THE K_{*}-LOCALIZATIONS OF WOOD AND ANDERSON SPECTRA AND THE REAL PROJECTIVE SPACES ZEN-ICHI YOSIMURA (Received May 9, 1991) ### 0. Introduction Let E be an associative ring spectrum with unit. For any CW-spectra X and Y we say that X is quasi E_* -equivalent to Y (see [15] or [16]) if there exists a map $f\colon Y\to E_\wedge X$ such that the composite map $(\mu_\wedge 1)(1_\wedge f)\colon E_\wedge Y\to E_\wedge X$ is an equivalence where $\mu\colon E_\wedge E\to E$ denotes the multiplication of E. Let KO, KU and KT be the real, the complex and the self-conjugate K-spectrum respectively (see [3] or [7]). It is known that there is no difference among the KO_* -, KU_* - and KT_* -localizations ([11], [5] or [13]). So we denote by S_K the K_* -localization of the sphere spectrum $S=\Sigma^0$. These spectra KO, KU, KT and S_K are all associative ring spectra with unit. In [15] we studied the quasi K_* -equivalences, especially the quasi KO_* -equivalence, and in [16] and [17] we determined the quasi KO_* -types of the real projective spaces RP^n and the stunted real projective spaces RP^n/RP^m . In this note we will be interested in the quasi S_{K_*} -equivalence in advance of the quasi KO_* -equivalence. According to the smashing theorem [6, Corollary 4.7] (or [13]), for any CW-spectrum X the smash product $S_{K \wedge} X$ is actually the K_* -localization of X. Hence we notice that two CW-spectra X and Y have the same K_* -local type if and only if X is quasi S_{K_*} -equivalent to Y. For any map $f: X \to Y$ its cofiber is usually denoted by C(f). Let $\eta: \Sigma^1 \to \Sigma^0$ be the stable Hopf map of order 2. The KO-homologies of the cofibers $C(\eta)$ and $C(\eta^2)$ are well known as follows: $KO_iC(\eta) \cong \pi_i KU \cong Z$ or 0 according as i is even or odd, and $KO_iC(\eta^2) \cong \pi_i KT \cong Z$, Z/2, 0 or Z according as $i \equiv 0, 1, 2$ or 3 mod 4. A CW-spectrum X is said to be a Wood spectrum if it is quasi KO_* -equivalent to the cofiber $C(\eta)$, and an Anderson spectrum if it is quasi KO_* -equivalent to the cofiber $C(\eta^2)$ (see [12], [15] or [18]). Let $\bar{\eta}: \Sigma^1 SZ/2 \to \Sigma^0$ and $\tilde{\eta}: \Sigma^2 \to SZ/2$ be an extension and a coextension of η with $\bar{\eta}i=\eta$ and $j\tilde{\eta}=\eta$, where SZ/2 denotes the Moore spectrum of type Z/2 constructed by the cofiber sequence $\Sigma^0 \to \Sigma^0 \to SZ/2 \to \Sigma^1$. Choose two maps $\bar{h}: \Sigma^3 SZ/2 \to C(\bar{\eta})$ and $\bar{k}: \Sigma^5 SZ/2 \to C(\bar{\eta})$ with $\bar{j}\bar{h}=\tilde{\eta}j$ and $\bar{j}\bar{k}=\tilde{\eta}\bar{\eta}$ where $\bar{j}: C(\bar{\eta}) \to \Sigma^2 SZ/2$ denotes the bottom cell collapsing. Using a fixed Adams' K_* -equiva- lence A_2 : $\Sigma^8 SZ/2 \rightarrow SZ/2$ in [2] we can introduce four kinds of maps f_t $(t \ge 1)$ as follows: $$egin{aligned} lpha_{4r} &= jA_2^r\,i\colon \Sigma^{8r-1} ightarrow \Sigma^0\,, & \mu_{4r+1} &= ar{\eta}A_2^r\,i\colon \Sigma^{8r+1} ightarrow \Sigma^0\,, \ a_{4r+2} &= ar{h}A_2^r\,i\colon \Sigma^{8r+3} ightarrow C(ar{\eta}) & ext{and} & m_{4r+3} &= ar{k}A_2^r\,i\colon \Sigma^{8r+5} ightarrow C(ar{\eta})\,. \end{aligned}$$ Setting $\bar{\alpha}_{4r}=jA_2^r$, $\bar{\mu}_{4r+1}=\bar{\eta}A_2^r$, $\bar{\alpha}_{4r+2}=\bar{h}A_2^r$ and $\bar{m}_{4r+3}=\bar{k}A_2^r$, we can also introduce four kinds of maps $f_{-t}(t\geq 1)$ as follows: $$\begin{split} \alpha_{-4r} \colon \Sigma^{-8r-1} \, C(\overline{\alpha}_{4r}) &\to \Sigma^0 \;, \qquad \qquad \mu_{-4r-1} \colon \Sigma^{-8r-3} \, C(\overline{\mu}_{4r+1}) \to \Sigma^0 \;, \\ \alpha_{-4r-2} \colon \Sigma^{-8r-5} \, C(\overline{\alpha}_{4r+2}) &\to \Sigma^0 \quad \text{and} \quad m_{-4r-3} \colon \Sigma^{-8r-7} \, C(\overline{m}_{4r+3}) \to \Sigma^0 \end{split}$$ of which each cofiber $C(f_{-t})$ coincides with $\Sigma^{-2t}C(f_t)$. In §1 and §3 we will determine the K_* -local types of Wood and Anderson spectra as our results (Theorems 1.7 iii) and 3.4 ii)): **Theorem 1.** Let X be a Wood spectrum whose rationalization $X_{\wedge}SQ$ is $(\Sigma^0 \vee \Sigma^{2t})_{\wedge}SQ$ for some odd integer $t \ge 1$. Then X has the same K_* -local type as the following cofiber $C(\mu_t)$ or $C(m_t)$ according as t = 4r + 1 or 4r + 3. **Theorem 2.** Let X be an Anderson spectrum whose rationalization $X_{\wedge}SQ$ is $(\Sigma^0 \vee \Sigma^{2t+1})_{\wedge}SQ$ for some odd integer t. Assume that $t \neq -1$. Then X has the same K_* -local type as the following cofiber $C(\eta \mu_t)$ or $C(\eta m_t)$ according as $t = \pm (4r+1)$ or $\pm (4r+3)$. For the Moore spectrum $SZ/2^t$ of type $Z/2^t$ we denote by $i_t : \Sigma^0 \to SZ/2^t$ and $j_t : SZ/2^t \to \Sigma^1$ with the subscript "t" the bottom cell inclusion and the top cell projection. Abbreviating the cofiber $C(i_{t-1} \bar{\eta})$ to be V_{2^t} we have a cofiber sequence $\Sigma^0 \xrightarrow{i_{V,t}} C(\bar{\eta}) \xrightarrow{i_{V,t}} V_{2^t} \xrightarrow{j_{V,t}} \Sigma^1$. In §4 the K_* -local types of the real projective spaces RP^n ($2 \le n \le \infty$) will be determined as our main result (Theorem 4.6 ii)): **Theorem 3.** The real projective space $\Sigma^1 RP^n$ has the same K_* -local type as the following elementary spectrum: $SZ/2^{4r}$, $C(i_{4r}\mu_{4r+1})$, $V_{2^{4r+1}}$, $C(i_{V,4r+1}a_{4r+2})$, $V_{2^{4r+2}}$, $C(i_{V,4r+2}m_{4r+3})$, $SZ/2^{4r+3}$, $C(i_{4r+3}\alpha_{4r+4})$ according as n=8r, 8r+1, ..., 8r+7. In addition, $\Sigma^1 RP^\infty$ has the same K_* -local type as $SZ/2^\infty$ (cf. [8, Theorem 4.2] or [13, Theorem 9.1]). In order to prove the above theorems we will need the following powerful tool due to Bousfield [7, Theorems 7.11 and 7.12]. **Theorem 4.** Let Y be a certain CW-spectrum satisfying either of the following two conditions: i) KU_*Y is either free or divisible and $\operatorname{Hom}(\pi_iY\otimes Q, \pi_{i+1}Y\otimes Q)=0$ for each i; ii) $KU_1Y=0$ (or $KU_0Y=0$). Assume that a CW-spectrum X is quasi KO_* -equivalent to Y, and the real Adams operations ψ_R^k in KO_*X and KO_*Y behave as the same action for each k = 0 when KO_*X is identified with KO_*Y as a KO_* -module. Then X is quasi S_{K_*} -equivalent to Y, thus X has the same K_* -local type as Y (cf. [7, 9.8]). In $\S 1$ we will mainly deal with CW-spectra X satisfying the following property: - (I) $KU_0X \cong Z$ with $\psi_c^k = 1$ and $KU_1X = 0$; - (I_{2m}) $KU_0X \cong \mathbb{Z}/2m$ with $\psi_c^k = 1$ and $KU_1X = 0$; or - (II)_t $KU_0X \cong Z \oplus Z$ with $\psi_c^k = A_{k,t}$ and $KU_1X = 0$. Here $A_{k,t} = \begin{pmatrix} 1/k^t & 0 \\ 1-k^t/2k^t & 1 \end{pmatrix}$, which operates on $(Z \oplus Z) \otimes Z[1/k]$ as left action. After investigating the behavior of the real Adams operation ψ_k^k for CW-spectra X with the above property we will determine their K_* -local types (Theorems 1.2 and 1.7). In §2 and §3 we will next deal with CW-spectra X satisfying the following property: $$(II_{2m})_t$$ $KU_0X \cong Z \oplus Z/2m$ with $\psi_c^k = A_{k,t}$ and $KU_1X = 0$; or (III), $$KU_0X \cong Z$$ with $\psi_c^k = 1$ and $KU_1X \cong Z$ with $\psi_c^k = 1/k^t$. As in §1 we will also determine the K_* -local types of such CW-spectra X (Theorems 2.6 and 3.4). In §4 we will finally deal with the symmetric squares SP^2S^n of the n-spheres and the real projective n-spaces RP^n . After investigating the behavior of the Adams operations ψ_c^k and ψ_R^k for the spaces SP^2S^n and RP^n , we will determine their K_* -local types (Theorem 4.6) by applying Theorems 1.2, 1.7 and 2.6. In the forthcoming paper [19] we will completely determine the K_* -local types of the stunted real projective spaces RP^n/RP^m $(0 \le m < n \le \infty)$ along our line. ## 1. K_* -local types of Wood spectra - **1.1.** Let X be a CW-spectrum with $KU_0X\cong Z$ and $KU_1X=0$. For such a CW-spectrum X we may assume that the stable complex Adams operation ψ_C^k acts identically on $KU_0X\otimes Z[1/k]$ for each $k \neq 0$. Thus X satisfies the following property: - (I) $KU_0X \cong Z$ in which $\psi_c^k = 1$ and $KU_1X = 0$. Whenever a CW-spectrum X satisfies the property (I), it is quasi KO_* -equivalent to either of Σ^0 and Σ^4 (see [7, Theorem 3.2] or [15, Theorem I.2.4]). In this case it is easily seen that the stable real Adams operation ψ_R^k acts always on $KO_iX\otimes Z[1/k]$ ($0\leq i\leq 7$) for each $k\neq 0$ as follows: (1.1) $\psi_R^k = k^2$ or 1 according as i=4 or otherwise. The Moore spectrum SZ/2m of type Z/2m is constructed as the cofiber of multiplication by 2m on Σ^0 . Thus we have a cofiber sequence $\Sigma^0 \xrightarrow{\stackrel{}{\longrightarrow}} \Sigma^0 \xrightarrow{i} SZ/2m$ $\xrightarrow{j} \Sigma^1$. Let $\overline{\eta}_{2m} \colon \Sigma^1 SZ/2m \to \Sigma^0$ and $\widetilde{\eta}_{2m} \colon \Sigma^2 \to SZ/2m$ be an extension and a coextension of η satisfying $\overline{\eta}_{2m} i = \eta$ and $j\widetilde{\eta}_{2m} = \eta$ respectively, where $\eta \colon \Sigma^1 \to \Sigma^0$ denotes the stable Hopf map of order 2. The maps $\overline{\eta}_2$ and $\widetilde{\eta}_2$ are often abbreviated to be $\overline{\eta}$ and $\widetilde{\eta}$. Consider the two cofiber sequences $$\Sigma^1 SZ/2 \xrightarrow{\overline{\eta}} \Sigma^0 \xrightarrow{\overline{i}} C(\overline{\eta}) \xrightarrow{\overline{j}} \Sigma^2 SZ/2 \quad \text{and} \quad \Sigma^2 \xrightarrow{\overline{\eta}} SZ/2 \xrightarrow{\overline{i}} C(\overline{\eta}) \xrightarrow{\overline{j}} \Sigma^3$$ in which the cofibers $C(\bar{\eta})$ and $C(\tilde{\eta})$ are denoted by P_2' and P_2 respectively in [15, I.4.1]. Between these cofibers there holds a Spanier-Whitehead duality as $C(\tilde{\eta}) = \Sigma^3 DC(\bar{\eta})$. By observing [15, Propositions I.4.1 and I.4.2] we verify that (1.2) both $C(\bar{\eta})$ and $\Sigma^{-3}C(\tilde{\eta})$
satisfy the property (I), and they are quasi KO_* -equivalent to Σ^4 . Let X be a CW-spectrum with $KU_0X \cong \mathbb{Z}/2m$ and $KU_1X=0$. In this case we assume that the Adams operation ψ_C^k acts identically in KU_0X for each $k \neq 0$. Thus we here deal with a CW-spectrum X satisfying the following property: (I_{2m}) $KU_0X \cong \mathbb{Z}/2m$ in which $\psi_c^k = 1$ and $KU_1X = 0$. Consider the cofibers $C(i\bar{\eta})$ and $C(\bar{\eta}j)$ of the composite maps $i\bar{\eta}: \Sigma^1 SZ/2 \to SZ/m$ and $\bar{\eta}j: \Sigma^1 SZ/m \to SZ/2$, which are denoted by V_{2m} and V'_{2m} respectively as in [15, I.4.4]). Between them we have a Spanier-Whitehead duality as $V'_{2m} = \Sigma^3 DV_{2m}$. Since there exist cofiber sequences $$\Sigma^0 \stackrel{mi}{\to} C(\bar{\eta}) \stackrel{i_V}{\to} V_{2m} \stackrel{j_V}{\to} \Sigma^1$$ and $\Sigma^2 \stackrel{i_V'}{\to} V'_{2m} \stackrel{j_V'}{\to} C(\bar{\eta}) \stackrel{m\bar{j}}{\longrightarrow} \Sigma^3$, it follows from [15, Corollaries I.4.6 and I.5.4] that (1.3) both V_{2m} and Σ^{-2} V'_{2m} satisfy the property (I_{2m}) , and $\Sigma^2 V'_{2m}$ is quasi KO_* -equivalent to V_{2m} , whose KO-homology $KO_iV_{2m} \cong \mathbb{Z}/m$, 0, $\mathbb{Z}/2$, $\mathbb{Z}/2$, $\mathbb{Z}/2$, $\mathbb{Z}/2$, 0 according as $i=0,1,\cdots,7$. Notice that a CW-spectrum X is quasi KO_* -equivalent to one of the four elementary spectra SZ/2m, $\Sigma^4SZ/2m$, V_{2m} and Σ^4V_{2m} whenever it satisfies the property (I_{2m}) (see [15, Theorem II.2 or Theorem I.5.2]). **Lemma 1.1.** Let W and Y be CW-spectra satisfying the property (I), and $g: W \rightarrow Y$ be a map whose cofiber C(g) satisfies the property (I_{2m}) . Then the cofiber C(g) is quasi KO_* -equivalent to $W_{\wedge}SZ/2m$ or $W_{\wedge}V_{2m}$ according as W is quasi KO_* -equivalent to Y or not. In the latter case the Adams operation ψ_R^k acts normally in $KO_iC(g)\cong KO_iW_{\wedge}V_{2m}$ $(0\leq i\leq 7)$ for each $k\neq 0$ as follows: $\psi_R^k=k^2$ or 1 according as i=4 or otherwise. Proof. The induced homomorphism $g_*\colon KO_iW\to KO_iY$ is trivial in dimension i=1,2,5 or 6 because $g_*\colon KU_0W\to KU_0Y$ is multiplication by 2m on Z. Therefore it is immediate that $KO_6C(g)=0$ if both W and Y are quasi KO_* -equivalent to Σ^0 , and $KO_2C(g)\cong Z/2$ and $KO_1C(g)=0$ if W and Y are quasi KO_* -equivalent to Σ^0 and Σ^4 respectively. Thus C(g) is quasi KO_* -equivalent to SZ/2m in the first case, and it is quasi KO_* -equivalent to V_{2m} in the second case. In the other two cases we can similarly observe the quasi KO_* -type of C(g). When C(g) is quasi KO_* -equivalent to either of V_{2m} and Σ^4V_{2m} , it is easily checked that $\psi_R^k=1$ or k^2 in KO_i C(g) for each $k \neq 0$ according as i=0 or 4. Since the maps $\bar{\eta}$: $\Sigma^1 SZ/2 \rightarrow \Sigma^0$ and $\tilde{\eta}$: $\Sigma^2 \rightarrow SZ/2$ have order 4 [4, (4.2)], we can choose maps $$\bar{\eta}_{4m/2}$$: $\Sigma^2 SZ/2 \rightarrow SZ/4m$ and $\tilde{\eta}_{4m/2}$: $\Sigma^2 SZ/4m \rightarrow SZ/2$ with $j\bar{\eta}_{4m/2}=\bar{\eta}$ and $\tilde{\eta}_{4m/2}i=\tilde{\eta}$. Denote by U_{2m} and U'_{2m} their cofibers $C(\bar{\eta}_{4m/2})$ and $C(\tilde{\eta}_{4m/2})$ respectively. Between them there holds a Spanier-Whitehead duality as $U'_{2m}=\Sigma^4 DU_{2m}$. Using the cofiber sequences $$C(\bar{\eta}) \xrightarrow{m\bar{\lambda}} \Sigma^0 \xrightarrow{i_U} U_{2m} \xrightarrow{j_U} \Sigma^1 C(\bar{\eta}) \quad \text{and} \quad \Sigma^3 \xrightarrow{m\tilde{\lambda}} C(\tilde{\eta}) \xrightarrow{i'_U} U'_{2m} \xrightarrow{j'_U} \Sigma^4$$ with $\lambda i=4$ and $\tilde{j}\lambda=4$, we can easily show by the aid of Lemma 1.1 that (1.4) both U_{2m} and $\Sigma^1 U'_{2m}$ satisfy the property (I_{2m}) , and they are quasi KO_* -equivalent to $\Sigma^4 V_{2m}$. If a CW-spectrum X satisfies the property (I_{2m}) , then the smash product $X_{\wedge}C(\bar{\eta})$ does the same property, but it is quasi KO_* -equivalent to Σ^4X because of (1.2). Whenever X=SZ/2m, V_{2m} , $\Sigma^{-2}V'_{2m}$, U_{2m} or $\Sigma^{-3}U'_{2m}$, the Adams operation ψ^k_R behaves normally in KO_iX and $KO_iX_{\wedge}C(\bar{\eta})$ $(0 \le i \le 7)$ for each $k \ne 0$ as follows: (1.5) $\psi_R^k = k^2$ or 1 according as i=4 or otherwise. Because the X=SZ/2m case is well known, and the other four cases are immediately shown by Lemma 1.1. Let X be a CW-spectrum satisfying the property: $(I_{2\infty})$ $KU_0X \cong \mathbb{Z}/2^{\infty}$ in which $\psi_c^k = 1$ and $KU_1X = 0$. Such a CW-spectrum X is quasi KO_* -equivalent to either of $SZ/2^{\infty}$ and $\Sigma^4 SZ/2^{\infty}$ (see [7, Theorem 3.3]). In this case it is easily seen that the Adams operation ψ_R^k behaves always in KO_iX ($0 \le i \le 7$) for each $k \ne 0$ as follows: (1.6) $\psi_R^k = k^2$ or 1 according as i=4 or otherwise. Use (1.1), (1.5) or (1.6) to apply Theorem 4 for CW-spectra X with the property (I), (I_{2m}) or $(I_{2\infty})$. Then we obtain **Theorem 1.2.** i) Let X be a CW-spectrum satisfying the property (I). Then it has the same K_* -local type as either of Σ^0 and $C(\bar{\eta})$. - ii) Let X be a CW-spectrum satisfying the property (I_{2m}) . Assume that the real Adams operation ψ_R^k behaves normally in KO_*X in the sense of (1.5). Then X has the same K_* -local type as one of the following spectra SZ/2m, $SZ/2m \wedge C(\bar{\eta})$, V_{2m} and U_{2m} . - iii) Let X be a CW-spectrum satisfying the property $(I_{2^{\infty}})$. Then X has the same K_* -local type as either of $SZ/2^{\infty}$ and $SZ/2^{\infty} \wedge C(\bar{\eta})$. - 1.2. Let X be a CW-spectrum with $KU_0X\cong Z\oplus Z$ and $KU_1X=0$. For such a CW-spectrum X we may assume that $X_{\wedge}SQ=(\Sigma^{2t}\vee\Sigma^0)_{\wedge}SQ$ for some integer $t\geq 0$. In this case the complex Adams operation ψ_c^k on $KU_0X\otimes Z[1/k]$ is represented as the matrix $C^{-1}A_{k,t,0}C$ for each $k\neq 0$ where the matrix $C\in GL$ (2,Q) associated with the Chern character is independent of k and $A_{k,t,0}=\begin{pmatrix} 1/k^t & 0\\ 0 & 1 \end{pmatrix}$. When t is odd, we may regard that the conjugation ψ_c^{-1} on $KU_0X\cong Z\oplus Z$ is expressed by either of the matrices $\begin{pmatrix} -1 & 0\\ 0 & 1 \end{pmatrix}$ and $\begin{pmatrix} -1 & 0\\ -1 & 1 \end{pmatrix}$ (see [7, Proposition 3.7] or [15, I.2.1]). This observation implies easily that the Adams operation ψ_c^k in KU_0X for each $k\neq 0$ can be expressed by the following matrix $$A_{k,t,0} = \begin{pmatrix} 1/k^t & 0 \\ 0 & 1 \end{pmatrix}$$ or $A_{k,t} = \begin{pmatrix} 1/k^t & 0 \\ 1-k^t/2k^t & 1 \end{pmatrix}$ according as $\psi_c^{-1} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ or $\begin{pmatrix} -1 & 0 \\ -1 & 1 \end{pmatrix}$, whenever t is odd. Let X be a CW-spectrum satisfying the following property: (II)_{t,0} $$KU_0X \cong Z \oplus Z$$ in which $\psi_c^k = A_{k,t,0}$ and $KU_1X = 0$. Then X is quasi KO_* -equivalent to one of the wedge sums $\Sigma^0 \vee \Sigma^0$, $\Sigma^0 \vee \Sigma^4$ and $\Sigma^4 \vee \Sigma^4$ when t is even, and it is quasi KO_* -equivalent to one of the wedge sums $\Sigma^2 \vee \Sigma^0$, $\Sigma^2 \vee \Sigma^4$, $\Sigma^6 \vee \Sigma^0$ and $\Sigma^6 \vee \Sigma^4$ when t is odd (see [7, Theorem 3.2] or [15, Theorem I.2.4]). By an easy argument using the long exact sequence induced by the Bott cofiber sequence $\Sigma^1 KO \to KO \to KU \to \Sigma^2 KO$ we can show that in the case when t is even the Adams operation ψ^k_R behaves always in KO_i X $(0 \le i \le 7)$ for each $k \ne 0$ as follows (cf. [2, Proposition 7.14]): - (1.7) i) If X is quasi KO_* -equivalent to either of $\Sigma^0 \vee \Sigma^0$ and $\Sigma^4 \vee \Sigma^4$, then $\psi_R^k = A_{k,t,0}$, $k^2 A_{k,t,0}$ or 1 according as i=0, 4 or otherwise. - ii) If X is quasi KO_* -equivalent to $\Sigma^0 \vee \Sigma^4$, then $\psi_R^k = A_{k,t,\epsilon}$, $k^2 A_{k,t,\epsilon'}$ or 1 according as i=0, 4 or otherwise where $(\mathcal{E}, \mathcal{E}')=(0,0)$, (0,1) or (1,0) and $A_{k,t,1}=A_{k,t}$. Let X be a CW-spectrum satisfying the following property: (II)_t $KU_0 X \cong Z \oplus Z$ in which $\psi_c^k = A_{k,t}$ and $KU_1 X = 0$. Then X is quasi KO_* -equivalent to one of the wedge sums $\Sigma^0 \vee \Sigma^0$, $\Sigma^0 \vee \Sigma^4$ and $\Sigma^4 \vee \Sigma^4$ when t is even, but it is only quasi KO_* -equivalent to the cofiber $C(\eta)$ when t is odd (see [7, Theorem 3.2] or [15, Theorem I.2.4]). Thus X is always a Wood spectrum in the case when t is odd. By a similar argument to (1.7) we can also show that the Adams operation ψ_R^k behaves always in $KO_i \times (0 \le i \le 7)$ for each $k \ne 0$ as follows: - (1.8) i) If X is quasi KO_* -equivalent to either of $\Sigma^0 \vee \Sigma^0$ and $\Sigma^4 \vee \Sigma^4$, then $\psi_R^k = A_{k,t}$, $k^2 A_{k,t}$ or 1 according as i = 0, 4 or otherwise. - ii) If X is quasi KO_* -equivalent to $\Sigma^0 \vee \Sigma^4$, then $\psi_R^k = A_{k,t,\epsilon}$, $k^2 A_{k,t,2-\epsilon}$ or 1 according as i = 0, 4 or otherwise where $\varepsilon = 0$ or 2 and $A_{k,t,j} = \begin{pmatrix} 1/k^t & 0 \\ 1-k^t/2^j k^t & 1 \end{pmatrix}$. - iii) If X is a Wood spectrum, then $\psi_R^k = 1$, $1/k^{t-1}$, k^2 or $1/k^{t-3}$ according as i=0, 2, 4 or 6. For any map $\alpha_{2s/j} \colon \Sigma^{4s-1} \to \Sigma^0$ whose e_c -invariant $e_c(\alpha_{2s/j}) \equiv 1/2^j \mod 1$, we notice that the Adams operation ψ_c^k in $KU_0 C(\alpha_{2s/j}) \cong Z \oplus Z$ is represented by the matrix $A_{k,2s,j}$ as given in (1.8) ii) for each $k \neq 0$ [2, Proposition 7.5]. Consider the maps $$(1.9) \quad \alpha_{2s} \colon \Sigma^{4s-1} \to \Sigma^{0}, \ \overline{i}\alpha_{2s/2} \colon \Sigma^{4s-1} \to
C(\overline{\eta}) \quad \text{and} \quad \alpha_{2s/2} \ \widetilde{j} \colon \Sigma^{4s-4} \ C(\widetilde{\eta}) \to \Sigma^{0}$$ where $s \ge 1$ and $\alpha_{2s/1}$ is abbreviated as α_{2s} . **Proposition 1.3.** The cofibers $C(\mu_{2s})$, $C(\tilde{i}\alpha_{2s/2})$ and $C(\alpha_{2s/2}\tilde{j})$ satisfy the property (II)_{2s}, and they are quasi KO_* -equivalent to the wedge sum $\Sigma^{4s} \vee \Sigma^0$, $\Sigma^{4s} \vee \Sigma^4$ and $\Sigma^{4s-4} \vee \Sigma^0$ respectively. Proof. The first half is easy, and the latter half is immediate bacause $\pi_{4s-1}KO=0$. 1.3. Let us fix an Adams' K_* -equivalence $A_2: \Sigma^8 SZ/2 \to SZ/2$ [2]. We first consider the composite maps $A_2^r i: \Sigma^{8r} \to SZ/2$ and $jA_2^r: \Sigma^{8r-1}SZ/2 \to \Sigma^0$ $(r \ge 0)$. **Lemma 1.4.** The cofibers $\Sigma^{-8r-1}C(A_2^ri)$ and $C(jA_2^r)$ satisfy the property (I), and they are quasi KO_* -equivalent to Σ^0 . Proof. Since the Adams' K_* -equivalence A_2 : $\Sigma^8 SZ/2 \rightarrow SZ/2$ induces an isomorphism in KU-homology, we obtain that $KU_1 C(A_2^r i) \cong KU_1 \Sigma^{8r+1} \cong Z$, $KU_0 C(jA_2^r) \cong KU_0 \Sigma^0 \cong Z$ and $KU_0 C(A_2^r i) = 0 = KU_1 C(jA_2^r)$. Moreover it follows that $\Sigma^{-1}C(A_2^r i)$ and $C(jA_2^r)$ are both quasi KO_* -equivalent to Σ^0 but not to Σ^4 because $KO_6 C(A_2^r i) = 0 = KO_5 C(jA_2^r)$. **Lemma 1.5.** Let X be a CW-spectrum satisfying the property (I). - i) Let $f: \Sigma^{2t-1}SZ/2 \to X$ be a map whose cofiber C(f) satisfies the property (I). For the composite map $fA_2^r i: \Sigma^{8r+2t-1} \to X$ its cofiber $C(fA_2^r i)$ satisfies the property (II)_{4r+t}, and it is quasi KO_* -equivalent to $\Sigma^{2t} \lor C(f)$ or $C(\eta)$ according as t is even or odd. - ii) Let $g: \Sigma^{2t}X \to SZ/2$ be a map whose cofiber $\Sigma^{2t-1}C(g)$ satisfies the property (I). For the composite map $jA_2'g: \Sigma^{8r+2t-1}X \to \Sigma^0$ its cofiber $C(jA_2'g)$ satisfies the property (II)_{4r+t}, and it is quasi KO_* -equivalent to $\Sigma^{-1}C(g) \vee \Sigma^0$ or $C(\eta)$ according as t is even or odd. Proof. i) Consider the commutative diagram $$\Sigma^{8r+2t-1} \xrightarrow{A_2^r i} \Sigma^{2t-1} SZ/2 \to \Sigma^{2t-1} C(A_2^r i) \to \Sigma^{8r+2t}$$ $$|| \qquad \qquad \downarrow f \qquad \qquad \downarrow F \qquad ||$$ $$\Sigma^{8r+2t-1} \xrightarrow{fA_2^r i} \qquad X \qquad \to \qquad C(fA_2^r i) \qquad \to \Sigma^{8r+2t}$$ $$\downarrow i_f \qquad \qquad \downarrow i_F$$ $$C(f) \qquad = \qquad C(f)$$ involving four cofiber sequences. It is obvious that $KU_0 C(fA_2^ri) \cong KU_0 \Sigma^{8r+2i} \oplus KU_0 X \cong Z \oplus Z$ and $KU_1 C(fA_2^ri) = 0$. Observe that the induced homomorphism $F_*\colon KU_0 \Sigma^{2t-1}C(A_2^ri) \to KU_0 C(fA_2^ri)$ is given by $F_*(1) = (2,a)$ for some integer a. Since the integer a must be odd, we may take a to be 1. By an easy argument we can then show that $\psi_c^k = A_{k,4r+t}$ in $KU_0 C(fA_2^ri)$ for each k = 0. Since $\Sigma^{-1}C(A_2^ri)$ is quasi KO_* -equivalent to Σ^0 by Lemma 1.4 and C(f) is quasi KO_* -equivalent to either of Σ^0 and Σ^4 , the cofiber $C(fA_2^ri)$ becomes quasi KO_* -equivalent to the wedge sum $C(f) \vee \Sigma^{2t}$ in the case when t is even. On the other hand, it is exactly a Wood spectrum in the case when t is odd, because $\psi_c^{-1} = \begin{pmatrix} -1 & 0 \\ -1 & 1 \end{pmatrix}$ on $KU_0 C(fA_2^ri)$. ii) is similarly shown by a dual argument. Consider the composite map $\tilde{\eta}\bar{\eta}$: $\Sigma^3 SZ/2 \rightarrow SZ/2$. Since $KO_7 C(\tilde{\eta}\bar{\eta}) \cong KO_3$ $SZ/2 \cong Z/2$ and $KO_6 C(\tilde{\eta} \bar{\eta}) \cong KO_2 SZ/2 \cong Z/4$, a routine argument with (1.2) shows that (1.10) $\Sigma^{-2}C(\tilde{\eta}\bar{\eta})$ satisfies the property (I₄), and it is quasi KO_* -equivalent to $\Sigma^4SZ/4$. Since the composite maps $\bar{\eta}\tilde{\eta}j$: $\Sigma^3 SZ/2 \rightarrow \Sigma^1$, $i\bar{\eta}\tilde{\eta}$: $\Sigma^3 \rightarrow SZ/2$, $\bar{\eta}\tilde{\eta}\bar{\eta}$: $\Sigma^5 SZ/2 \rightarrow \Sigma^1$ and $\tilde{\eta}\bar{\eta}\tilde{\eta}$: $\Sigma^5 \rightarrow SZ/2$ are all trivial [4, §4], we can choose the following maps (1.11) $$\begin{split} \bar{h} \colon \Sigma^3 SZ/2 \to C(\bar{\eta}) \,, & \qquad \tilde{h} \colon \Sigma^1 C(\bar{\eta}) \to SZ/2 \,, \\ \bar{k} \colon \Sigma^5 SZ/2 \to C(\bar{\eta}) \quad \text{and} \quad \tilde{k} \colon \Sigma^3 C(\bar{\eta}) \to SZ/2 \end{split}$$ such that $j\bar{h}=\tilde{\eta}j$, $\tilde{h}\tilde{i}=i\bar{\eta}$, $j\bar{k}=\tilde{\eta}\bar{\eta}$ and $\tilde{k}\tilde{i}=\tilde{\eta}\bar{\eta}$. Among their cofibers there hold Spanier-Whitehead dualities as $C(\tilde{h})=\Sigma^5DC(\bar{h})$ and $C(\tilde{k})=\Sigma^7DC(\bar{k})$. Since $KU_0\,C(\tilde{\eta}j)\cong KU_0\,C(i\bar{\eta})\cong KU_0\,C(\tilde{\eta}\bar{\eta})\cong Z/4$ by (1.3) and (1.10), we can easily observe that (1.12) the cofibers $C(\bar{h})$, $\Sigma^{-5}C(\tilde{h})$, $C(\bar{k})$ and $\Sigma^{-7}C(\tilde{k})$ satisfy the property (I), and the first two and the last two are respectively quasi KO_* -equivalent to Σ^4 and Σ^0 , because $KO_1C(\bar{h})=KO_7C(\tilde{h})=KO_5C(\bar{k})=0$ and $KO_1C(\tilde{k})\cong KO_3SZ/2\cong Z/2$. By taking f in Lemma 1.5 i) as the map j, $\bar{\eta}$, \bar{h} or \bar{k} , and g in Lemma 1.5 ii) as the map i, $\bar{\eta}$, \tilde{h} or \tilde{k} , we can now introduce the following maps of order 2: $$(1.13) \begin{array}{c} \alpha_{4r} = jA_{2}^{r}i \colon \Sigma^{8r-1} \to \Sigma^{0} ,\\ \mu_{4r+1} = \bar{\eta}A_{2}^{r}i \colon \Sigma^{8r+1} \to \Sigma^{0} , \qquad \mu_{4r+1}^{\prime} = jA_{2}^{r}\tilde{\eta} \colon \Sigma^{8r+1} \to \Sigma^{0}\\ a_{4r+2} = \bar{h}A_{2}^{r}i \colon \Sigma^{8r+3} \to C(\bar{\eta}) , \quad a_{4r+2}^{\prime} = jA_{2}^{r}\tilde{h} \colon \Sigma^{8r}C(\bar{\eta}) \to \Sigma^{0}\\ m_{4r+3} = \bar{k}A_{2}^{r}i \colon \Sigma^{8r+5} \to C(\bar{\eta}) , \quad m_{4r+3}^{\prime} = jA_{2}^{r}\tilde{k} \colon \Sigma^{8r+2} C(\bar{\eta}) \to \Sigma^{0} . \end{array}$$ Among their cofibers we may regard that there hold Spanier-Whitehead dualities as $C(f'_t) = \Sigma^{2t}DC(f_t)$ for $f_t = \alpha_{4r}$, μ_{4r+1} , a_{4r+2} or m_{4r+3} where $r \ge 0$ and $\alpha'_{4r} = \alpha_{4r}$. Combining Lemma 1.5 with (1.2) and (1.12) we obtain **Proposition 1.6.** Set $f_t = \alpha_{4r}$, μ_{4r+1} , μ'_{4r+1} , a_{4r+2} , a'_{4r+2} , m_{4r+3} or m'_{4r+3} $(r \ge 0)$. Then each cofiber $C(f_t)$ satisfies the property (II)_t. Moreover $C(\alpha_{4r})$, $C(a'_{4r+2})$ and $\Sigma^4C(a_{4r+2})$ are quasi KO_* -equivalent to $\Sigma^0 \vee \Sigma^0$, and $C(\mu_{4r+1})$, $C(\mu'_{4r+1})$, $C(m_{4r+3})$ and $C(m'_{4r+3})$ are all Wood spectra. Use Proposition 1.6 combined with (1.8) to apply Theorem 4. Then we obtain the following result, which contains Theorem 1. **Theorem 1.7.** Let X be a CW-spectrum satisfying the property (II)_t with $t \ge 0$. i) If X is quasi KO_* -equivalent to $\Sigma^0 \vee \Sigma^0$, then it has the same K_* -local type as $C(\alpha_{4r})$ or $C(a'_{4r+2})$ according as t=4r or 4r+2. - ii) If X is quasi KO_* -equivalent to $\Sigma^4 \vee \Sigma^4$, then it has the same K_* -local type as $C(\alpha_{4r})_{\wedge}C(\bar{\eta})$ or $C(a_{4r+2})$ according as t=4r or 4r+2. - iii) If X is a Wood spectrum, then it has the same K_* -local type as $C(\mu_{4r+1})$ or $C(m_{4r+3})$ according as t=4r+1 or 4r+3. ## 2. K_* -local types of spectra with the property $(II_{2m})_t$ **2.1.** Consider the cofibers $C(i\eta)$, $C(\bar{\eta}_{2m})$ and $C(\eta^2\bar{\eta}_{2m})$ of the maps $i\eta\colon \Sigma^1\to SZ/2$, $\bar{\eta}_{2m}\colon \Sigma^1SZ/2m\to \Sigma^0$ and $\eta^2\bar{\eta}_{2m}\colon \Sigma^3SZ/2m\to \Sigma^0$, which are denoted by M_{2m} , P'_{2m} and R'_{2m} respectively in [15, I.4.1]. Recall that $KU_0M_{2m}\cong Z\oplus Z/2m$ on which $\psi_c^{-1}=\begin{pmatrix} -1 & 0 \\ -1 & 1 \end{pmatrix}$, $KU_0P'_{2m}\cong Z\oplus Z/m$ on which $\psi_c^{-1}=\begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix}$, $KU_0R'_{2m}\cong Z\oplus Z/m$ $Z \oplus Z/2m$ on which $\psi_c^{-1}=1$, and $KU_1M_{2m}=KU_1P'_{2m}=KU_1R'_{2m}=0$ [15, Proposition I.4.1]. Note that $\Sigma^{-2}P'_{4m}$ is quasi KO_* -equivalent to M_{2m} , whose KO-homology KO_i $M_{2m}\cong Z/2m$, 0, $Z \oplus Z/2$, Z/2, Z/4m, 0, Z, 0 according as $i=0,1,\cdots,7$ (see [15, Proposition I.4.2 and Corollary I.5.4]). Let X be a CW-spectrum satisfying the following property: $$(II_{2m})_t$$ $KU_0X \cong Z \oplus Z/2m$ in which $\psi_c^k = A_{k,t}$ and $KU_1X = 0$. Then X is quasi KO_* -equivalent to one of the following elementary spectra $\Sigma^{4i} \vee \Sigma^{4j} SZ/2m$, $\Sigma^{4i} \vee \Sigma^{4j} V_{2m}$ and $\Sigma^{4j} R'_{2m}$ for i, j = 0 or 1 when t is even, and it is quasi KO_* -equivalent to either of M_{2m} and $\Sigma^4 M_{2m}$ when t is odd. **Lemma 2.1.** Let X, Y and W be CW-spectra satisfying the property (I). Let $f: \Sigma^{2t-1} X \to Y$ and $g: W \to Y$ be maps whose cofibers C(f) and C(g) satisfy the properties (II), and (I_{2m}) respectively. Then the cofiber $C(i_g f)$ of the composite map $i_g f: \Sigma^{2t-1} X \to Y \to C(g)$ satisfies the property (II_{2m}),. Moreover it is quasi KO_* -equivalent to $\Sigma^{2t} X \vee C(g)$ when t is even, and it is quasi KO_* -equivalent to M_{2m} or KO_* -equivalent to -equivale Proof. Use the commutative diagram $$egin{array}{cccccc} W &=& W \ &&\downarrow g &&\downarrow G \ \Sigma^{2t-1}X & ightarrow & Y & ightarrow & C(f) & ightarrow \Sigma^{2t}X \ &&\parallel &&\downarrow i_g &&\downarrow i_G &\parallel \ \Sigma^{2t-1}X & ightarrow & C(g) ightarrow & C(i_gf) ightarrow \Sigma^{2t}X \end{array}$$ involving four cofiber sequences. Obviously $KU_0 C(i_g f) \cong KU_0 \Sigma^{2t} X \oplus KU_0 C(g)$ in which $\psi_C^k = A_{k,t}$
and $KU_1 C(i_g f) = 0$. When t is even, $C(i_g f)$ is quasi KO_* -equivalent to the wedge sum $\Sigma^{2t} X \vee C(g)$ since $\Sigma^{2t-1} X$ is quasi KO_* -equivalent to Σ^0 or Σ^0 and Σ^0 is quasi Σ^0 -equivalent to Σ^0 or Σ^0 . On the other hand, $C(i_g f)$ is quasi KO_* -equivalent to either of M_{2m} and $\Sigma^4 M_{2m}$ when t is odd. However we notice that $KO_3 C(i_g f) \cong KO_2 W$ because C(f) is a Wood spectrum in the case when t is odd. Let X be a CW-spectrum with $(II_{2m})_{2s+1}$, which is quasi KO_* -equivalent to either M_{2m} or $\Sigma^4 M_{2m}$. Using the long exact sequence induced by the Bott cofiber sequence $\Sigma^1 KO \to KO \to KU \to \Sigma^2 KO$ we can easily show that the Adams operation ψ^k_R behaves always in $KO_i X$ $(0 \le i \le 7)$ for each $k \ne 0$ as follows: (2.1) $\psi_R^k = 1/k^{2s}$, k^2 , $1/k^{2s-2}$ or 1 according as i=2, 4, 6 or otherwise. **Lemma 2.2.** Let X, Y and W be CW-spectra satisfying the property (I). Let $f: \Sigma^{4s-1}X \to Y$ and $g: W \to Y$ be maps whose cofibers C(f) and C(g) satisfy the properties (II)_{2s} and (I_{2m}) respectively. Assume that the Adams operation ψ_R^k behaves normally in $KO_*C(g)$ in the sense of (1.5). Then the Adams operation ψ_R^k acts normally in $KO_iC(i_g f)$ ($0 \le i \le 7$) for each $k \ne 0$ as follows: - i) If both $\Sigma^{4s}X$ and Y are quasi KO_* -equivalent to either of Σ^0 and Σ^4 , then $\psi_R^k = A_{k,2s}$, $k^2A_{k,2s}$ or 1 according as i=0, 4 or otherwise. - ii) If $\Sigma^{4s}X$ and Y are respectively quasi KO_* -equivalent to Σ^0 and Σ^4 , then $\psi_R^k = A_{k,2s,2}$, $k^2A_{k,2s,0}$ or 1 according as i=0, 4 or otherwise. - iii) If $\Sigma^{4s}X$ and Y are respectively quasi KO_* -equivalent to Σ^4 and Σ^0 , then $\psi_R^k = A_{k,2s,0}$, $k^2A_{k,2s,2}$ or 1 according as i=0, 4 or otherwise. Proof. Use the cofiber sequence $W \xrightarrow{G} C(i_g f) \xrightarrow{j_G} \Sigma^1 W$ appeared in the proof of Lemma 2.1 where C(f) and $C(i_g f)$ are quasi KO_* -equivalent to $\Sigma^{4s} X \vee Y$ and $\Sigma^{4s} X \vee C(g)$ respectively. Since W is quasi KO_* -equivalent to either of Σ^0 and Σ^4 , the map i_G induces epimorphisms $i_{G^*} \colon KO_iC(f) \to KO_iC(i_g f)$ in dimensions i=0, 1, 4 and 5. By using (1.8) i) and ii) we can immediately observe the behavior of ψ^k_R in $KO_iC(i_g f)$ for i=0, 1, 4 or 5. We will next show that $\psi^k_R=1$ in $KO_iC(i_g f)$ for i=2 or 6. It is obvious that $KO_2C(i_g f)$ is isomorphic to $KO_2C(g)$, $KO_2C(f)$ or $KO_2C(f) \oplus KO_2C(g)$ according as $\Sigma^{4s} X$, W or Y is quasi KO_* -equivalent to Σ^4 . Therefore it is easy to see that $\psi^k_R=1$ in $KO_2C(i_g f)$ in these three cases. Assume that $\Sigma^{4s} X$, W and Y are all quasi KO_* -equivalent to Σ^0 . Then we have the following commutative diagram $$\begin{array}{cccc} 0 & 0 \\ \downarrow & \downarrow \\ 0 \rightarrow KO_2Y \rightarrow KO_2C(f) \rightarrow KO_2 \Sigma^{4s}X \rightarrow 0 \\ \downarrow & \downarrow & || \\ 0 \rightarrow KO_2C(g) \rightarrow KO_2C(i_gf) \rightarrow KO_2 \Sigma^{4s}X \rightarrow 0 \\ \downarrow & \downarrow & \downarrow \\ KO_1W = KO_1W \\ \downarrow & \downarrow & \downarrow \\ 0 & 0 \end{array}$$ with exact rows and columns, where C(g) is quasi KO_* -equivalent to SZ/2m by Lemma 1.1. Then a routine computation shows that $\psi_R^k = 1$ in $KO_2C(i_g f)$ as desired, because $\psi_R^k = 1$ in $KO_2C(f)$ and $KO_2C(g)$. Similarly as to KO_6 $C(i_g f)$. We remark that the Adams operation ψ_R^k acts normally in $KO_*C(i_g f)_{\wedge}C(\bar{\eta})$ as stated in the above lemma if it behaves normally in $KO_*C(g)_{\wedge}C(\bar{\eta})$ in the sense of (1.5). Take f in Lemma 2.1 as the map α_{4r} , μ_{4r+1} , a_{4r+2} , a'_{4r+2} or m_{4r+3} given in (1.13) and g in Lemma 2.1 as the map $2m: \Sigma^0 \to \Sigma^0$, $m\overline{\lambda}: C(\overline{\eta}) \to \Sigma^0$, $2m: C(\overline{\eta}) \to C(\overline{\eta})$ or $m\overline{i}: \Sigma^0 \to C(\overline{\eta})$ whose cofiber is SZ/2m, U_{2m} , $SZ/2m \cap C(\overline{\eta})$ or V_{2m} . Then we can introduce the composite maps $i_g f_t (t \ge 0)$ as follows: $$\begin{split} i\alpha_{4r} \colon \Sigma^{8r-1} &\to SZ/2m \;, & i_{U}\alpha_{4r} \colon \Sigma^{8r-1} \to U_{2m} \;, \\ i\mu_{4r+1} \colon \Sigma^{8r+1} &\to SZ/2m \;, & i_{U}\mu_{4r+1} \colon \Sigma^{8r+1} \to U_{2m} \;, \\ (2.2) & ia'_{4r+2} \colon \Sigma^{8r}C(\widetilde{\eta}) \to SZ/2m \;, & i_{U}a'_{4r+2} \colon \Sigma^{8r}C(\widetilde{\eta}) \to U_{2m} \;, \\ (i_{\wedge}1) \; a_{4r+2} \colon \Sigma^{8r+3} &\to SZ/2m_{\wedge}C(\overline{\eta}) \;, & i_{V}a_{4r+2} \colon \Sigma^{8r+3} \to V_{2m} \;, \\ (i_{\wedge}1) \; m_{4r+3} \colon \Sigma^{8r+5} \to SZ/2m_{\wedge}C(\overline{\eta}) \;, & i_{V}m_{4r+3} \colon \Sigma^{8r+5} \to V_{2m} \;. \end{split}$$ Applying Lemmas 2.1 and 2.2 and (2.1) with the aid of Proposition 1.6, (1.3), (1.4) and (1.5), we obtain **Proposition 2.3.** For each composite map $i_g f_t(t \ge 0)$ given in (2.2), its cofiber $C(i_g f_t)$ satisfies the property $(II_{2m})_t$, and the Adams operation ψ_R^k behaves normally in $KO_*C(i_g f_t)$ as stated in Lemma 2.2 i) when t is even, or as stated in (2.1) when t is odd. Moreover $C(i\alpha_{4r})$, $C(ia'_{4r+2})$ and $\Sigma^4C((i_{\wedge}1) a_{4r+2})$ are quasi KO_* -equivalent to $\Sigma^0 \vee SZ/2m$, and $C(i_U\alpha_{4r})$, $C(i_Ua'_{4r+2})$ and $\Sigma^4C(i_Va_{4r+2})$ are quasi KO_* -equivalent to $\Sigma^0 \vee \Sigma^4V_{2m}$. On the other hand, $C(i \mu_{4r+1})$, $C(i_Vm_{4r+3})$, $\Sigma^4C(i_U\mu_{4r+1})$ and $\Sigma^4C((i_{\wedge}1) m_{4r+3})$ are all quasi KO_* -equivalent to M_{2m} . **2.2.** Let $f: \Sigma^{2t-1}X \to Y$ be a map of order 2. Then we have extensions $$f_{2m} \colon \Sigma^{2t-1} X_{\wedge} SZ/2m \to Y$$, $f_{U,4m} \colon \Sigma^{2t-1} X_{\wedge} U_{4m} \to Y$ and $f_{V,4m} \colon \Sigma^{2t-1} X'_{\wedge} V_{4m} \to Y$ when $X = X'_{\wedge} C(\overline{\eta})$ such that $\bar{f}_{2m}(1_{\wedge}i)=f$, $\bar{f}_{U,4m}(1_{\wedge}i_U)=f$ and $\bar{f}_{V,4m}(1_{\wedge}i_V)=f$ because U_{4m} and V_{4m} are constructed as the cofibers of the maps $2m\ \bar{\lambda}\colon C(\bar{\eta})\to \Sigma^0$ and $2m\ \bar{i}\colon \Sigma^0\to C(\bar{\eta})$ respectively. **Lemma 2.4.** Let X and Y be CW-spectra satisfying the property (I), and $f: \Sigma^{2t-1}X \to Y$ be a map of order 2 whose cofiber C(f) satisfies the property (II)_t $(t \neq 0)$. (i) The cofiber $C(\bar{f}_2)$ satisfies the property (I), and it is quasi KO_* -equivalent to Y or $\Sigma^4 Y$ according as t is even or odd. ii) For $\overline{\varphi}_{4m} = \overline{f}_{4m}$, $\overline{f}_{U,4m}$ or $\overline{f}_{V,4m}$ each cofiber $\Sigma^{-2t}C(\overline{\varphi}_{4m})$ satisfies the property $(II_{2m})_{-t}$. Whenever t is odd, all of $C(\overline{f}_{4m})$, $\Sigma^4C(\overline{f}_{U,4m})$ and $C(\overline{f}_{V,4m})$ are quasi KO_* -equivalent to P'_{4m} or $\Sigma^4P'_{4m}$ according as $\Sigma^{2t}X$ is quasi KO_* -equivalent to Σ^2 or Σ^6 . Proof. Consider the following commutative diagram $$\Sigma^{2t}X = \Sigma^{2t}X$$ $$\downarrow \lambda \qquad \downarrow 2m$$ $$\Sigma^{2t-1}X \xrightarrow{f} Y \rightarrow C(f) \rightarrow \Sigma^{2t}X$$ $$\downarrow 1_{\wedge}i \qquad || \qquad \downarrow \qquad \qquad \downarrow$$ $$\Sigma^{2t-1}X_{\wedge}SZ/2m \xrightarrow{f}_{2m} Y \rightarrow C(f_{2m}) \rightarrow \Sigma^{2t}X_{\wedge}SZ/2m$$ involving four cofiber sequences. The induced homomorphism $\lambda_*: KU_0\Sigma^{2t}X \to KU_0C(f)$ is given by $\lambda_*(1) = (2m, m) \in KU_0C(f) \cong KU_0\Sigma^{2t}X \oplus KU_0Y \cong Z \oplus Z$, since $\psi_c^k = A_{k,t}$ in $KU_0C(f)$. Hence it is immediate that $KU_0C(f_{2m}) \cong Z \oplus Z/m$ and $KU_1C(f_{2m}) = 0$. Moreover the Adams operation ψ_c^k in $KU_0C(f_{2m})$ is represented as the matrix $\begin{pmatrix} -1 & 2 \\ 0 & 1 \end{pmatrix} A_{k,t} \begin{pmatrix} -1 & 2 \\ 0 & 1 \end{pmatrix} = k^{-t}A_{k,-t}$. In other words, $\psi_c^k = 1$ in $KU_0C(f_2) \cong Z$ and $\psi_c^k = A_{k,-t}$ in $KU_0\Sigma^{-2t}C(f_{2m}) \cong Z \oplus Z/m$ unless m=1. Assume that Y is quasi KO_* -equivalent to Σ^0 . Then it is obvious that $KO_7 \Sigma^{2t} X_{\wedge} SZ/2 = 0$ because $KO_7 C(\bar{f_2}) = 0 = KO_6 Y$. Therefore $\Sigma^{2t} X_{\wedge} SZ/2$ becomes quasi KO_* -equivalent to SZ/2 or $\Sigma^2 SZ/2$ according as t is even or odd. This implies easily that $C(\bar{f_2})$ is quasi KO_* -equivalent to Σ^0 or Σ^4 according as t is even or odd. When Y is quasi KO_* -equivalent to Σ^4 , a similar result can be shown. Since C(f) is a Wood spectrum when t is odd, it is immediate that $KO_1C(\bar{f_{2m}}) \cong KO_0\Sigma^{2t}X$. Hence $C(\bar{f_{2m}})$ is quasi KO_* -equivalent to P'_{2m} or $\Sigma^4 P'_{2m}$ according as $\Sigma^{2t}X$ is quasi KO_* -equivalent to Σ^2 or Σ^6 . We can similarly prove as for $C(f_{U,4m})$ and $C(f_{V,4m})$. Since $[\Sigma^3 SZ/2, C(\bar{\eta})] \cong [\Sigma^1 C(\tilde{\eta}), SZ/2] \cong Z/2$ (use [4, §4]), the maps $\bar{h}: \Sigma^3 SZ/2 \to C(\bar{\eta})$ and $\tilde{h}: \Sigma^1 C(\tilde{\eta}) \to SZ/2$ have order 2. So there exist maps $$\bar{h}_{2m/2} \colon \Sigma^4 SZ/2 \to SZ/2m_{\wedge}C(\bar{\eta}) \quad \text{and} \quad \tilde{h}_{2m/2} \colon \Sigma^1 SZ/2m_{\wedge}C(\tilde{\eta}) \to SZ/2$$ satisfying $(j_{\wedge}1) \bar{h}_{2m'2} = \bar{h}$ and $\tilde{h}_{2m/2}(i_{\wedge}1) = \tilde{h}$. We now set $$\overline{\alpha}_{4r} = jA_2^r \colon \Sigma^{8r-1}SZ/2 \to \Sigma^0 , \qquad \overline{\mu}_{4r+1} = \overline{\eta}A_2^r \colon \Sigma^{8r+1}SZ/2 \to \Sigma^0 ,$$ $$\overline{\alpha}_{4r+2} = \overline{h}A_2^r \colon \Sigma^{8r+3}SZ/2 \to C(\overline{\eta}) , \quad
\overline{m}_{4r+3} = \overline{k}A_2^r \colon \Sigma^{8r+5}SZ/2 \to C(\overline{\eta}) ,$$ $$\overline{\alpha}_{4r+2}^r = jA_2^r \ \widetilde{h}_{2l2} \colon \Sigma^{8r}SZ/2 \land C(\widetilde{\eta}) \to \Sigma^0 .$$ Then Lemma 2.4 i) combined with Proposition 1.6 shows that (2.4) the cofibers $C(\overline{\alpha}_{4r})$, $C(\overline{\mu}_{4r+1})$, $C(\overline{\alpha}_{4r+2})$, $C(\overline{m}_{4r+3})$ and $C(\overline{\alpha}'_{4r+2})$ satisfy the property (I), and the first, the forth and the last are quasi KO_* -equivalent to Σ^0 and the other two are quasi KO_* -equivalent to Σ^4 . Let $f: \Sigma^{2t-1}X \to Y$ be a map of order 2 and $\overline{f}: \Sigma^{2t-1}X_{\wedge}SZ/2 \to Y$ be its extension with $f(1_{\wedge}i)=f$. Then there exists a map $\varphi: \Sigma^{-2t-1}C(\overline{f})\to X$ of order 2 whose cofiber $C(\varphi)$ coincides with $\Sigma^{-2t}C(f)$. Hence we can choose the following maps of order 2: of which each cofiber $C(f_{-t})$ coincides with $\Sigma^{-2t}C(f_t)$ where $f_t = \alpha_{4r}$, μ_{4r+1} , a_{4r+2} , m_{4r+3} or b_{4r+2} $(r \ge 0)$ with $b_{4r+2} = a'_{4r+2}$. Take f in Lemma 2.1 as the above map α_{-4r} , μ_{-4r-1} , a_{-4r-2} , m_{-4r-3} or b_{-4r-2} , and g in Lemma 2.1 as the map 2m: $\Sigma^0 \to \Sigma^0$, $m\bar{\lambda}$: $C(\bar{\eta}) \to \Sigma^0$, 2m: $C(\bar{\eta}) \to C(\bar{\eta})$ or $m\bar{\lambda}$: $\Sigma^3 \to C(\bar{\eta})$. Then we obtain the following composite maps $i_g f_{-t}$ $(t \ge 0)$: $$i\alpha_{-4r} \colon \Sigma^{-8r-1} C(\overline{\alpha}_{4r}) \to SZ/2m , \qquad i_{U}\alpha_{-4r} \colon \Sigma^{-8r-1} C(\overline{\alpha}_{4r}) \to U_{2m} ,$$ $$i\mu_{-4r-1} \colon \Sigma^{-8r-3} C(\overline{\mu}_{4r+1}) \to SZ/2m , \qquad i_{U}\mu_{-4r-1} \colon \Sigma^{-8r-3} C(\overline{\mu}_{4r+1}) \to U_{2m} ,$$ $$(2.6) \quad ia_{-4r-2} \colon \Sigma^{-8r-5} C(\overline{a}_{4r+2}) \to SZ/2m , \qquad i_{U}a_{-4r-2} \colon \Sigma^{-8r-5} C(\overline{a}_{4r+2}) \to U_{2m} ,$$ $$im_{-4r-3} \colon \Sigma^{-8r-7} C(\overline{m}_{4r+3}) \to SZ/2m , \qquad i_{U}m_{-4r-3} \colon \Sigma^{-8r-7} C(\overline{m}_{4r+3}) \to U_{2m} ,$$ $$(i_{\wedge}1) b_{-4r-2} \colon \Sigma^{-8r-5} C(\overline{a}'_{4r+2}) \to \Sigma^{-3}SZ/2m_{\wedge} C(\widetilde{\eta}) \quad \text{and}$$ $$i'_{U}b_{-4r-2} \colon \Sigma^{-8r-5} C(\overline{a}'_{4r+2}) \to \Sigma^{-3}U'_{2m} .$$ By making use of Lemmas 2.1 and 2.2 and (2.1) we obtain **Proposition 2.5.** For each composite map $i_g f_{-t}$ ($t \ge 0$) given in (2.6), its cofiber $C(i_g f_{-t})$ satisfies the property $(II_{2m})_{-t}$, and the Adams operation ψ_R^k behaves normally in $KO_*C(i_g f_{-t})$ as stated in Lemma 2.2 i) when t is even, or as stated in (2.1) when t is odd. Moreover $C(i\alpha_{-4r})$, $C(ia_{-4r-2})$ and $\Sigma^4C((i_\wedge 1) b_{-4r-2})$ are quasi KO_* -equivalent to $\Sigma^0 \vee SZ/2m$, and $C(i_U\alpha_{-4r})$, $C(i_U a_{-4r-2})$ and $\Sigma^4C(i_U'b_{-4r-2})$ are quasi KO_* -equivalent to $\Sigma^0 \vee \Sigma^4V_{2m}$. On the other hand, $C(i\mu_{-4r-1})$, $C(im_{-4r-3})$, $\Sigma^4C(i_U\mu_{-4r-1})$ and $\Sigma^4C(i_Um_{-4r-3})$ are all quasi KO_* -equivalent to M_{2m} . By virtue of Propositions 2.3 and 2.5 we can apply Theorem 4 to show the following result. **Theorem 2.6.** Let X be a CW-spectrum satisfying the property $(II_{2m})_t$. i) Assume that X is quasi KO_* -equivalent to $\Sigma^0 \vee SZ/2m$. If the Adams operation ψ_R^k behaves normally in KO_*X for each $k \neq 0$ as stated in Lemma 2.2 - i), then X has the same K_* -local type as $C(i\alpha_{4r})$, $C(i\alpha'_{4r+2})$, $C(i\alpha_{-4r})$ or $C(i\alpha_{-4r-2})$ according as t=4r, 4r+2, -4r or -4r-2 $(r\geq 0)$. - ii) Assume that X is quasi KO_* -equivalent to $\Sigma^0 \vee \Sigma^4 V_{2m}$. If the Adams operation ψ_R^k behaves normally in KO_*X for each $k \neq 0$ as stated in Lemma 2.2 i), then X has the same K_* -local type as $C(i_U\alpha_{4r})$, $C(i_Ua'_{4r+2})$, $C(i_U\alpha_{-4r})$ or $C(i_Ua_{-4r-2})$ according as t=4r, 4r+2, -4r or -4r-2 ($r \geq 0$). - iii) Assume that X is quasi KO_* -equivalent to M_{2m} . Then X has the same K_* -local type as $C(i\mu_{4r+1})$, $C(i_Vm_{4r+3})$, $C(i\mu_{-4r-1})$ or $C(im_{-4r-3})$ according as t=4r+1, 4r+3, -4r-1, -4r-3 ($r \ge 0$). - iv) Assume that X is quasi KO_* -equivalent to $\Sigma^4 M_{2m}$. Then X has the same K_* -local type as $C(i_U\mu_{4r+1})$, $C((i_{\wedge}1) m_{4r+3})$, $C(i_U\mu_{-4r-1})$ or $C(i_Um_{-4r-3})$ according as t=4r+1, 4r+3, -4r-1 or -4r-3 $(r\geq 0)$. In the above theorem we may replace the map $i_U \colon \Sigma^0 \to U_{2m}$ by the map $i_V' \colon \Sigma^0 \to \Sigma^{-2} V'_{2m}$, and also the maps $\mu_{4r+1} \colon \Sigma^{8r+1} \to \Sigma^0$, $i_V m_{4r+3} \colon \Sigma^{8r+5} \to V_{2m}$ and $(i_{\wedge}1) m_{4r+3} \colon \Sigma^{8r+5} \to SZ/2m_{\wedge} C(\bar{\eta})$ by $\mu'_{4r+1} \colon \Sigma^{8r+1} \to \Sigma^0$, $im'_{4r+3} \colon \Sigma^{8r+2} C(\bar{\eta}) \to SZ/2m$ and $i'_V m'_{4r+3} \colon \Sigma^{8r+2} C(\bar{\eta}) \to \Sigma^{-2} V'_{2m}$ respectively. Thus - (2.7) i) $C(i'_V f_t)$ has the same K_* -local type as $C(i_U f_t)$ for $f_t = \alpha_{\pm 4r}$, $\mu_{\pm (4r+1)}$, α'_{4r+2} , α_{-4r-2} , m'_{4r+3} or m_{-4r-3} . - ii) $C(i\mu'_{4r+1})$ and $C(i_U\mu'_{4r+1})$ have the same K_* -local types as $C(i\mu_{4r+1})$ and $C(i_U\mu_{4r+1})$ respectively. - iii) $C(im'_{4r+3})$ and $C(i'_Vm'_{4r+3})$ have the same K_* -local types as $C(i_Vm_{4r+3})$ and $C((i_{\wedge}1)m_{4r+3})$ respectively. When X is quasi KO_* -equivalent to $\Sigma^4 \vee \Sigma^4 SZ/2m$ or $\Sigma^4 \vee V_{2m}$, we can obtain a similar result corresponding to the above theorem i) or ii). In fact, if the Adams operation ψ_R^k behaves normally in KO_*X for each $k \neq 0$ as stated in Lemma 2.2 i), then X has the same K_* -local type as the cofiber appeared in Theorem 2.6 i) or ii) smashed with $C(\bar{\eta})$ (see the remark following Lemma 2.2). In particular, by means of Propositions 2.3 and 2.5 again we obtain that (2.8) $C((i_{\wedge}1) \ a_{4r+2}), C(i_{V}a_{4r+2}), C((i_{\wedge}1) \ b_{-4r-2}) \ \text{and} \ C(i'_{U}b_{-4r-2}) \ \text{have the same} \ K_{*}$ -local types as $C(ia'_{4r+2})_{\wedge}C(\bar{\eta}), C(i_{U}a'_{4r+2})_{\wedge}C(\bar{\eta}), C(ia_{-4r-2})_{\wedge}C(\bar{\eta}) \ \text{and} \ C(i_{U}a_{-4r-2})_{\wedge}C(\bar{\eta}) \ \text{respectively.}$ ## 3. K_* -local types of Anderson spectra - **3.1.** Let X be a CW-spectrum with $KU_0X \cong KU_1X \cong Z$. For such a CW-spectrum X we may assume that $X_{\wedge}SQ = (\Sigma^0 \vee \Sigma^{2t+1})_{\wedge}SQ$ for some integer t. In this case X satisfies the following property: - (III)_t $KU_0X \cong Z$ with $\psi_c^k = 1$ and $KU_1X \cong Z$ with $\psi_c^k = 1/k^t$. If X satisfies the property (III)_{2s+1}, then it is quasi KO_* -equivalent to one of the following spectra $\Sigma^0 \vee \Sigma^3$, $\Sigma^0 \vee \Sigma^7$, $\Sigma^4 \vee \Sigma^3$, $\Sigma^4 \vee \Sigma^7$ or $C(\eta^2)$ (see [7, Theorem 3.2] or [15, Theorem I.3.4]). **Lemma 3.1.** Let X and Y be CW-spectra satisfying the property (I) and $f: \Sigma^{2t-1}X \to Y$ be a map whose cofiber C(f) satisfies the property (II)_t. Then the cofiber $C(\eta f)$ of the composite map $\eta f: \Sigma^{2t}X \to Y$ satisfies the property (III)_t, and it is quasi KO_* -equivalent to $Y \vee \Sigma^{2t+1}X$ or $C(\eta^2)$ according as t is even or odd. Proof. Obviously $KU_0 C(\eta f) \cong KU_0 Y \cong Z$ and $KU_1 C(\eta f) \cong KU_1 \Sigma^{2t+1} X \cong Z$. In the case when t is even, $C(\eta f)$ is quasi KO_* -equivalent to the wedge sum $Y \vee \Sigma^{2t+1} X$ since C(f) is quasi KO_* -equivalent to $Y \vee \Sigma^{2t} X$. On the other hand, $C(\eta f)$ is just an Anderson spectrum in the case when t is odd, because $KO_2 C(\eta f) = 0 = KO_6 C(\eta f)$. Let X be an Anderson spectrum satisfying the property (III)_{2s+1}. Then we can easily observe that the Adams operation ψ_R^k behaves always in KO_iX $(0 \le i \le 7)$ for each $k \ne 0$ as follows: (3.1) $\psi_R^k = 1/k^{2s}$, k^2 , $1/k^{2s-2}$ or 1 according as i=3, 4, 7 or otherwise. **Lemma 3.2.** Let X and Y be CW-spectra satisfying the property (I) and $f: \Sigma^{4s-1}X \to Y$ be a map whose cofiber C(f) satisfies the property (II)_{2s}. Then the Adams operation ψ_R^k acts normally in $KO_iC(\eta f)$ ($0 \le i \le 7$) for each $k \ne 0$ as follows: $\psi_R^k = 1/k^{2s}$, k^2 , $1/k^{2s-2}$ or 1 according as i = 1, 4, 5 or otherwise. Proof. Use the cofiber sequence $\Sigma^1C(f) \to C(\eta f) \to C(\eta)_{\wedge} Y \to \Sigma^2C(f)$ where C(f), $C(\eta f)$ and $C(\eta)_{\wedge} Y$ are quasi KO_* -equivalent to $Y \vee \Sigma^{4s} X$, $Y \vee \Sigma^{4s+1} X$ and $C(\eta)$ respectively. Then the result follows immediately from (1.8) i) and ii). Take f in Lemma 3.1 as the map $\alpha_{\pm 4r}$, $\mu_{\pm (4r+1)}$, $a_{\pm (4r+2)}$, $m_{\pm (4r+3)}$, a'_{4r+2} or b_{-4r-2} given in (1.13) or (2.5). Using Lemmas 3.1 and 3.2 and (3.1) by virtue of Proposition 1.6 we obtain **Proposition 3.3.** Set $f_t = \alpha_{\pm 4r}$, $\mu_{\pm (4r+1)}$, $a_{\pm (4r+2)}$, $m_{\pm (4r+3)}$, a'_{4r+2} or b_{-4r-2} ($r \ge 0$). Then each cofiber $C(\eta f_t)$ satisfies the property (III)_t, and the Adams operation ψ_R^k behaves normally in $KO_*C(\eta f_t)$ as stated in Lemma 3.2 when t is even, or as stated in (3.1) when t is odd. Moreover the cofibers $C(\eta f_t)$ for $f_t = \alpha_{\pm 4r}$, a'_{4r+2} and a_{-4r-2} are quasi KO_* -equivalent to $\Sigma^0 \vee \Sigma^1$, but $C(\eta a_{4r+2})$ and $C(\eta b_{-4r-2})$ are quasi KO_* -equivalent to $\Sigma^4 \vee \Sigma^5$. On the other hand, the cofibers $C(\eta f_t)$ for $f_t = \mu_{\pm (4r+1)}$ and $m_{\pm (4r+3)}$ are Anderson spectra. By applying Theorem 4 combined with Proposition 3.3 we can
show the following result, which contains Theorem 2. Theorem 3.4. Let X be a CW-spectrum satisfying the property (III), with t + -1. - i) Assume that X is quasi KO_* -equivalent to $\Sigma^0 \vee \Sigma^1$. If the Adams operation ψ_R^k behaves normally in KO_*X for each $k \neq 0$ as stated in Lemma 3.2, then X has the same K_* -local type as $C(\eta \alpha_{4r})$, $C(\eta \alpha'_{4r+2})$, $C(\eta \alpha_{-4r})$ or $C(\eta \alpha_{-4r-2})$ according as t=4r, 4r+2, -4r or -4r-2 ($r \geq 0$). - ii) When X is an Anderson spectrum, then it has the same K_* -local type as $C(\eta\mu_{4r+1}), C(\eta m_{4r+3}), C(\eta\mu_{-4r-1})$ or $C(\eta m_{-4r-3})$ according as t=4r+1, 4r+3, -4r-1 or -4r-3 $(r\geq 0)$ where t=-1. - 3.3. As duals of M_{2m} , P'_{2m} and R'_{2m} appeared in §2 we next consider the cofibers $C(\eta j)$, $C(\tilde{\eta}_{2m})$ and $C(\tilde{\eta}_{2m}\eta^2)$ of the maps $\eta j: SZ/2m \to \Sigma^0$, $\tilde{\eta}_{2m}: \Sigma^2 \to SZ/2m$ and $\tilde{\eta}_{2m}\eta^2: \Sigma^4 \to SZ/2m$, which are denoted by M'_{2m}, P_{2m} and R_{2m} respectively in [15, I.4.1]. Then there hold Spanier-Whitehead dualities as $M'_{2m} = \Sigma^2 DM_{2m}$, $P'_{2m} = \Sigma^3 DP_{2m}$ and $R'_{2m} = \Sigma^5 DR_{2m}$. Hence $KU^0M'_{2m} \cong Z \oplus Z/2m$ on which $\psi_c^{-1} = \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix}$, $KU^1P_{2m} \cong Z \oplus Z/2m$ on which $\psi_c^{-1} = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}$, $KU^1R_{2m} \cong Z \oplus Z/2m$ on which $\psi_c^{-1} = 1$, and $KU^1M'_{2m} = KU^0P_{2m} = KU^0R_{2m} = 0$ (cf. [15, Proposition I.4.1]). Note that Σ^1P_{4m} is quasi KO_* -equivalent to M'_{2m} , whose KO-homology $KO_iM'_{2m}\cong Z$, Z/4m, Z/2, Z/2, Z/2m, 0, 0 according as i=0, 1, ..., 7 (see [15, Proposition I.4.2 and Corollary I.5.4]). Let X be a CW-spectrum satisfying the following property: $$(II_{2m})_t^*$$ $KU^0X \cong Z \oplus Z/2m$ in which $\psi_c^k = A_{k,t}$ and $KU^1X = 0$. If KU_iX is finitely generated for each i, then the property $(II_{2m})_i^*$ implies that $KU_0X \cong Z$ with $\psi_c^k = k^t$ and $KU_{-1}X \cong Z/2m$ with $\psi_c^k = 1$. Under the assumption that X is finite, we note that X satisfies the property $(II_{2m})_i^*$ if and only if its Spanier-Whitehead dual DX does the property $(II_{2m})_t$. As a dual of Lemma 2.1 we have Lemma 3.5. Let X, Y and W be CW-spectra satisfying the property (I). Let $f: \Sigma^{2t-1}X \to Y$ and $g: X \to W$ be maps whose cofibers C(f) and C(g) satisfy the properties (II), and (I_{2m}) respectively. Then for the composite map $fj_g: \Sigma^{2t-2}C(g) \to \Sigma^{2t-1}X \to Y$ the cofiber $\Sigma^{-2t}C(fj_g)$ satisfies the property (II_{2m})*. Moreover $C(fj_g)$ is quasi KO_* -equivalent to the wedge sum $Y \vee \Sigma^{2t-1}C(g)$ when t is even. On the other hand, under the assumption that $C(fj_g)$ is finite, it is quasi KO_* -equivalent to M'_{2m} or $\Sigma^4 M'_{2m}$ according as $\Sigma^{2t}W$ is quasi KO_* -equivalent to Σ^2 or Σ^6 when t is odd. Let $f: \Sigma^{2t-1}X \to Y$ be a map of order 2. Then we have coextensions $$\hat{f}_{2m} \colon \Sigma^{2t} X \to Y_{\wedge} SZ/2m$$, $\hat{f}_{V,4m} \colon \Sigma^{2t} X \to Y_{\wedge} V_{4m}$ and $\hat{f}_{U,4m} \colon \Sigma^{2t} X \to Y'_{\wedge} U_{4m}$ when $Y = Y'_{\wedge} C(\bar{\eta})$ such that $(1_{\wedge}j) \tilde{f}_{2m} = f$, $(1_{\wedge}j_{v}) \tilde{f}_{v,4m} = f$ and $(1_{\wedge}j_{v}) \tilde{f}_{v,4m} = f$. As a dual of Lemma 2.4 we have **Lemma 3.6.** Let X and Y be CW-spectra satisfying the property (I), and $f: \Sigma^{2t-1}X \to Y$ be a map of order 2 whose cofiber C(f) satisfies the property (II)_t $(t \neq 0)$. - i) The cofiber $\Sigma^{-2t-1}C(\tilde{f}_2)$ satisfies the property (I), and it is quasi KO_* -equivalent to X or Σ^4X according as t is even or odd. - ii) For $\tilde{\varphi}_{4m} = \tilde{f}_{4m}$, $\tilde{f}_{V,4m}$ or $\tilde{f}_{U,4m}$ each cofiber Σ^{-1} $C(\tilde{\varphi}_{4m})$ satisfies the property $(II_{2m})^*_{-t}$. Under the assumption that these cofibers are finite, all of $C(\tilde{f}_{4m})$, $\Sigma^4 C(\tilde{f}_{V,4m})$ and $C(\tilde{f}_{U,4m})$ are quasi KO_* -equivalent to P_{4m} or $\Sigma^4 P_{4m}$ according as Y is quasi KO_* -equivalent to Σ^0 or Σ^4 whenever t is odd. As a dual of (2.3) we set $$\begin{split} \widetilde{\alpha}_{4r} &= A_2^r \, i \colon \Sigma^{8r} \to SZ/2 \;, & \widetilde{\mu}_{4r+1}^r &= A_2^r \, \widetilde{\eta} \colon \Sigma^{8r+2} \to SZ/2 \;, \\ (3.2) \quad \widetilde{a}_{4r+2}^r &= A_2^r \, \widetilde{h} \colon \Sigma^{8r+1} \, C(\widetilde{\eta}) \to SZ/2 \;, & \widetilde{m}_{4r+3}^r &= A_2^r \, \widetilde{k} \colon \Sigma^{8r+3} \, C(\widetilde{\eta}) \to SZ/2 \;, \\ \widetilde{a}_{4r+2} &= \widetilde{h}_{2/2} \, A_2^r \, i \colon \Sigma^{8r+4} \to SZ/2 \,_{\wedge} C(\overline{\eta}) \;. \end{split}$$ Since $\Sigma^{-2t-1}C(\tilde{f}_t)=DC(\bar{f}_t)$ for $f_t=\alpha_{4r}$, μ_{4r+1} , a_{4r+2} , m_{4r+3} or $a'_{4r+2}(r\geq 0)$ with $\alpha'_{4r}=\alpha_{4r}$ and $a''_{4r+2}=a_{4r+2}$, (2.5) implies that (3.3) each cofiber $\Sigma^{-2t-1}C(\hat{f}'_t)$ satisfies the property (I) for \hat{f}'_t given in (3.2), and $C(\tilde{\alpha}_{4r})$, $\Sigma^2C(\tilde{\mu}'_{4r+1})$, $C(\tilde{\alpha}'_{4r+2})$, $\Sigma^2C(\tilde{m}'_{4r+3})$ and $\Sigma^4C(\tilde{\alpha}_{4r+2})$ are all quasi KO_* -equivalent to Σ^1 . Let $f: \Sigma^{2t-1}X \to Y$ be a map of order 2 and $\hat{f}: \Sigma^{2t}X \to Y_{\wedge}SZ/2$ be its coextension with $(1_{\wedge}j)\hat{f}=f$. Then there exists a map $\psi: Y \to C(\hat{f})$ of order 2 whose cofiber $C(\psi)$ coincides with $\Sigma^1C(f)$. So we can choose the following maps of order 2: (3.4) $$\alpha'_{-4r} \colon \Sigma^{0} \to C(\tilde{\alpha}_{4r}) , \qquad \mu'_{-4r-1} \colon \Sigma^{0} \to C(\tilde{\mu}'_{4r+1}) ,$$ $$\alpha'_{-4r-2} \colon \Sigma^{0} \to C(\tilde{\alpha}'_{4r+2}) , \quad m'_{-4r-3} \colon \Sigma^{0} \to C(\tilde{m}'_{4r+3}) \quad \text{and} \quad b'_{-4r-2} \colon C(\bar{\eta}) \to C(\tilde{\alpha}_{4r+2})$$ of which each cofiber $C(f'_{-t})$ coincides with $\Sigma^1 C(f'_t)$ where $f'_t = \alpha_{4r}, \mu'_{4r+1}, a'_{4r+2}, m'_{4r+3}$ and $b'_{4r+2} (r \ge 0)$ with $b'_{4r+2} = a_{4r+2}$. Since the maps f'_{-t} given in (3.4) are respectively dual to those f_{-t} given in (2.5), we have Spanier-Whitehead dualities as $C(f'_{-t}) = \Sigma^1 DC(f_{-t})$ for $f_{-t} = \alpha_{-4r}, \mu_{-4r-1}, a_{-4r-2}, m_{-4r-3}$ or $b_{-4r-2} (r \ge 0)$. Dually to (2.2) and (2.6) we obtain the composite maps $f_t j_g$ and $f_{-t} j_g$ ($t \ge 0$) as follows: $$\alpha_{4r} j \colon \Sigma^{8r-2} SZ/2m \to \Sigma^{0} , \qquad \alpha_{4r} j_{V} \colon \Sigma^{8r-2} V_{2m} \to \Sigma^{0} ,$$ $$(3.5) \quad \mu'_{4r+1} j \colon \Sigma^{8r} SZ/2m \to \Sigma^{0} , \qquad \qquad \mu'_{4r+1} j_{V} \colon \Sigma^{8r} V_{2m} \to \Sigma^{0} ,$$ $$a_{4r+2}j\colon \Sigma^{8r+2}SZ/2m\to C(\bar{\eta})\;,\qquad a_{4r+2}j_{V}\colon \Sigma^{8r+2}V_{2m}\to C(\bar{\eta})\;,\\ a'_{4r+2}(j_{\wedge}1)\colon \Sigma^{8r-1}SZ/2m_{\wedge}C(\bar{\eta})\to \Sigma^{0}\;,\quad a'_{4r+2}j'_{V}\colon \Sigma^{8r}V'_{2m}\to \Sigma^{0}\;,\\ m'_{4r+3}(j_{\wedge}1)\colon \Sigma^{8r+1}SZ/2m_{\wedge}C(\bar{\eta})\to \Sigma^{0}\;,\quad m'_{4r+3}j'_{V}\colon \Sigma^{8r+2}V'_{2m}\to \Sigma^{0}\;,\\ \alpha'_{-4r}j\colon \Sigma^{-1}SZ/2m\to C(\bar{\alpha}_{4r})\;,\qquad \alpha'_{-4r}j_{V}\colon \Sigma^{-1}V_{2m}\to C(\bar{\alpha}_{4r})\;,\\ \bar{\mu}'_{-4r-1}j\colon \Sigma^{-1}SZ/2m\to C(\bar{\mu}_{4r+1})\;,\qquad \mu'_{-4r-1}j_{V}\colon \Sigma^{-1}V_{2m}\to C(\bar{\mu}_{4r+1})\;,\\ (3.6)\quad a'_{-4r-2}j\colon \Sigma^{-1}SZ/2m\to C(\bar{\alpha}_{4r+2})\;,\qquad a'_{-4r-2}j_{V}\colon \Sigma^{-1}V_{2m}\to C(\bar{\alpha}_{4r+2})\;,\\ m'_{-4r-3}j\colon \Sigma^{-1}SZ/2m\to C(\bar{m}_{4r+3})\;,\qquad m'_{-4r-3}j_{V}\colon \Sigma^{-1}V_{2m}\to C(\bar{m}_{4r+3})\;,\\ b'_{-4r-2}(j_{\wedge}1)\colon \Sigma^{-1}SZ/2m_{\wedge}C(\bar{\eta})\to C(\bar{\alpha}_{4r+2})\;\text{and}\\ b'_{-4r-2}j_{U}\colon \Sigma^{-1}U_{2m}\to C(\bar{\alpha}_{4r+2})\;.$$ Then there hold Spanier-Whitehead dualities as - (3.7) i) $C(f'_t j) = \sum^{2t} DC(if_t)$ and $C(f'_t j_v) = \sum^{2t} DC(i'_v f_t)$ for $f_t = \alpha_{4r}$, μ_{4r+1} or $\alpha'_{4r+2}(r \ge 0)$ where $\alpha'_{4r} = \alpha_{4r}$ and $\alpha''_{4r+2} = \alpha_{4r+2}$. - ii) $C(f'_tj'_v) = \Sigma^{2t}DC(i_vf_t)$ and $C(f'_t(j_\wedge 1)) = \Sigma^{2t}DC((i_\wedge 1)f_t)$ for $f_t = a_{4r+2}$ or $m_{4r+3}(r \ge 0)$. - iii) $C(f'_{-t}j) = \Sigma^1 DC(if_{-t})$ and $C(f'_{-t}j_v) = \Sigma^1 DC(i'_v f_{-t})$ for $f_{-t} = \alpha_{-4r}$, μ_{-4r-1}, a_{-4r-2} or $m_{-4r-3}(r \ge 0)$. - iv) $C(b'_{-4r-2}(j_{\wedge}1)) = \Sigma^1 DC((i_{\wedge}1)b_{-4r-2})$ and $C(b'_{-4r-2}j_{U}) = \Sigma^1 DC(i'_{U}b_{-4r-2})$ $(r \ge 0)$. By making use of Lemma 3.5 we obtain the following result, which is a dual of Propositions 2.3 and 2.5. **Proposition 3.7.** i) For each composite map $f_t j_g(t \ge 0)$ given in (3.5) the cofiber $\Sigma^{-2t}C(f_t j_g)$ satisfies the property $(II_{2m})_t^*$. - ii) For each composite map $f_{-t}j_g(t\geq 0)$ given in (3.6) the cofiber $\Sigma^{-1}C(f_{-t}j_g)$ satisfies the property $(II_{2m})^*_{t}$. - iii) $C(\alpha_{4r}j)$, $\Sigma^{4}C(a_{4r+2}j)$, $C(a'_{4r+2}(j_{\wedge}1))$, $\Sigma^{-1}C(\alpha'_{-4r}j)$, $\Sigma^{-1}C(a'_{-4r-2}j)$ and $\Sigma^{3}C(b'_{-4r-2}(j_{\wedge}1))$ are quasi KO_{*} -equivalent to $\Sigma^{0}\vee\Sigma^{-1}SZ/2m$, and $C(\alpha_{4r}j_{V})$, $\Sigma^{4}C(a_{4r+2}j_{V})$, $C(a'_{4r+2}j'_{V})$, $\Sigma^{-1}C(\alpha'_{-4r}j_{V})$, $\Sigma^{-1}C(a'_{-4r-2}j_{V})$ and $\Sigma^{3}C(b'_{-4r-2}j_{U})$ are quasi KO_{*} -equivalent to $\Sigma^{0}\vee\Sigma^{-1}V_{2m}$. - iv) $C(\mu'_{4r+1}j)$, $\Sigma^4C(\mu'_{4r+1}j_V)$, $\Sigma^4C(m'_{4r+3}j'_V)$, $C(m'_{4r+3}(j_\wedge 1))$, $\Sigma^1C(\mu'_{-4r-1}j)$, $\Sigma^5C(\mu'_{-4r-3}j_V)$,
$\Sigma^1C(m'_{-4r-3}j)$ and $\Sigma^5C(m'_{-4r-3}j_V)$ are all quasi KO_* -equivalent to M'_{2m} . ### 4. K_* -local types of the real projective spaces 4.1. Let RP^n be the real projective *n*-space and X_n denote the suspension spectrum $\Sigma^{-n}SP^2S^n$ whose *n*-th term is the symmetric square SP^2S^n of the *n*-sphere as in [16, §2]. The suspension spectra X_n and RP^n are related by the following commutative diagram (4.1) $$\Sigma^{n} = \Sigma^{n}$$ $$\downarrow \qquad \qquad \downarrow$$ $$RP^{n-1} \to \Sigma^{0} \to X_{n} \to \Sigma^{1}RP^{n-1}$$ $$\downarrow \qquad \qquad \qquad \downarrow$$ $$RP^{n} \to \Sigma^{0} \to X_{n+1} \to \Sigma^{1}RP^{n}$$ $$\downarrow \qquad \qquad \downarrow$$ $$\Sigma^{n+1} = \Sigma^{n+1}$$ involving four cofiber sequences [10]. Their KU-homologies and KU-cohomologies are well known ([1, Theorem 7.3] and [14, Theorem 3.3]): - (4.2) i) $KU_0X_{n+1} \cong Z$ or $Z \oplus Z$ and $KU_{-1}RP^n \cong Z/2^t$ or $Z \oplus Z/2^t$ according as n=2t or 2t+1, and $KU_1X_{n+1}=0=KU_0RP^n$. - ii) $KU^0X_{n+1} \cong Z$ or $Z \oplus Z$ and $KU^{-1}RP^n \cong 0$ or Z according as n is even or odd, and $KU^1X_{n+1} = 0$ and $KU^0RP^n \cong Z/2^t$ when n=2t or 2t+1. We here investigate the behavior of the Adams operation ψ_c^k for X_{n+1} and RP^n . **Lemma 4.1.** i) $X_{n+1} = \sum_{n=1}^{n-1} SP^2 S^{n+1}$ satisfies the property (I) or (II)_{t+1} according as n=2t or 2t+1. ii) $\Sigma^1 RP^n$ satisfies the property (I_{2^t}) or $(II_{2^t})_{t+1}$ according as n=2t or 2t+1. In addition, $\Sigma^1 RP^{\infty}$ satisfies the property $(I_{2^{\infty}})$. Proof. It is sufficient to show that in both KU_0X_{n+1} and $KU_0\sum^1 RP^n$, $\psi_c^k=1$ or $A_{k,t+1}$ according as n=2t or 2t+1. The n=0 case is evident because $X_1=\sum^0$ and $RP^0=\{pt\}$. Assume that $\psi_c^k=1$ in $KU_0X_{2t-1}\cong Z$ and $KU_{-1}RP^{2t-2}\cong Z/2^{t-1}(t\geq 1)$. Consider the commutative diagram $$0 \longrightarrow KU_{0} \Sigma^{0} \longrightarrow KU_{0} X_{2t-1} \longrightarrow KU_{-1} RP^{2t-2} \longrightarrow 0$$ $$0 \longrightarrow KU_{0} \Sigma^{0} \longrightarrow KU_{0} X_{2t} \longrightarrow KU_{-1} RP^{2t-1} \longrightarrow 0$$ $$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$ $$KU_{0} \Sigma^{2t} = KU_{0} \Sigma^{2t}$$ $$\downarrow \qquad \qquad \downarrow$$ $$0 \qquad \qquad 0$$ with exact rows and columns. Then $KU_0X_{2t}\cong KU_0\Sigma^{2t}\oplus KU_0X_{2t-1}\cong Z\oplus Z$ and $KU_{-1}RP^{2t-1}\cong KU_0\Sigma^{2t}\oplus KU_{-1}RP^{2t-2}\cong Z\oplus Z/2^{t-1}$, in both of which ψ_c^k is expressed by a matrix $\binom{1/k^t}{c_{k,t}}$ for some rational number $c_{k,t}$. We here use another commutative diagram with exact rows and columns. Since the right vertical sequence is expressed into the form of $0 \rightarrow Z \rightarrow Z \oplus Z/2^{t-1} \rightarrow Z/2^t \rightarrow 0$, we may regard that the induced homomorphism $h_{2t*}: KU_0 \Sigma^{2t} \rightarrow KU_0 X_{2t}$ is given by $h_{2t*}(1) = (2, 1)$ where $KU_0X_{2t} \simeq KU_0\Sigma^{2t} \oplus KU_0X_{2t-1}$. Since the Adams operation ψ_c^k commutes with h_{2t*} , it is easily computed that $c_{k,t} = 1 - k^t/2k^t$. Thus $\psi_c^k = A_{k,t}$ in both $KU_0X_{2t} \simeq Z \oplus Z$ and $KU_{-1}RP^{2t-1} \simeq Z \oplus Z/2^{t-1}$. Further it is immediate that $\psi_c^k = 1$ in both $KU_0X_{2t+1} \simeq Z$ and $KU_{-1}RP^{2t} \simeq Z/2^t$. As a dual of Lemma 4.1 we have Corollary 4.2. i) The Spanier-Whitehead dual DX_{n+1} satisfies the property (I) or (II)_{-t-1} according as n=2t or 2t+1. Thus $\psi_c^k=1$ or $A_{k,-t-1}$ in $KU^0X_{n+1}\cong Z$ or $Z\oplus Z$ according as n=2t or 2t+1. - ii) The Spanier-Whitehead dual DRP^{2t} satisfies the property (I_{2^t}) and Σ^{-1} DRP^{2t+1} does the property $(II_{2^t})_{i+1}^*$. Thus $\psi_c^k = 1$ in $KU^0RP^{2t} \cong KU^0RP^{2t+1} \cong \mathbb{Z}/2^t$ and $\psi_c^k = k^{t+1}$ in $KU^{-1}RP^{2t+1} \cong \mathbb{Z}$. - **4.2.** In [16, Theorem 2.7] we have determined the quasi KO_* -types of the symmetric square $X_n = \Sigma^{-n} SP^2 S^n$ of the *n*-sphere and the real projective *n*-space RP^n . - **Theorem 4.3.** i) X_{n+1} is quasi KO_* -equivalent to the following elementary spectrum: Σ^0 , $C(\eta)$, Σ^4 , $\Sigma^4 \vee \Sigma^4$, Σ^4 , $C(\eta)$, Σ^0 , $\Sigma^0 \vee \Sigma^0$ according as $n \equiv 0, 1, \dots, 7$ mod 8. - ii) $\Sigma^1 RP^n$ is quasi KO_* -equivalent to the following elementary spectrum: $SZ/2^{4r}$, $M_{2^{4r}}$, $V_{2^{4r+1}}$, $\Sigma^4 \vee V_{2^{4r+1}}$, $V_{2^{4r+2}}$, $M_{2^{4r+2}}$, $SZ/2^{4r+3}$, $\Sigma^0 \vee SZ/2^{4r+3}$ according as n=8r, 8r+1, \cdots , 8r+7. By virtue of Lemma 4.1 we can easily observe the behavior of the Adams operation ψ_R^k for X_{n+1} . In fact, (1.1) and (1.8) i) and iii) assert that the Adams operation ψ_R^k behaves in KO_iX_{n+1} ($0 \le i \le 7$) for each $k \ne 0$ as follows: - (4.3) i) When *n* is even, $\psi_R^k = k^2$ or 1 according as i=4 or otherwise. - ii) When n=4s+1, $\psi_R^k=1$, $1/k^{2s}$, k^2 or $1/k^{2s-2}$ according as i=0, 2, 4 or 6. 382 iii) When n=4s+3, $\psi_R^k=A_{k,2s+2}$, $k^2A_{k,2s+2}$ or 1 according as i=0, 4 or otherwise. By the aid of (4.3) we next observe the behavior of the Adams operation ψ_R^k for RP^n . **Lemma 4.4.** The Adams operation ψ_R^k acts normally in $KO_i\Sigma^1 RP^n (0 \le i \le 7)$ for each $k \ne 0$ as follows: - i) When n is even or infinite, $\psi_R^k = k^2$ or 1 according as i=4 or otherwise. - ii) When n=4s+1, $\psi_R^k=1/k^{2s}$, k^2 , $1/k^{2s-2}$ or 1 according as i=2, 4, 6 or otherwise. - iii) When n=4s+3, $\psi_R^k=A_{k,2s+2}$, $k^2A_{k,2s+2}$ or 1 according as i=0, 4 or otherwise. - Proof. i) In the $n=\infty$ case our result follows from Lemma 4.1 and (1.6). Use the cofiber sequence $\Sigma^0 \to X_{2t+1} \to \Sigma^1 RP^{2t} \to \Sigma^1$ in the n=2t case. Evidently (4.3) i) implies our result except $\psi_R^k = 1$ in $KO_1RP^{8r+6} \cong KO_1RP^{8r+8} \cong Z/2 \oplus Z/2$. As is observed in ii) and iii) below, $\psi_R^k = 1/k^{4r+2}$ in $KO_1RP^{8r+5} \cong Z \oplus Z/2$ and $\psi_R^k = 1$ in $KO_1RP^{8r+7} \cong Z/2 \oplus Z/2 \oplus Z/2$. By means of these results we can easily show the rest of our result. - ii) By Lemma 4.1 and Theorem 4.3 ii) we note that $\Sigma^1 RP^{4s+1}$ satisfies the property $(II_{2^{2s}})_{2s+1}$ and it is quasi KO_* -equivalent to $M_{2^{2s}}$. Our result is immediate from (2.1). - iii) Use the cofiber sequence $\Sigma^0 \to X_{4s+4} \to \Sigma^1 RP^{4s+3} \to \Sigma^1$. Then (4.3) iii) implies immediately our result except $\psi_R^k = 1$ in $KO_1 RP^{8s+7} \cong \mathbb{Z}/2 \oplus \mathbb{Z}/2 \oplus \mathbb{Z}/2$. Consider the commutative diagram $$\begin{array}{cccc} 0 & 0 & \downarrow & \downarrow \\ 0 \rightarrow KO_2X_n \rightarrow KO_1RP^{n-1} \rightarrow KO_1\Sigma^0 \rightarrow 0 \\ \downarrow & \downarrow & || & || \\ 0 \rightarrow KO_2X_{n+1} \rightarrow KO_1RP^n \rightarrow KO_1\Sigma^0 \rightarrow 0 \\ \downarrow & \downarrow & \downarrow \\ KO_1\Sigma^n = KO_1\Sigma^n \\ \downarrow & \downarrow & \downarrow \\ 0 & 0 & 0 \end{array}$$ with n=8r+7. Since $\psi_R^k=1$ in $KO_1RP^{n-1}\cong KO_2X_{n+1}\cong Z/2\oplus Z/2$, a routine computation shows that $\psi_R^k=1$ in $KO_1RP^n\cong Z/2\oplus Z/2\oplus Z/2$ as in the proof of Lemma 2.2. Under the assumption that CW-spectra X and Y are finite, X is quasi KO_* -equivalent to Y if and only if the Spanier-Whitehead dual DY is quasi KO_* -equivalent to DX (see [15, Corollary I.1.6]). Therefore Theorem 4.3 ii) implies that (4.4) the Spanier-Whitehead dual DRP^n is quasi KO_* -equivalent to the following elementary spectrum: $SZ/2^{4r}$, $\Sigma^{-1}M'_{2^{4r}}$, $\Sigma^4V_{2^{4r+1}}$, $\Sigma^5 \vee \Sigma^4V_{2^{4r+1}}$, $\Sigma^4V_{2^{4r+2}}$, $\Sigma^{-1}M'_{2^{4r+2}}$, $SZ/2^{4r+3}$, $\Sigma^1 \vee SZ/2^{4r+3}$ according as n=8r, 8r+1, ..., 8r+7 (cf. [9, Theorem 1]). As a dual of Lemma 4.4 we can easily show **Lemma 4.5.** The Adams operation ψ_R^k acts normally in $KO_i DRP^n \cong KO^{-i}RP^n$ ($0 \le i \le 7$) for each $k \ne 0$ as follows: - i) When n is even, $\psi_R^k = k^2$ or 1 according as i=4 or otherwise. - ii) When n=4s+1, $\psi_R^k=k^{2s+2}$, k^2 , k^{2s+4} or 1 according as i=3, 4, 7 or otherwise. - ii) When n=4s+3, $\psi_R^k=k^{2s+2}$, k^2 , k^{2s+4} or 1 according as i=1, 4, 5 or otherwise. For the Moore spectrum $SZ/2^t$ of type $Z/2^t$ the bottom cell inclusion $i: \Sigma^0 \to SZ/2^t$ and the top cell projection $j: SZ/2^t \to \Sigma^1$ are here written as i_t and j_t with emphasis. Similarly the maps $i_v: C(\bar{\eta}) \to V_{2^t}, j_v: V_{2^t} \to \Sigma^1, i_v': \Sigma^2 \to V_{2^t}'$ and $j_v': V_{2^t}' \to C(\tilde{\eta})$ are written as $i_{v,t}, j_{v,t}, i_{v,t}'$ and $j_{v,t}'$. By virtue of Lemmas 4.1 and 4.4 we may now apply Theorems 1.2, 1.7 and 2.6 with (2.8) to determine the K_* -local types of X_{n+1} and RP^n . - **Theorem 4.6.** i) The symmetric square $X_{n+1} = \Sigma^{-n-1} SP^2 S^{n+1}$ of the n+1-sphere has the same K_* -local type as the following elementary spectrum: Σ^0 , $C(\mu_{4r+1})$, $C(\bar{\eta})$, $C(a_{4r+2})$, $C(\bar{\eta})$, $C(m_{4r+3})$, Σ^0 , $C(\alpha_{4r+4})$ according as n=8r, 8r+1, ..., 8r+7. - ii) The real projective n-space Σ^1RP^n has the same K_* -local type as the following elementary spectrum: $SZ/2^{4r}$, $C(i_{4r}\mu_{4r+1})$, $V_{2^{4r+1}}$, $C(i_{V,4r+1}a_{4r+2})$, $V_{2^{4r+2}}$, $C(i_{V,4r+2}m_{4r+3})$, $SZ/2^{4r+3}$, $C(i_{4r+3}\alpha_{4r+4})$ according as n=8r, 8r+1, ..., 8r+7. In addition, Σ^1RP^∞ has the same K_* -local type as $SZ/2^\infty$. In order to determine the K_* -local type of the Spanier-Whitehead dual DRP^* the following result is useful (cf. [15, Corollary I.1.6]). **Lemma 4.7.** Assume that CW-spectra
X and Y are finite. Then X is quasi S_{K*} -equivalent to Y if and only if the Spanier-Whitehead dual DY is quasi S_{K*} -equivalent to DX. Proof. It is sufficient to show the "only if" part. If X is quasi S_K^* -equivalent to Y, then we get a K_* -equivalence $f\colon Y\to S_{K\wedge}X$. Choose an adjoint map $Df\colon DX\to DY_\wedge S_K$ such that $(1_\wedge e_X)(f_\wedge 1)=(e_{Y\wedge}1)(1_\wedge Df)\colon Y_\wedge DX\to S_K$ where $e_W\colon W_\wedge DW\to \Sigma^0$ denotes the evaluation map for W=X or Y. Consider the diagram $$K_{i}DX \xrightarrow{Df_{*}} K_{i}DY_{\wedge}S_{K} \xleftarrow{\simeq} K_{i}DY$$ $$\downarrow \simeq \qquad \qquad \downarrow \simeq$$ $$K^{-i}X \xleftarrow{\simeq} K^{-i}S_{K\wedge}X \xrightarrow{f^{*}} K^{-i}Y$$ where vertical arrows are the duality isomorphisms. As is easily checked, the above diagram is commutative. Therefore the adjoint map $Df: DX \to DY_{\wedge}S_K$ becomes a K_* -equivalence because $f: Y \to S_{K \wedge} X$ is a K^* -equivalence, too. Thus DY is quasi S_K^* -equivalent to DX. Theorem 4.6 combined with Lemma 4.7, (1.4) and (3.7) implies **Theorem 4.8.** The Spanier-Whitehead dual DRPⁿ of the real projective n-space has the same K_* -local type as the following elementary spectrum: $SZ/2^{4r}$, $\Sigma^{-8r-1}C(\mu'_{4r+1}j_{4r})$, $U_{2^{4r+1}}$, $\Sigma^{-8r-3}C(a'_{4r+2}j'_{V,4r+1})$, $U_{2^{4r+2}}$, $\Sigma^{-8r-5}C(m'_{4r+3}j'_{V,4r+2})$, $SZ/2^{4r+3}$, $\Sigma^{-8r-7}C(\alpha_{4r+4}j_{4r+3})$ according as $n=8r,8r+1,\cdots,8r+7$. #### References - [1] J.F. Adams: Vector fields on spheres, Ann. of Math. 75 (1962), 603-622. - [2] J.F. Adams: On the groups J(X)-IV, Topology 5 (1969), 21-71. - [3] D.W. Anderson: A new cohomology theory, Thesis, Univ. of California, Berkeley, 1964. - [4] S. Araki and H. Toda: Multiplicative structures in mod q cohomology theories I, Osaka J. Math. 2 (1965), 71-115. - [5] A.K. Bousfield: The Boolean algebra of spectra, Comment. Math. Helv. 54 (1979), 368-377. - [6] A.K. Bousfield: The localization of spectra with respect to homology, Topology 18 (1979), 257-281. - [7] A.K. Bousfield: A classification of K-local spectra, J. Pure and Applied Algebra 66 (1990), 121-163. - [8] D.M. Davis and M. Mahowald: Homotopy groups of some mapping telescopes, Annals of Math. Studies, Princeton, 113 (1987), 126-151. - [9] M. Fujii: K_0 -groups of projective spaces, Osaka J. Math. 4 (1967), 141–149. - [10] I.M. James, E. Thomas, H. Toda and G.W. Whitehead: On the symmetric square of an sphere, J. Math. and Mech. 12 (1963), 771-776. - [11] W. Meier: Complex and real K-theory and localization, J. Pure and Applied Algebra 14 (1979), 59-71. - [12] M. Mimura, S. Oka and M. Yasuo: K-theory and the homotopy types of some function spaces, preprint. - [13] D.C. Ravenel: Localization with respect to certain periodic homology theories, Amer. J. Math. 106 (1984), 351-414. - [14] J.J. Ucci: On symmetric maps of spheres, Invent. Math. 5 (1968), 8-18. - [15] Z. Yosimura: Quasi K-homology equivalences, I and II, Osaka J. Math. 27 (1990), - 465-498 and 499-528. - [16] Z. Yosimura: The quasi KO-homology types of the real projective spaces, Proc. Int. Conf. at Kinosaki, Springer-Verlag, 1418 (1990), 156-174. - [17] Z. Yosimura: The quasi KO-homology types of the stunted real projective spaces, J. Math. Soc. Japan 42 (1990), 445-466. - [18] Z. Yosimura: Quasi KO*-equivalences; Wood spectra and Anderson spectra, Math. J. Okayama Univ. 32 (1990), 165-185. - [19] Z. Yosimura: The K_* -localizations of the stunted real projective spaces, preprint. Department of Mathematics Osaka City University Sugimoto, Sumiyoshi-ku Osaka 558, Japan