ|2, 7ym: SISZ[2m—3" and 7*7,,: S2SZ[2m—3°, which are denoted by M,,,
P;» and Rj, respectively in [15, 1.4.1]. Recall that KUM,,=<Z®Z[2m on

which «pzlz(_i (1’) KU,Pim=Z®Z}m on which «pz‘:G (1’) KUyR}m==

Z®Z|2m on which rg'=1, and KU,M,,=KU,P},=KU,R},=0[15, Proposi-
tion I1.4.1]. Note that 572Pj, is quasi KOx-equivalent to M,,, whose KO-
homology KO, M,,,=Z/2m, 0, ZBZ|2, Z|2, Z[4m, 0, Z, 0 according as 7=0, 1,
-++, 7 (see [15, Proposition 1.4.2 and Corollary 1.5.4]).

Let X be a CW-spectrum satisfying the following property:

(IL,), KU X=Z@Z|2m in which Jt=A4,, and KU, X=0.

Then X is quasi KOx-equivalent to one of the following elementary spectra
S4NZYSZ2m, 34V 24V, and SYR}, for i, j=0 or 1 when ¢ is even, and it
is quasi KOy-equivalent to either of M,, and Z*M,,, when ¢ is odd.

Lemma 2.1. Let X, Y and W be CW-spectra satisfying the property (I).
Let f: 27 ' X—Y and g: W—Y be maps whose cofibers C(f) and C(g) satisfy the
properties (11), and (1,,,) respectively. Then the cofiber C(i, f) of the composite map
i f: ZH ' XY —>C(g) satisfies the property (11,,),. Moreover it is quasi KOy-
equivalent to Z*X \/ C(g) when t is even, and it is quasi KOy-equivalent to M,,, or
2*M,,, according as W is quasi KOy-equivalent to Z° or Z* when t is odd.

Proof. Use the commutative diagram

W = W
7 \ & |G
s#1x Ly O(f) — SEX
I Vi, Vi Il

SHIX > C(g) > Clipf) — S¥X

involving four cofiber sequences. Obviously KU, C(i, f)=KU, Z*XPKU,
C(g) in which Y& =4, , and KU, C(i, f)=0. When ¢t is even, C(i,f) is quasi
KOx-equivalent to the wedge sum Z*X VC(g) since Z*7'X is quasi KOy-
equivalent to =* or 7 and Y is quasi KOy-equivalent to 3° or . On the other
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hand, C(z, f) is quasi KOy-equivalent to either of M,, and =‘M,, when ¢ is odd.
However we notice that KO, C(¢, f)=KO, W because C(f) is 2 Wood spectrum
in the case when ¢ is odd.

Let X be a CW-spectrum with (II,,,),,;, which is quasi KO-equivalent to
either M,, or 3'M,,. Using the long exact sequence induced by the Bott
cofiber sequence 3'KO—KO—KU—32KO0 we can easily show that the Adams
operation vk behaves always in KO, X (0<i<7) for each k=0 as follows:

(2.1) r=1/k*, k* 1/k*72 or 1 according as :=2, 4, 6 or otherwise.

Lemma 2.2. Let X, Y and W be CW-spectra satisfying the property (I).
Let f: 3%7'X—Y and g: W—Y be maps whose cofibers C(f) and C(g) satisfy the
properties (11),; and (1,,,) respectively. Assume that the Adams operation % be-
haves normally in KO4C(g) in the sense of (1.5). Then the Adams operation %k
acts normally in KO,C(i, ) (0=<i<7) for each k+0 as follows:

i) If both =X and Y are quasi KOy-equivalent to either of =° and X, then
Wrh="A} 25, B4} 55 0r 1 according as i=0, 4 or otherwise.

i) If %X and Y are respectively quasi KOy-equivalent to 3° and 3, then
o ="A} 25,2, R?Ap 25,0 0r 1 according as i=0, 4 or otherwise.

iil) If %X and Y are respectively quasi KOx-equivalent to Z* and =°, then
Wo="A} 25,0, K*Ap 252 0r 1 according as i=0, 4 or otherwise.

Proof. Use the cofiber sequence WEC( f )Z—G>C(ig f )]—G>21W appeared in the
proof of Lemma 2.1 where C(f) and C(i,f) are quasi KOy-equivalent to
SHXVY and E4XVC(g) respectively. Since W is quasi KOx-equivalent to
either of % and 3¢, the map i; induces epimorphisms i;x: KO,C(f)—KO,C(i, f)
in dimensions /=0, 1, 4 and 5. By using (1.8) i) and ii) we can immediately ob-
serve the behavior of ¥k in KO,C(i, f) for i=0,1,4 or 5. We will next show
that Y%=1 in KO,C(i, f) for i=2 or 6. It is obvious that KO,C(i, f) is iso-
morphic to KO,C(g), KO,C(f) or KO,C(f)DKO,C(g) according as =X, W
or Y is quasi KOy-equivalent to 3. Therefore it is easy to see that 4p(=1 in
KO,C(i, f) in these three cases. Assume that Z*X, W and Y are all quasi
KOy-equivalent to 2°. Then we have the following commutative diagram

0 0
! |

0 - KO,Y — KOC(f) — KO,3*X — 0
! ! I

0 — KO,C(g) — KO, C(i,f) — KO,5X — 0
! |

KOW = KOW

| !

0 0
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with exact rows and columns, where C(g) is quasi KOy-equivalent to SZ/2m
by Lemma 1.1. Then a routine computation shows that Jk=1 in KO,C(i, f)
as desired, because Jh=1 in KO,C(f) and KO,C(g). Similarly as to KO,

C(ig f)-

We remark that the Adams operation yk acts normally in KOxC(z, ) AC(7)
as stated in the above lemma if it behaves normally in KO4C(g)AC(%) in the
sense of (1.5).

Take f in Lemma 2.1 as the map a,, w411, @412, @4rs2 OF My, 5 given in (1.13)
and g in Lemma 2.1 as the map 2m: 3°—Z°, mX: C(5)—>=", 2m: C(5)—C(%) or
mi: 3°—C(7) whose cofiber is SZ/2m, U,,, SZ|2m,C(%) or V,,. Then we can
introduce the composite maps i, f; (£=0) as follows:

iy, ¥ > SZ2m , 1y, 2= U,,,
i/—"4r+1: ESH—I g SZ/2m ’ iy[b4,+1: 28’+1 g U2m ’
(22) i@y, SYC(H) — SZ2m, iy@hrs2: SYC(H) = Upp

(2A1) @4y 0t SEH SZ2mA\C(7), iyt SF = Vo
(EAL) myy 52 S5 — SZ2mpC(R),  GyMyyrg: S5 — V.

Applying Lemmas 2.1 and 2.2 and (2.1) with the aid of Proposition 1.6,
(1.3), (1.4) and (1.5), we obtain

Proposition 2.3. For each composite map i, f, (t=0) given in (2.2), its co-
fiber C(i, f,) satisfies the property (I,,),, and the Adams operation % behaves
normally in KOy C(i, f,) as stated in Lemma 2.2 i) when t is even, or as stated in
(2.1) when t is odd. Moreover C(iat,,), C(iai,.z2) and S*C((ip1) Gy42) are quasi
KOy-equivalent to 3°N SZ|2m, and C(iya,,), C(iyai,.z) and Z*C(iyay.,) are
quasi KOy-equivalent to 3°\/ 3*V,,. On the other hand, C(ius1), C(tyMyyy3),
SAC(fy gy +1) and ZAC((ip1) ma,s) are all quasi KOy-equivalent to M,,.

2.2, Letf: 3*'X—Y be a map of order 2. Then we have extensions

Fom: Z¥X\SZ2m — Y, fyum: Z*'X\Uy — Y and
Fram Z¥ X' \Vi— Y when X = X',C(%)

such that fou(170)=f, fv.um(1riv)=f and fy im(1riy)=f because U,, and V,,, are
constructed as the cofibers of the maps 2m X: C(5)—>=° and 2m1: Z°—C(5)
respectively.

Lemma 2.4. Let X and Y be CW-spectra satisfying the property (I), and
f:SH'X—>Y be a map of order 2 whose cofiber C(f) satisfies the property (II),
(t=0).

() The cofiber C(f,) sacisfies the property (1), and it is quasi KOy-equivalent
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to Y or Z'Y according as t is even or odd.

i) For Puw="Fim fv.um O [y.um each cofiber ~*C(P,y) satisfies the property
(ILp)-s. Whenever t is odd, all of C(fim), Z*C(fysm) and C(fy.m) are quasi
KOy-equivalent to Pi, or 2P}, according as 3*X is quasi KOx-equivalent to 3?2
or =5,

Proof. Consider the following commutative diagram

zti — 22!X
7 Y } 2m
22!—1X s Y — C(f) - ZZtX
Va8 I ! ’

SAX,SZ2m = Y — C(fim) — S*XASZ[2m
2m
involving four cofiber sequences. The induced homomorphism Ay: KU Z*X
—KU,C(f) is given by ag(1)=(2m,m)EKUC(f)=KUZ*XPKU,Y =
Z®Z, since Yt =A4,, in KU,C(f). Hence it is immediate that KU,C(fm)==
Z®Z|m and KU,C(f,,)=0. Moreover the Adams operation vt in KU,C(fo)

is represented as the matrix <_(1) ?) A,,_,(ﬂtl) ?):k“/lk,_,. In other words,

Yh=1 in KU,C(f})=Z and Yt=A4, ., in KUy S C(fn)=ZDBZ|/m unless
m=1.

Assume that Y is quasi KOy-equivalent to °. Then it is obvious that
KO,3%X,S8Z|2=0 because KO, C(f,)=0=KO;Y. Therefore Z*X,SZ/2
becomes quasi KOy-equivalent to SZ/2 or Z*SZ|2 according as ¢ is even or odd.
This implies easily that C(f;) is quasi KOx-equivalent to =° or ¢ according as
tis even or odd. When Y is quasi KOy-equivalent to =% a similar result can
be shown. Since C(f) is a Wood spectrum when ¢ is odd, it is immediate
that KO,C(fp)=KO,2*X. Hence C(f,n) is quasi KOy-equivalent to P}, or
3P}, according as 3# X is quasi KOy-equivalent to 3% or =,

We can similarly prove as for C(fy 4) and C(fy 4m)-

Since [2’SZ/2, C(5)]==[Z'C(%), SZ|2]=Z|2 (use [4, §4]), the maps k:
3%S8Z|2—>C(5) and k: S'C(#%)—>SZ|2 have order 2. So there exist maps

Fops: S'SZ|2 — SZ/2mpC(n) and  Jipmp: S'SZ/2mpC() — SZ|2
satisfying (jal) fiomn=R and Aymp(inl)=h. We now set

ay, =]A; 28'"152/2 - 30 ’ Poar+1 = 77A;' 287+1SZ/2 -3 ’
(2.3) @yes = FAS: SHHSZI2 — C(5),  yss = kA5 3SZ(2 — C(n) ,
lrsr = jAi oyt ZVSZ[2,C(7) — =
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Then Lemma 2.4 i) combined with Proposition 1.6 shows that

(2.4) the cofibers C(ay,), C(Bar+1)s C(@4r12), C(My,15) and C(ai,.2) satisfy the
property (I), and the first, the forth and the last are quasi KOx-equivalent to %°
and the other two are quasi KOy-equivalent to =*.

Let f: ¥7'X—Y be a map of order 2 and f: 3¥7'X,SZ/2—Y be its ex-
tension with f(1,¢)=f. Then there exists a map @: = %' C(f)—>X of order 2
whose cofiber C(@) coincides with = #C(f). Hence we can choose the follow-
ing maps of order 2:

Qg 27871 C(d’4,) -3, Byt 27870 C(Bar+r) > 20,
(25) a—4r—2: 2—8r—5 C(a4r+2) - EO y Mgzt 2—&_7 C(m4r+3) - 20 )
byyozt 3785 C(@hrsz) = =72 C(7)

of which each cofiber C(f-,) coincides with Z"#C(f,) where fi=a,,, 441, Gys2,
Myy43 OF by 4y (r=0) with by, ,=ai, 2.

Take f in Lemma 2.1 as the above map a_,,, p—4r-1, @-gyo2, M_gy_3 OF b_,,_,,
and g in Lemma 2.1 as the map 2m: Z°—3°, mx: C(5)—>2°, 2m: C(5)—C(5) or
m\: Z*—C(7%). Then we obtain the following composite maps 7, f_, (t=0):

iy, S C(a,,) = SZ2m, Oy 27871 C(Ay,) = Uy,

(ppogyey: 2778 C(Fars1) = SZ[2m,  dyp_gy_y: 27473 C(@ir+1) = Unm s
(2.6) ta_yy_p: 2V C(Byyiz) > SZ2m,  dya_gyp: T C(84ys0) = U,

im_yy_z: ST C(Myyys) = SZ2m , iym_ 3 57577 C(yyy5) = Usp

(AL) byyp: 7875 C(as, 42) = Z73SZ2m,\C(%) and

1b_gyg: 275 C(@hy12) > ZUlm -

By making use of Lemmas 2.1 and 2.2 and (2.1) we obtain

Proposition 2.5. For each composite map i,f_,(t=0) given in (2.6), its
cofiber C(i, f_,) satisfies the property (11,,)_,, and the Adams operarion % behaves
normally in KOyC(i, f-,) as stated in Lemma 2.2 i) when t is even, or as stated in
(2.1) when t is odd. Moreover C(ia_,,), C(ia_4-,) and Z'C((ip1) b_,,-,) are quasi
KOy-equivalent to 2°\/ SZ[2m, and C(iye_,,), C(iy a—,,-,) and Z'C(izh_,,-,) are
quasi KOy-equivalent to Z°N 2*V,,. On the other hand, C(ip_,,-,), C(im_,,_3),
SAC(Gyp—ge-y) and Z*C(iym_,,_;) are all quasi KOy-equivalent to M,,.

By virtue of Propositions 2.3 and 2.5 we can apply Theorem 4 to show the
followong result.

Theorem 2.6. Let X be a CW-spectrum satisfying the property (11,,),.
i) Assume that X is quasi KOy-equivalent to 3°N/ SZ[2m. If the Adams
operation k behaves normally in KOyX for each k=0 as stated in Lemma 2.2
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1), then X has the same Ky-local type as C(ia,,), C(iai,+»), C(ia_,,) or C(ia_,,_,)
according as t=4r, 4r+2, —4r or —4r—2 (r=0).

i) Assume that X is quasi KOg-equivalent to Z°\/3*V,,. If the Adams
operation 'k behaves normally in KOy X for each k=0 as stated in Lemma 2.2 1),
then X has the same Ky-local type as C(iya,,), C(iyaiy.2), Ciya_,,) or C(iya_,,_,)
according as t=4r, 4r+-2, —4r or —4—2 (r=0).

iil) Assume that X is quasi KOy-equivalent to M,,. Then X has the same
Ky-local type as C(ipgyry), Ciymys), C(Ep—gy-1) or C(im_y,_3) according as t=
441, 4r4-3, —4r—1, —4r—3 (r=0).

iv) Assume that X is quasi KOy-equivalent to 3*M,,. Then X has the
same Ky-local type as C(iypsr41); C((En1) Myyis)y Clyp—sr-1) 00 C(iym_y,_3) ac-
cording as t=4r+1, 4r+3, —4r—1 or —4r—3 (r=0).

In the above theorem we may replace the map z;: 3°—U,, by the map 77:
=3V}, and also the maps g4 230 im0 S¥P>T,, and
(IAl) my,p 5t ZE5>SZ2m\C (%) by pirsr: ZEHN=30 iml, 50 252 C(5)—>SZ[2m
and iym4, 5: ¥+ C(5) > "2V}, respectively. Thus

(2.7) 1) C(i7 f;) has the same Ky-local type as C(iyf,) for fi=a.s, psursn,
@lyi2y Q_gygy Miys3 O M_y, 3.

i) C(ipir+1) and C(iypir+1) have the same Ky-local types as C(ip,,,,) and
C(ty 4y +,) respectively.

iit) C(imi,.s) and C(iymi,.s) have the same Ky-local types as C(iym,,s)
and C((¢1) m,,.) respectively.

When X is quasi KOy-equivalent to 3*V Z'SZ/2m or 2\ V,,, we can ob-
tain a similar result corresponding to the above theorem i) or ii). In fact, if the
Adams operation % behaves normally in KO4X for each k+0 as stated in
Lemma 2.2 i), then X has the same Ky-local type as the cofiber appeared in
Theorem 2.6 i) or ii) smashed with C(%) (see the remark following Lemma 2.2).
In particular, by means of Propositions 2.3 and 2.5 again we obtain that

(2.8) C((2al) a4y42), C(ivay,ss), C((EA1) b_y,—p) and C(ipb_,,-,) have the same K-
local types as C(iai,.2)AC (%), C(iyair+2)AC (%), C(ia_4,-5)\C(%) and C(iya_,,_,)a
C(7m) respectively.

3. Ki-local types of Anderson spectra

3.1. Let X be a CW-spectrum with KU X=KU,X=Z. For such a
CW-spectrum X we may assume that X,SQ=(Z"VZ¥""),S0 for some integer
t. In this case X satisfies the following property:

(1), KUX=Z with y£=1and KU, X =Z with y5=1/k".

If X satisfies the property (III),,,;, then it is quasi KOy-equivalent to one of the
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following spectra °V 3%, Z°V 37, 34V 3, 34V 37 or C(x?) (see [7, Theorem 3.2]
or [15, Theorem 1.3.4]).

Lemma 3.1. Let X and Y be CW-spectra satisfying the property (I) and
f: S¥'X—Y be a map whose cofiber C(f) satisfies the property (II),. Then the
cofiber C(nf) of the composite map nf: Z*X—Y satisfies the property (III),,
and it is quasi KOy-equivalent to YV Z¥"'X or C(»?) according as t is even or
odd.

Proof. Obviosuly KU, C(nf)=KU,Y=Z and KU,C(nf)=KUZ*"X =
Z. In the case when t is even, C(5f) is quasi KOx-equivalent to the wedge
sum Y V3#*X since C(f) is quasi KOy-equivalent to YVZ¥X. On the
other hand, C(xf) is just an Anderson spectrum in the case when ¢ is odd, be-
cause KO,C(3f)=0=KO:C(nf).

Let X be an Anderson spectrum satisfying the property (III),,;. Then
we can easily observe that the Adams operation % behaves always in KO, X
(0=7=<7) for each k=0 as follows:

3.1) ph=1/k*, k? 1/k*~2 or 1 according as i=3, 4, 7 or otherwise.
g

Lemma 3.2. Let X and Y be CW-spectra satisfying the property (I) and
f: %' XY be a map whose cofiber C(f) satisfies the property (1I),,. Then the
Adams operation Wy acts normally in KO,C(nf) (0=i<7) for each k=0 as fol-
lows: \y=1/k*, k?, 1/k*~% or 1 according as i=1, 4, 5 or otherwise.

Proof. Use the cofiber sequence Z'C(f)—C(nf)—C(n)AY —Z2C(f) where
C(f), C(nf) and C(9)AY are quasi KOy-equivalent to YVZE*X, Y VI X
and C(n) respectively. Then the result follows immediately from (1.8) i) and
ii).

Take f in Lemma 3.1 as the map Q.4 prwy+1)r Frrr2)) Matayrs), Airsz OF
b_4,—, given in (1.13) or (2.5). Using Lemmas 3.1 and 3.2 and (3.1) by virtue
of Proposition 1.6 we obtain

Proposition 3.3.  Set f,= 014, rtar+1)s Qrtar+2s Matar3), Viraz 07 b_y_y(r20).
Then each cofiber C(nf,) satisfies the property (11I),, and the Adams operation %
behaves normally in KOyC(nf,) as stated in Lemma 3.2 when t is even, or as stated
in (3.1) when t is odd. Moreover the cofibers C(nf,) for fi=0lss,, atyi2 and a_,,_,
are quasi KOy-equivalent to Z°V 2, but C(nay,.,) and C(nb_,,-,) are quasi KO-
equivalent to Z*\Z°.  On the other hand, the cofibers C(nf,) for fi= w4y and
M 4p 43 are Anderson spectra.

By applying Theorem 4 combined with Proposition 3.3 we can show the fol-
lowing result, which contains Theorem 2.

Theorem 3.4. Let X be a CW-spectrum satisfying the property (111), with
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t+—1.

i) Assume that X is quasi KOy-equivalent to 3°\/'Z}. If the Adams opera-
tion \ry behaves normally in KOyX for each k=0 as stated in Lemma 3.2, then X
has the same Ky-local type as C(na,), C(qai,42), C(not—y,) or C(na—,,-,) according
as t=4r, 4r+2, —4r or —4r—2 (r=0).

ii) When X is an Anderson spectrum, then it has the same Ky-local type as
Clnpar+1),C(qMay13),C(qpp-gy-1) 0r C(ym_y,_3) according as t=4r+1, 4r+-3, —4r—1
or —4r—3 (r=0) where t+ —1.

3.3. As duals of M,,, P}» and R}, appeared in §2 we next consider the
cofibers C(5j), C(%om) and C(%,mn*) of the maps 5j:SZ[2m—>3°, #yp: Z2—>SZ[2m
and #yn’: 3'—>SZ/2m, which are denoted by M}m, P,, and R,, respectively in
[15, I.4.1]. Then there hold Spanier-Whitehead dualities as M$,=32DM,,,

4m=22DP,, and R},=3°DR,,. Hence KU'M},=Z@DZ|2m on which ¢'=
(i ‘1’) KU'Py=Z®Z/m on which %l:(—i ‘1)) KU'R,,=Z®Z|2m on
which ¢'=1, and KU'M},=KU’P,,=KU°R,,,=0 (cf. [15, Proposition
1.4.1]). Note that Z'P,, is quasi KOx-equivalent to M3,, whose KO-homology
KO,M},=Z, Z[4m, Z|2, Z|2, Z, Z|2m, 0, 0 according as ¢=0, 1, +-+, 7 (see [15,
Proposition 1.4.2 and Corollary 1.5.4]).

Let X be a CW-spectrum satisfying the following property:
(I1,,)¥ KU°X=Z@Z/2m in which yt=4, , and KU'X=0.

If KU, X is finitely generated for each 7, then the property (II,»)¥ implies that
KU, X =7 with =~k and KU_ X=Z[2m with Jt=1. Under the assump-
tion that X is finite, we note that X satisfies the property (II,,)¥ if and only if its
Spanier-Whitehead dual DX does the property (II,,),. As a dual of Lemma 2.1
we have

Lemma 3.5. Let X, Y and W be CW-spectra satisfying the property (I).
Let f: 5#7'X—Y and g: X—W be maps whose cofibers C(f) and C(g) satisfy the
properties (I1), and (1,,) respectively. Then for the composite map fj,: Z*2C(g)—
S#1X—Y the cofiber Z%C(fj,) satisfies the property (1L,,)¥. Moreover C(fj,)
is quasi KOy-equivalent to the wedge sum Y\ Z*7'C(g) when t is even. On the
other hand, under the assumption that C(fj,) is finite, it is quasi KOx-equivalent to
tm or M}, according as SEW is quasi KOx-equivalent to 3* or = when t is
odd.

Let f: S#'X—Y be a map of order 2. Then we have coextensions

Fom: SEX—>Y\SZ2m, fyim: Z*X—>YAV,, and
Fom: SEX—>Y'\ Uy when Y = Y',C(7)



378 Z. YOSIMURA

such that (157) faw=f, (1njv) fram=f and (1njv) fvum=f. As a dual of Lemma
2.4 we have

Lemma 3.6. Let X and Y be CW-spectra satisfying the property (I), and
f: Z#' X —Y be a map of order 2 whose cofiber C(f) satisfies the property (1I),
(¢=0).

i) The cofiber 3~%7'C(f,) satisfies the property (I), and it is quasi KOy-
equivalent to X or 3*X according as t is even or odd.

ii) For @un="7Fim fvam O Jvum each cofiber %7 C(@,,) satisfies the property
(IL,)*,. Under the assumption that these cofibers are finite, all of C(fyn),
SAC(Fy um) and C(fy um) are quasi KOy-equivalent to Py, or 3*P,,, according as Y
is quasi KOx-equivalent to 30 or Z* whenever t is odd.

As a dual of (2.3) we set
a, = Ayi: 3¥% - SZ|2, PBhypyr = Ay 5 3 — SZ[2,
(3.2)  @lpsr= A5 h: SV C(7) —> SZ|2, M}, = Ask: 3% C(5) — SZ|2,
Bypyo = Ty Ay iz S5 — SZ[2,C(7) .

Since E_ZI-IC(f:)zDC(ft) for fi=0l, tars1> Qrszs Mapys OF @ipyz (r=0) with
ai,=ay, and a4y, 2=a,,,, (2.5) implies that

(3.3) each cofiber = #~'C(f}) satisfies the property (I) for f given in (3.2), and
C(@,), ZPC(Birs1), C(@hrs2), S*C (M4, 43) and ZAC(d,,.,) are all quasi KO-
equivalent to Z'.

Let f: %' X—Y be a map of order 2 and f: 3*X—Y ,SZ/2 be its coex-
tension with (1,j) f=f. Then there exists a map y»: Y—C(f) of order 2 whose
cofiber C(«r) coincides with Z'C(f). So we can choose the following maps of
order 2:

a’_4,: 20 i C'(d4,) N M{-M—l: 20 g C(ﬁ';r+l) )
(34‘) al_4,_2: 20 —> C(dir.n) ) mi4r—3: 20 g C(mir-l-S) and
blyp_s: C(ﬁ) _)C(d4r+2)

of which each cofiber C(f~,) coincides with Z'C(f7) where fi=a,,, wirs1, @i, 4o,
mi, .3 and bi,.» (r=0) with bi,,»=a,,,,. Since the maps fZ, given in (3.4) are
respectively dual to those f_; given in (2.5), we have Spanier-Whitehead dualities
as C(fL)=Z'DC(f_;) for f_,=_4y, prosgy—1y Q-tyozy M_yy_3 OF b_4,_, (r=0).

Dually to (2.2) and (2.6) we obtain the composite maps f, j, and f_, j, (¢=0)
as follows:

amf: 28r—2SZ/2m - 3P ’ a4er: zsr—ZVzm g EO ’
(3.5)  pirsrj: ZXSZ2m — 3, Wars1 Jy: 2V — 20,
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a4r+2j: 28’+2SZ/2m - C(n), Qg2 Jyt 2:8’_"2V2m - C(7_7) ’
atre2(jal): ZHISZ2m\C(7) = =0, @hyazjy: SV hm — 320,
miye3(Jal): ZNSZ2m\C(7) = =0, mi,asjh: SV 4y — 20

alsy j: 2'SZ12m — C(&,,) , aly jy: 27 W — C(@y)

Blay1j: Z7ISZ2m — C(fyyrn) s plar—1fv: 27 WVom —> C(gyra)
(3.6) aliy—2j: Z7ISZ12m — C(@4ys),  @lar—2fy: 27 Wy —> ClG4yss)

mlyy_3j: ZSZ2m — C(Myy,3), mlisy_sjy: SV — C(My,,,),

Varas(jal): SSZ[2mAC(7) > (@) and

Olir 2 jy: 27U, — C(d4r+2) .

Then there hold Spanier-Whitehead dualities as
(3.7) i) C(fij))==*DC(if,) and C(fijy)=2* DC(iv f,) for fi=cty, pasa or

@4r2(r=0) where alf,=a,, and ai}..=a,,.,.

ii) C(fijv)==*DC(iyf,) and C(fi(jal))=Z*DC((i\1)f,) for fi=ay.,
or my, 5(r=0).

i) C(fL:j)=='DC(if-,) and C(fL:jy)=Z'DC(}f-,) for f_,=a_,,
Bootr—1y A—typ OF M_gy_5(r=0).

iv) C(bLsr—2(Jal))=Z'DC((G\1)b_4-5) and C(bL4,—2Jy)=Z"DC(ith_,,-5)
(r=0).

By making use of Lemma 3.5 we obtain the following result, which is a
dual of Propositions 2.3 and 2.5.

Proposition 3.7. i) For each composite map f,j,(¢=0) given in (3.5) the
cofiber =7*C(f,j,) satisfies the property (1L,,)¥.

ii) For each composite map f_,j (t=0) given in (3.6) the cofiber Z7'C(f-,],)
satisfies the property (11,,)%,.

i) Claw ), S'Cayr2), C@hraa(jal)), STIC(Alsr j), S'C(aarozj) and
S3C(bL4r-2(jal)) are quasi KOyx-equivalent to Z°N/Z7'SZ[2m, and C(ayjv),
34 C(Agyr2fv)s Claira2ji), 2'C(alsr Jy), 2'C(al4r—2jy) and ZPC(bLsr-2jy) are
quasi KOy-equivalent to Z°\/ Z7'V,,,.

iv)  C(uirserj), ZC(pirar jv), Z'C(mirssjv), Clmirss(jal)), ZC(ular]),
SPC(wlar-1jy), Z'C(mLsr_37) and Z°C(m 4, _s jy) are all quasi KOx-equivalent to
M.

4. Ky-local types of the real projective spaces

4.1. Let RP" be the real projective n-space and X, denote the suspension
spectrum 3 *SP2S" whose n-th term is the symmetric square SP*S” of the
n-sphere as in [16, 82]. The suspension spectra X, and RP" are related by the
following commutative diagram
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En — 2"

! v
RP*' > 3° > X, — SRP*!

(4.1) | I | |
RP* - ' - X,,, — S'RP"

v !

En+1 — 2n+l

involving four cofiber sequences [10]. Their KU-homologies and KU-coho-
mologies are well known ([1, Theorem 7.3] and [14, Theorem 3.3]):

42) i) KUX,,=Z or ZOZ and KU_,RP"=Z[2! or ZPZ[2! according as
n=2t or 2¢t-+1, and KU, X,,,=0=KU,RP".

i) KU°X,.,==Z or Z®Z and KU 'RP"=0 or Z according as 7 is even
or odd, and KU'X,,,=0 and KU°RP"=Z|2! when n=2¢ or 2t+1.

We here investigate the behavior of the Adams operation % for X, and
RP".

Lemma 4.1. i) X,,,=3"*"'SP’S**! satisfies the property (I) or (II),,,
according as n=2t or 2¢+41.

il) Z'RP” satisfies the property (L) or (11y),,, according as n=2t or 2t+1.
In addition, S'RP> satisfies the property (I,=).

Proof. It is sufficient to show that in both KU,X,,; and KU, Z'RP",
Pt=1 or 4 ;4 according as n=2¢ or 2¢+1. The n=0 case is evident because
X,=3"and RP°={pt}. Assume that &=1in KU, X,_,=Z and KU_, RP*?
=Z[2'"Y(t=1). Consider the commutative diagram

0 0
! !
0 - KU, — KU, X,_, — KU_, RP*? —
I ! v
0 - KU,S* - KU, X, — KU_,RP*" — 0
| V
KUO 22‘ = KU(] 22'
! !
0 0

with exact rows and columns. Then KU, X,=KUS*PKUX,_,=ZPZ and
KU_,RP*'=KUS*@®KU_RP*?=7PZ2!", in both of which % is ex-
1k 0
e 1
other commutative diagram

pressed by a matrix( ) for some rational number ¢,,. We here use an-
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0 0
y Y
KU,3* =  KU,=*
P | |
0 - KU,=* - KU, X,, — KU_,RP**' — 0
I v |
0 - KU, =" - KUy Xpyy — KU_,RP* — 0
V y
0 0

with exact rows and columns. Since the right vertical sequence is expressed
into the form of 0>Z—Z®Z[2!"'—Z|2!—0, we may regard that the induced
homomorphism Ay,,: KU, Z#—KU, X,, is given by hy,(1)=(2, 1) where KU, X,
=KUS*PKU,X,_,. Since the Adams operation ¢t commutes with k,, it
is easily computed that ¢, ,=1—Fk*[2k'. Thus Yt=24, , in both KU X, =ZDZ
and KU_,RP*'=~7Z@®Z|2!"'. Further it is immediate that J&=1 in both
KU,Xy =7 and KU_,RP¥=Z]2!.

As a dual of Lemma 4.1 we have

Corollary 4.2. i) The Spanier-Whitehead dual DX,,, satisfies the proper-
ty (I) or (II)_,-, according as n=2t or 2t+1. Thus ye¢=1o0r 4, _,-,in KU°X,,,
=7 or ZBZ according as n=2t or 2t-+1.

i) The Spanier-Whitehead dual DRP* satisfies the property (1) and =7*
DRP**! does the property (IL)¥.1. Thus ¥e=1 in KU'RP*=KU°RP**'=
Z|2! and \P&=k"*" in KU'RP*"'=Z,

4.2. In [16, Theorem 2.7] we have determined the quasi KOy-types of
the symmetric square X,=3"*SP?S" of the n-sphere and the real projective
n-space RP".

Theorem 4.3. i) X,., s quasi KOx-equivalent to the following elementary
spectrum: 3°, C(5), 24, 34V EL 34, C(y), 2%, 2V according as n=0,1,---,7
mod 8.

il) Z'RP" is quasi KOx-equivalent to the following elementary spectrum:
SZ|2%, Myr, Vyr+1, SAN Viprer, Viprvz, Mpr+2, SZ[2%3, S0\ SZ[24* according as
n=_8r, 8r+1, -+, 8r+7.

By virtue of Lemma 4.1 we can easily observe the behavior of the Adams
operation % for X,,;. In fact, (1.1) and (1.8) i) and iii) assert that the Adams
operation Yk behaves in KO, X, ,, (0=<i<7) for each k%0 as follows:

(4.3) i) When n is even, yrx=F? or 1 according as i=4 or otherwise.
i) When n=4s+1, ¥k=1, 1/k*, K or 1/k*~? according as =0, 2, 4 or
6.
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iil) When n=4s+3, yk=4, 312 ¥4} 5042 or 1 according as i=0, 4 or
otherwise.

By the aid of (4.3) we next observe the behavior of the Adams operation
% for RP".

Lemma 4.4. The Adams operation Wk acts normally in KO,3' RP"(0<i<
7) for each k=0 as follows:

i) When n is even or infinite, \ry=k* or 1 according as i=4 or otherwise.

i) When n=4s+1, vi=1/k*, K, 1/k*"2 or 1 according as i=2,4, 6 or
otherwise.

iii) When n=4s+3, Wh="A2012 K'Apserz or 1 according as i=0, 4 or
otherwise.

Proof. i) In the n=o0 case our result follows from Lemma 4.1 and (1.6).
Use the cofiber sequence Z°—X,,,,—3'RP*—3! in the n=2t case. Evidently
(4.3) i) implies our result except k=1 in KO,RP¥*5=KO RP¥*3=Z[2Z|2.
As is observed in ii) and iii) below, Jk=1/F"*? in KORP¥***~Z@Z|2 and
Yh=11in KORP*""=Z[2DZ|2DZ|2. By means of these results we can easily
show the rest of our result.

ii) By Lemma 4.1 and Theorem 4.3 ii) we note that S'RP**! satisfies the
property (Il,2),,, and it is quasi KOy-equivalent to Mys. Our result is im-
mediate from (2.1).

iii) Use the cofiber sequence 3'—X,,,,—3'RP*"—»3! Then (4.3) iii)
implies immediately our result except \ry=1 in KO, RP*""=Z[2PZ|2DZ|2.
Consider the commutative diagram

0 0
! !
0 - KO,X, — KO,RP*™ — KO,3° — 0
! v Il
0 > KO,X,,, - KO,RP" — KO,3° — 0
V V
KO] 2” = KO[ E”
V !
0 0

with n=8r+7. Since Wi=1 in KORP*'=KO0,X,,,=Z|2®Z/2, a routine
computation shows that Wwk=1 in KO,RP"=Z/2Z|2PZ|2 as in the proof of
Lemma 2.2.

Under the assumption that CW-spectra X and Y are finite, X is quasi
KOy-equivalent to Y if and only if the Spanier-Whitehead dual DY is quasi
KOx-equivalent to DX (see [15, Corollary I.1.6]). Therefore Theorem 4.3 ii)
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implies that

(4.4) the Spanier-Whitehead dual DRP" is quasi KOx-equivalent to the fol-
lowing elementary spectrum: SZ/2¥, 57 M, StV pir+1, SV SV pr+1, SV pr+2,
2 M sr+a, SZ[2443 51\ SZ[24+3 according as n=8r, 8741, -+, 877 (cf. [9,
Theorem 1]).

As a dual of Lemma 4.4 we can easily show

Lemma 4.5. The Adams operation % acts normally in KO, DRP"==
KO™RP" (0=i<7) for each k=0 as follows:

i) When n is even, \rx=Fk* or 1 according as i=4 or otherwise.

i) When n=4s+1, Wx=k**2, K, k¥ or 1 according as i=3, 4, 7 or other-
wise.

i) When n=4s+3, ve=k>**2 K k*** or 1 according as i=1,4,5 or other-
wise.

For the Moore spectrum SZ/2! of type Z/2' the bottom cell inclusion
1: Z°—>SZ/2! and the top cell projection j: SZ/2!—3! are here written as 7, and j,
with emphasis. Similarly the maps iy: C(5)—Vy, jy: Vya—3 if: 32—V and
jv: Vi—C(7) are written as iy ;, jy 1, iv,¢ and j ;. By virtue of Lemmas 4.1 and
4.4 we may now apply Theorems 1.2, 1.7 and 2.6 with (2.8) to determine the
K-local types of X,,; and RP".

Theorem 4.6. i) The symmetric square X,,,=2"*"'SP’S**! of the n+1-
sphere has the same K y-local type as the following elementary spectrum: =0, C(i441),
C(@), C(a4y1s), C(7), C(y3), Z°, C(tyy14) according as n=238r, 8r+1, «--, 8r+7.

il) The real projective n-space S'RP" has the same Ky-local type as the foll-
owing elementary spectrum: SZ[2Y, C(iytsrs1), Var+s, Cliy 4y110442), Vares,
C(iy 4yr2Mupis), SZ|2 3, C(Gyy 43 Qupys) according as n=8r,8r+1,---,87+7. In
addition, Z'RP* has the same Ky-local type as SZ|2*.

In order to determine the Ky-local type of the Spanier-Whitehead dual
DRP” the following result is useful (cf. [15, Corollary 1.1.6]).

Lemma 4.7. Assume that CW-spectra X and Y are finite. Then X is
quasi Sg,-equivalent to Y if and only if the Spanier-Whitehead dual DY 1is quasi
Sky-equivalent to DX.

Proof. It is sufficient to show the “only if” part. If X is quasi Sg*-
equivalent to Y, then we get a Ky-equivalence f: ¥Y—=>Sx,X. Choose an ad-
joint map Df: DX—->DY Sk such that (1,ex) (fal)=(eyal) (1oDf): Y\ DX—Sx
where ey : W,DW —Z=° denotes the evaluation map for W=X or Y. Consider
the diagram
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Df* =
K. DX —5 K, DY,Sx «— K.DY

| = y =
KX «—— K S X F» K-y

where vertical arrows are the duality isomorphisms. As is easily checked, the
above diagram is commutative. Therefore the adjoint map Df: DX—DY Sg
becomes a Ky-equivalence because f: Y —Sg X is a K*-equivalence, too. Thus
DY is quasi Sgx-equivalent to DX.

Theorem 4.6 combined with Lemma 4.7, (1.4) and (3.7) implies

Theorem 4.8. The Spanier-Whilehead dual DRP" of the real projective
n-space has the same Ky-local type as the following elementary spectrum: SZ|2*,
2_8’_lc(lbir+1]'4r), Uz‘"‘"l, z_sr_sc(a£r+2j{/,41+l), U24'+2, 2—8’—5C(m£f+3j1lf,4f+2),
SZ[2%3 578 TC(Qyy 44 Jars) according as n=28r, 8r+1, «--, 8r+7.
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