Kawauchi, A.
Osaka J. Math.
29 (1992), 299-327

ALMOST IDENTICAL IMITATIONS OF (3, I)-
DIMENSIONAL MANIFOLD PAIRS AND
THE BRANCHED COVERINGS

Axkio KAWAUCHI

(Received May 30, 1991)

0. Introduction
By a good (3, 1)-manifold pair (M, L) (or a good 1-manifold L in a 3-manifold

M), we mean that M is a compact connected oriented 3-manifold and L is a
compact proper smooth 1-submanifold of M such that any 2-sphere component
of the boundary 8/ meets L with at least three points. For a compact connect-
ed oriented 3-manifold E, let 9,E be the union of all tori in 8E and 0,E=0E—
9,E. Let int E=E—OE and int) E=E—03,E. A compact connected oriented
3-manifold E is said to be hyperbolic if int E (when 9,E=@) or the double
D (int, E) pasting along 0,E (when 0,E = () has a complete Riemannian structure
of constant curvature —1. Then we define the volume Vol E of E to be the
hyperbolic volume Vol (int E) (when 0,E=() or the half hyperbolic volume
Vol (D (int, E))/2 (when 8,E =), and the dsometry group Isom E of E to be the
hyperbolic isometry group Isom (int E) (when 9,E=@) or the quotient by = of
the following subgroup {f&Isom (D (int, E))| fr=7f} (when 8,E = (@), where 7
denotes the unique isometry of D(int, £) induced from the involution of
D(int, E) interchanging the two copies of int, E (cf. [22]). By Mostow rigidity
theorem (cf. [23], [24]), Vol E is a topological invariant of E and Isom E is a
unique (up to conjugations) finite subgroup of the diffeomorphism group Diff E.
Furthermore, there is a natural isomorphism Isom E=Out 7,(E)=Aut z,(E)/
Inn 7,(E) and for any finite subgroup G of Diff E there is a natural monomorp-
hism G—Out 7,(E), so that G is isomorphic to a subgrpup of IsomE. In a
previous paper [8], for each good (3,1)-manifold pair (M, L), we have construct-
ed an infinite family of almost identical imitations (M, L¥*) of (M, L) such that
the exterior E(L*, M) of L* in M is hyperbolic. In this paper, we shall streng-
then this result from the viewpoint of regular branched coverings.*

DErFINITION: A good (3,1)-manifold pair (M, L) has the hyperbolic cover-
ing property if for any component unions Ly, L, (possibly, @) of L with L;=L—L,,

*) By coverings, we will mean connected coverings.
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any finite regular covering space £(L,, M) of the exterior E(Ly, M) of L, in M
branched along L, is hyperbolic after spherical completion, that is, after adding
a cone over each 2-sphere in 0E(L,, M), where we understand that E(L,, M)=M
when L,=0.

The spherical completion of E(L,, M) is denoted by E (Lgy M)A. The cov-
ering transformation group of E(Lg;, M) acts on E(L,, M), by a natural ex-
tension. Let g¢: (M*,L*)—(M, L) be a normal imitation. For component
unions L;, i=0, 1, (possibly, @) of L with L,=L—L,, let L¥=q¢\(L;),i=0, 1.
Then the imitation map ¢ induces a normal imitation map ¢z: E(L¥, M*)—
E(Ly,, M) by the definition of normal imitation. For any regular covering
p: E(Ly, M)~E(L,, M) branched along L, with covering transformation group
denoted by G, we see from [7, Property IV] that g is a normal imitation map
and p* is a regular covering map branched along L¥ with covering transforma-
tion group G in the following commutative diagram pulling back the covering
map p and the imitation map ¢z:

By, m%) 25 E(L, M)

2| |2

E(LF, M%) 25, B(L,, M).
Since gy is 9-diffeomorphic G-map, we can extend g uniquely to a G-map
@e)n: E(LY, M*)5 — E(Ly, M)
over the spherical completion, which is still a normal imitation map.

DreriNiTION: The covering map p* is the lift of the covering map p (by
the imitation map ¢z). The imitation maps gy and (gz)n are the lift and
spherical completion lift of the imitation map ¢ (by the covering map p), respec-
tively.

The main result of this paper can be stated as follows:

Main Theorem. For any good (3.1)-mainfold pair (M, L), there exists an
infinite family Y of almost identical imitations (M, L*) of (M, L) with hyperbolic
covering property. Further, if we denote the imitation map (M, L*)—(M, L) bv
q, then for any positive number C and any positive integer N, this family can have
the following properties:

(1) There is a number C*>C such that Vol E(L*, M)<C* and

sup(upmeg Vol E(L*, M)=C*,

(2) Let Ly, L, be any component unions (possibly @) of L with L,=L—L,.

For the spherical completion lift (§e)n: E(L¥, M)\—E (L, M) of the
imitation map qz: E(L§, M)—E(L,, M) (induced from q) by any regular
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covering p: E(Ly, M)—E(L,, M) branched along L, with covering trans-
formation group, G, of order<< N, the group G, which is regarded as a
subgroup of Diff E(L¥, M), is isomorphic to Isom Ers, m A In par-
ticular, Isom E(L*, M)={1}. Further, when L,=@¢ (i.e., L,=L), we
can take N= -4 oo,

When L,=@, (2) implies that G is conjugate to Isom E(L¥, M), in Diff £
(LE, M)y, since E(L*, M) is hyperbolic. If we use Thurston’s announcement
result in [23, p. 379], [25] for the case L,#+(@, we see that the isomorphism
G=Isom E(L¥, M), in (2) can be always replaced by the following (2):

(2) G is conjugate to Isom E(L¥, M), in Diff E(L¥, M).

To state a property occurring from our construction, we need the following
definition:

DerINITION:  For a good (3, 1)-manifold pair (M, L), a tangle (i.e., a proper
1-manifold without loop component) ¢ in a 3-ball BCint M is a basic tangle for
(M, L) if t=BNint L and each component of L contains a component of ¢ and ¢
has at least 3 components. The good (3, 1)-manifold pair (M’, L')=(M—int B,
L—int t) is the complement of (B, t).

The imitation map ¢: (M, L*)—(M, L) in Main Theorem has the following
property:

(3) There is a 2-sphere S Cint M which splits the imitation map q: (M, L¥)
—(M, L) into two almost identical imitation maps qz: (B, t*)—(B, t)
and q': (M', L'*)—(M’, L") such that (B, t) is a basic tangle for (M, L)
and (M', L") is the complement, and (B, t*) and (M', L'*) have the hy-
perbolic covering property. Further, we can previously take amy basic
tangle for (M, L) as (B, t).

Before concluding this introduction, we remark that we shall alter the de-
finition of almost identical imitation in [6], [8] into a slightly more improved de-
finition. In §1 we discuss when branched covering spaces of a 3-manifold are
simple and semi-simple. In §2 the improved definition of almost identical
imitation is stated. In §3 we construct an almost identical imitation with hy-
perbolic covering property of a tangle in a 3-ball, which is generalized, in §4,
to a good (3,1)-manifold pair. In §5 we prove Main Theorem. In §6 some
applications are given. This manuscript has been prepared since 1987 and the
present version has been written up during the author’s visit to University of
Melbourne in March-April 1991 under an exchanging program. The author
would like to thank this exchanging program, particularly Professor Junzo Tao,
for making his visit possible and Department of Mathematics, University of
Melbourne, particularly Professor J. Hyam Rubinstein, for various hospitalities.
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1. Basic lemmas for branched coverings. A graph I" in a 3-mani-
fold M is said to be good if the pair (M, T') is obtained from a good (3, 1)-mani-
fold pair (M,, L) by spherical completion associated with some 2-spheres in 9/,
(cf. [8]). For an integer n>3, we denote by v,(T") the set of vertices of T with
degree #n. Let v(I')=U ,23 v,(T).

DEFINITION: A smooth 2-sphere S in int M or in M is an n-pointed sphere
in (M, T) if S meeets I'-v(T") transversly with just » points and S Nv(I")=0.
Further, it is essential if S;=S NE(T, M) is incompressible and non-3-parallel
in the exterior E(T, M) of T in M.

DrFINITION: Let D be a proper disk in M or a disk in 9M. D is an n-
pointed disk in (M, T) if int D meets T'-v(T") transversly with just # points and
DNv(T)=0DNT'=¢@. Further, it is essential if Dy=D N E(T', M) is incompres-
sible and non-8-parallel in E(T, M).

A good graph T" in M is trivial if it is on a smooth proper disk or 2-sphere.
A good graph Y in a 3-ball B is called a trivial Y-graph if | Y N0B| =3 and there
is a diffeomorphism of B sending Y to a cone over the set Y N0B. A good graph
H in a 3-ball B is called a trivial H-graph if the pair (B, H) is diffeomorphic to a
pair obtained from two copies of the pair (B, Y) of a trivial Y-graph Y in B by
identifying the two copies of a 1-pointed disk D in (B, Y) with DC9B.

Lemma 1.1. Let T be a good graph in a 3-manifold M. If a finite regular
covering space M of M branched along T is a 3-manifold, then v, T)=0 for
all n>4. Further, if M is a 3-ball and T is a trivial good tree graph, then M
is a handlebody.

Proof. Let (V,T'NV) be a cone pair over an zn-pointed sphere with >3
in (M,T). Since M is a 3-manifold, the lift of ¥ to M consists of disjoint 3-
balls. By the Riemann/Hurwitz formula (on a regular covering of S?) (cf. Scott
[21]), we have »=3. To see the latter half, we consider a handle decomposition
of M consisting of 0-handles 4} and 1-handles %} such that A} NT is a trivial arc
or trivial Y-graph in A? or @ for each 7, and £ NT is a core of the 1-handle %} or
@ for eachj. Then M has a handle decomposition consisting of 0-handles being
the lifting components of the 4?’s and 1-handles being the lifting components of
the h}’s. Since M is connected, it is a handlebody. This completes the proof.

Let a;,i=1, 2, ---, 7, be disjoint arcs in S*. Let D, be a disk in the interior
of adisk D. For two points p;, p, in int Dy, we consider a link L in the solid torus
S'x D? obtained from the link S*x {p,, p,;} by replacing, in a; X D,, the standard
trivial 2-string tangle a; X {p,, p,} with a trivial (i.e., rational) 2-string tangle for
each 7.
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DerintTioN:  This link L in S*X D is called a Montesinos link in S*X D.
When we identify S*x D with a soild tours V in a lens space M such that V'=
cl (M—V) is a solid torus, we call this link L in M a Montesinos link in M.

In case M=.S®, the Montesinos link L is a link considered by Montesinos

[17].

Lemma 1.2. Let M be a regular covering space of a closed 3-manifold
branched along a good graph T'. If M is an irreducible Seifert manifold and the
exterior E(T", M) is hyperbolic, then we have one of the following:

(1) M has a spherical or Euclidean geometry (i.e., has S° or S*x S*x S as

a finite unbranched regular covering space).

(2) M is a lens space except S* X S* and there is a Montesinos link L in M such
that LCT and L°'=cl(I'—L) is a 1-manifold with at most one loop
component or O, and the covering M—M is the composite of a double
covering M,—M branched along L and a regular covering M—M, bran-
ched along the lift L of L® to M, where M, is a Seifert manifold over S*
with each component of L} a fiber.

Proof. Assume that the Seifert manifold M has no spherical or Euclidean
geometry. 'Then we show that (2) is satisfied. By a result of Meeks/Scott [15],
the covering transformation group G of M preserves the fibers of the Seifert
fibration. Hence G acts on the base space F' of the Seifert manifold /7. If the
orbit space F=F/G is closed, then we see that M= M]|G is a Seifert manifold
over F with T a set of fibers, so that the exterior E(T', M) is a Seifert manifold,
contradicting that it is hyperbolic. Hence F has a boundary. We take a collar
N of any boundary component C in F so that N—C is disjoint from the image
of T" under the natural projection M—F and the images of the points in ¥ re-
presented by the exceptional fibers of M under the projection F—F. Let N be
a connected component of the lift of N in F, which is an orientable surface.
Let Gy={g=G|gN=N}. Then there is an index 2 subgroup G4 of Gy acting
on N orientation-preservingly, so that N/G% is an annulus and the group G/G4
acts on the annulus N/G4 as a reflection in a center circle. Let My be the
Seifert submanifold of M with base space N. Note that the orbit space M} of
My by Gy is a Seifert manifold over the annulus N/G% with action of Gy/G%
orientation and fiber preserving. Let My be the orbit space of My by Gy/G%.
Note that the projection My—>M} is a regular covering branched along a set of
fibers. Let B be the image of the set of fibers in M. Then we see that M)y is
a solid torus and the projection M}—My is a double covering branched along a
Montesions link Ly and B consists of arcs (cf. Dunbar [2]). Let T'y=TNMy
and T=0M,. Since M} is a Seifert manifold over an annulus, meaning that it
is irreducible and 0-irreducible, with the lift of @ a set of fibers and TNT'=0,
the torus T is incompressible in My—Ly and My—T'y. Let Mgy=cl (M—My).
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Using that E(T', M) is hyperbolic, we see that T is compressible or 8-parallel in
E(T, M), so that My is a solid torus with M;NT being @ or a core. This
means that F is a disk and F is an orientable surface. Let G, be the orientation-
preserving index 2 subgroup of G on #. Then F,=F|G, is a 2-sphere and
M|G,=M, is a Seifert manifold over F, and the projection M—>M, is a regular
covering branched along a set of Seifert fibers. Note that the solid torus M
lifts to two solid tori in M, Let L=L,. Then we see that the projection
M,—M is a double covering branched along L and L*=cl (I'—L) is a 1-manifold
with at most one loop component whose lift to M, is a set of fibers (unless it is @).
Further, since some meridian of the solid torus M), lifts to a regular fiber of 14,
M is a lens space except S'x S% This completes the proof.

For a good (3, 1)-manifold pair (M, L), we consider a finite regular covering
space M of M branched along L. Let G be the covering transformation
group. Let pp: M\—>M, be the G-equivariant extension map of the covering
projeation p: M—>M by spherical completion. Let M*=px(M,). Then the
map p, defines a covering p*: M,—M* with covering transformation group G
and with branch set L* obtained from L by adjoining trivial Y-graphs (cf. Lemma
1.1).

DrriNiTION: For #2>3, a good 1-manifold L in a 3-manifold M is n-
prime if there is no essential n-pointed spheres in (M, L).

A 3-manifold E is semi-simple if E is irreducible, 8-irreducible and any
proper annulus in E is inessential (that is, compressible or 0-parallel), and
simple if E is irreducible, 9-irreducible and any torus in int E is inessential (that
is, compressible or 9-paralle). Thurston’s hyperbolization theorem [23] means
that a Haken 3-manifold is hyperbolic if and only if it is simple and semi-
simple.

Lemma 1.3. If a good 1-manifold L in a 3-manifold M is 3-prime and the
exterior E(L, M) is semi-simple, then My is irreducible and 0-irreducible.

Proof. Suppose M, is reducible. Then by the equivariant sphere theorem
(cf. Meeks/Yau [16], Plotnick [19]), M, has a G-equivariant incompressible
sphere S such that F=p*(S) is diffeomorphic to the 2-sphere S? or the projec-
tive plane P? or the disk D? and int F Noy(L*)=@. Let Gi={gEG|gS=S}.
Then F=S/G;. For F=S8% or P? we have m=|FNL*Y|<+4o. Since
E(L*, M*)=E(L, M) is irreducible, we have m=0. For F=S? we have m=2
or 3 by the Riemann/Hurwitz formula. By our assumption, F bounds a 3-ball
B in M* with BN L* a trivial arc or a trivial Y-graph, so that S is compressible
(cf. Lemma 1.1), a contradiction. For F=P? we have m=1 by the Riemann/
Hurwitz formula. Let N be a normal bundle of F in M™*, diffeomorphic to the
projective 3-space P*® with an open 3-ball removed. Since ON—L* N3N is
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incompressible in N—L* NN and N is not a 3-ball, B'=M"—int N is a 3-ball
with L* N B’ a trivial arc by our assumption. Then we have M,=<S° and S is
compressible, a contradiction. When F=<D? we have FNL*D8F and by
Riemann/Hurwitz formula, |FNL*—8F | <1, contradicting that E(L*, M%) is
semi-simple. Hence M, is irreducible. Next, suppose M, is 8-reducible.
Then by the equivariant loop theorem (cf. Meeks/Yau [16]), M, has a G-
equivariant essential disk D. Since E(L*, M™)is 8-irreducible, G,={g=G| gD
=D} is non-trivial. We have F=D|G), is a disk such that F N L* is a point in
int F or an arc in 9F, contradicting that E(L*, M™) is semi-simple. Hence M,
is 0-irreducible. This completes the proof.

DerinITION:  For a good (3, 1)-manifold pair (M, L) such that 9,M con-
sists of 3-pointed spheres and 8,M NL=0, L is 2-semi-prime in M if there is no
essential 2-pointed disk D in M with 9D C 9,M.

Lemma 1.4. For a good (3, 1)-manifold pair (M, L), assume that 0,M
consists of 3-pointed spheres and 9,M N L=@. If the exterior E(L, M) is kyperbolic
(i.e., simple and semi-simple) and L is 3-prime, 4-prime and 2-semi-prime in M,
then we have the following (1), (2) or (3) for any non-trivial finite regular covering
p*: M\—>M" branched along L*:

(1) My is a simple, semi-simple and non-Seifert 3-manifold,

(2) My is a closed Seifert manifold having a spherical or Euclidean geometry,

(3) M is a lens space except S*X S* and there is a Montesinos link L,C L*

with Li=cl (L*—L,) a 1-manifold with at most one loop component or
0 and the covering NM[\—M™ is the composite of a double covering M3—
M* branched along L, and a regular covering My—M3 branched along
the lift (Lg), of L§ to M3 where M3 is a Seifert manifold over S* with
each component of (L§), a fiber. In particular, the exterior E((L§);, M3)
is a Seifert manifold.

RemaRrk 1.5. In (1), M, is hyperbolic by Thurston’s hyperbolization theo-
rem in [23] if it is a Haken manifold. Further, Thurston announces in [23,
p- 379], [25] that a simple, semi-simple non-Seifert manifold with orientation-
preserving non-free periodic map is hyperbolic.

Proof. By Lemma 1.3, M, and, when 8, M, =0, the double D, M, of M),
pasting along 0, M, are irreducible and 0-irreducible. Let G be the covering
transformation group of M,. We prove the folloiwng later:

Assertion 1.4.1. N, has no G-equivariant essential torus or annulus.

We proceed the proof by dividing into two cases.

Case(a): 8, MA=0.
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If M, is neither Seifert nor simple, then M, has a G-equivariant essential
torus, contradicting Assertion 1.4.1, by the torus decomposition theorem due to
Jaco/Shalen and Johannson theorem (cf. [5]) and the equivariant torus theorem
[3]. This imples that M), is either simple, semi-simple and non-Seifert or Sei-
fert, since a simple non-semi-simple 3-manifold is Seifert ([5]). If My is a bound-
ed Seifert manifold, then M,==S*x S'x I, I=[—1, 1], for otherwise M, would
have a G-equivariant essential annulus, contradicting Assertion 1.4.1, by a result
of Kobayashi [12]. We prove the following later:

Assertion 1.4.2. M), is not diffeomorphic to S*x S*x I.

If M, is a closed Seifert manifold and has no spherical or Euclidean geo-
metry, then by Lemma 1.2 we have (3) for (M*, L*).

Case(b): 9, MA=0.

Let Z, be the reflection group of D, M, along 9, M. If D, M, has a
G X Z,-equivariant essential torus, then M, has a G-equivariant essential torus
or annulus, contradicting Assertion 1.4.1. Hence D, M, is either simple, semi-
simple and non-Seifert or Seifert by the torus decomposition theorem [5] and
the equivariant torus decomposition [3]. We show the folloiwng later:

Assertion 1.4.3. D, M, is not a closed Seifert manifold.

If D, M, is a bounded Seifert manifold, then D, M, has a G X Z,-equivariant
essential annulus by [12]. Hence M, has a G-equivariant essential annulus,
contradicting Assertion 1.4.1, because D, M, is not diffeomorphic to S*x S*x I
by 8, Ma=+0. This completes the proof of Lemma 1.4 except for the proofs of
Assertions 1.4.1, 1.4.2 and 1.4.3.

PROOF OF ASSERTION 1.4.1. Suppose M, has a G-equivariant essential
torus T. Let G;={¢€G|gl=T} and F=p*T. Then F=T|G; and int F
NvyL*)=@. When F is a torus, Klein bottle, annulus or Mobius band,
we have int FNL*=@ by the Riemann/Hurwitz formula. Since E(L*, M*)is
simple and semi-simple, such a case can not occur. When F=S? we let m=
[FNL*|. Then m=3 or 4 by the Riemann/Hurwitz formula. Since L is 3-
prime and 4-prime in M, we see that T' is compressible or -parallel in My, a
contradiction. When F=P? we may consider that FC M. Letm=|FNL*|.
By the Riemann/Hurwitz formula, we have m=2. Let N be a normal bundle
of Fin M. Note that 0N is a 4-pointed sphere for (M, L) and ON—L N8N is
incompressible in N—L NN and each component of (p*)™' N is diffeomorphic
to S'xX S'X 1. E=cl(M*—N) is a 3-ball or diffeomorphic to S?x 1. When E is
a 3-ball, ENL™ is a trivial 2-string tangle or a trivial H-graph, so that each
component of (p*)~' E is a solid torus by Lemma 1.1. When E is diffeomorphic
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to S?x I, each component of (p*)~! E is diffeomorphic to S*x S'x I. Thus, M,
must be a lens space or diffeomorphic to S*x S*x I by Lemma 1.3 and T is
compressible or d-paralle, a contradiction. When F is a disk, we have dFCF N
L*. Let m=|FNL*—08F|, which is finite. We can see from the Riemann/
Hurwitz formula that m<2 and for m=2, 9F Nvy(L*)=0@. The case m<1 does
not occur since E(L, M) is semi-simple. If m=2, then we consider a 3-ball
neighborhood N of F which is a bicollar of a disk F* with FCint F*. Then 0N
is a 4-pointed sphere for (3, L) and @N—L N3N is incompressible in N—L NN
and each component of (p*)™' N is diffeomorphic to S'x S*xI. By the same
reason as that of the case F=P? M, is a lens space or S'XS'XI and T is
compressible or 0-parallel, a contradiction. Thus, we see that M, has no G-
equivariant essential torus. Next, suppose that M, has a G-equivariant essential
annulus 4. Let G,={g=G|gA=A4} and F=p* A. Then F=A4|G, and
(int FU p*(84)) Nvs(LT)=@. By the Riemann/Hurwitz theorem, when F is a
disk with p*(84) a union of two disjoint arcs, annulus or Mobius band, FNL*
has no isolated point, and when F is a disk with p*(84) an arc, F N L* has just
one isolated point. These cases can not occur by the semi-simpleness of
E(L*, M*)=E(L, M). Thus, F is a disk with p*(04)=8F. Then FNvyL")
=@and |[FNL*|=2. Since L is 2-semi-prime in M, 0F must be in a 3-pointed
sphere component S of dM™*. Hence 0F bounds an n(<1)-pointed disk D in
S. Since each component of (p*)™' D must be a disk, we see that 4 is com-
pressible in M, a contradiction. This completes the proof of Assertion 1.4.1.

PROOF of ASSERTION 1.4.2. Suppose M,==S"x S'xI. If all elements of G
preserve the components of 00, we see from a result of Bonahon/Siebenmann
in [1] that (M™*, L*)==(S*x S'x I, @) or (S?% 3 or 4 points) X I, which contradicts
the semi-simpleness of E(L, M). If an element of G changes the components
of dM,, then M* is the orbit space of S*XS'X I or S?*xI by an involution
changing the boundary components, which is diffeomorphic to S'x D? or the 3-
ball B’ respectively. When M*==S'X D? we see that (M*, L*)=(M, L) and
L is alink. Considering a minimal intersection of L with meridian disks for M,
we see from the Z,-equivariant loop theorem [16] that there is a meridian disk
D for M with |[DNL|=2. Let(M’,L")be a (3, 1)-manifold pair obtained from
(M, L) by splitting along D. Then M’ is a 3-ball and since the double covering
space of M branched along L is S'X.S'X I, we see that the double covering
space of M’ branched along L’ is a solid torus. This mens that (M, L)==
(D, 2 points) X S'.  This contradicts that E(L, M) is semi-simple. When M*=
B*, we note that L™ is a union of a circle and the orbit space of {3 or 4 points}
xI(cS?xI). Since E({3 or 4 points} xI, S?x 1) is a handlebody, we see
from the Z,-equivariant loop theorem [16] that E(L*, M*)=E(L, M) has an es-
sential disk or an annulus, contradicting the semi-simpleness. This completes
the proof of Assertion 1.4.2.
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PrOOF OF ASSERTION 1.4.3. Suppose D; M), is a closed Seifert manifold.
We let (DM, DL*) be the double of (M*, L*) pasting along (0M™*, L* NOM™).
By Myers gluing lemma (cf. [8]), E(DL*, DM*) is hyperbolic. Since 8; M=,
D, M, can not have any spherical or Euclidean geometry. By Lemma 1.2, the
base space of the Seifert manifold D, M, is orientable, and by [5, VI.34] M,
is a trivial I-bundle FXxI over a closed orientable connected surface F of
genus >2. Moreover, G preserves this I-boundle structure, because G X Z, pre-
serves the fibers of the Seifert manifold D; M, by [15]. By Lemma 1.2, DM*
is a lens space except S' X S? so that M* is a 3-ball. Further, there is an index 2
subgroup G, of G preserving each component of dM, such that the orbit space
M\/G,=M3 is a trivial I-bundle over S? with a line-fiber preserving action of
G|G, and the projeation M,—M73 is a covering branched along three or more
line-fibers. Let E be a G/G,-invariant compact exterior of these line-fibers in
M3, which is a handlebody. By the equivariant loop theorem [16], E(L*, M*)
has an essential disk or an annulus. This completes the proof of Assertion 1.4.3.

The following lemma is useful to construct a tangle with hyperbolic cover-
ing property:

Lemma 1.6. An 7(>3)-string tangle t in a 3-ball B has the hyperbolic
covering property if the exterior E(t, B) and the double covering space B(t), branch-
ed along t are hyperbolic.

Proof. For any component union #'(#0) of ¢ and ¢”=t—1¢', let (M, L) be
the double of (E(t”, B), t"). Note that E(L, M) is hyperbolic by Myers gluing
lemma. Since each component of L is a null-homologous loop in M, L is 3-
prime in M. To see that L is 4-prime in M, suppose there is an essential 4-
pointed sphere for (M, L). Then there is an essential 4-pointed sphere for (B, t)
or an essential #(<2)-pointed disk D for (B, t) with 0D CdB—0t, contradicting
that B(z), is hyperbolic. If there is an essential 2-pointed disk D for (M, L)
with 9D a component of L, then there is an essential 4-pointed sphere for (M, L),
contradicting the 4-primeness of L in M. Let M be the double of any finite
regular covering space of E(t”, B) branched along #' which is a finite regular
covering space of M branched along L. We apply Lemma 1.4 to M(=M),).
Since the surface F=9E(¢”, B) lifts to an incompressible surface in M each
component of which is of genus >2 by the Riemann/Hurwitz formula and B(¢),
is hyperbolic, we see from Lemma 1.4 that M is hyperbolic. Using that E(z, B)
is hyperbolic, we conclude that (B, t) has the hyperbolic covering property.
This completes the proof.

Here is a criterion for a link in S® to have the hyperbolic covering pro-
perty:
Lemma 1.7. If the double covering space S3 of S* branched along a link
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L is hyperbolic and there is a closed connected surface F in S*, disjoint from or trans-
verse to L such that a component, F, of the lift of F to S} is incompressible, then
(S®, L) has the hyperbolic covering property.

Proof. By [4, Corollary 2.1], the hyperbolicity of S3 means that E(L, S°)
is hyperbolic. Let L,, L, be any component unions of L with L;=L—L, Itis
an easy exercise that L, is 3-prime, 4-prime and 2-semiprime in E,=E(L,, S°).
Then by Lemma 1.4 all finite regular covering spaces E, of E, branched along
L, are hyperbolic unless L,=9, i.e., E,=S® Let S° be any finite regular cover-
ing space of S° branched along L. Let F be a component of the lift of F to S°.
Since S} is hyperbolic, the genus of F,is >2, so that the genus of F' is >2 by
the Riemann/Hurwitz formula. Suppose F is compressible in S3. By the
equivariant loop theorem, there is a compression disk D for F in $°, equivariant
under the covering transformation group of $°. Note that the image, D of D
under the covering $°—S° is a disk such that DN L is ) or one point in int D or
an arc in 0D. This means that the lift of D to S3 gives a compression disk for
F,in S3, a contradiction. Thus, Fis incompressible in Se. Using further that
any E, with L,%@ is hyperbolic, we see from Lemma 1.4 and Thurston’s
hyperbolization theorem that S° is hyperbolic. This completes the proof.

2. A slight alteration of the notion of almost identical imitation.
Let I=[—1,1]. For a (3, 1)-manifold pair (M, L), a reflection o in (M, L)x I
is standard if a(x, t)=(x, —t) for all (x, £)EM X I, and normal if a(x, t)=(x, —1)
for all (x,2)€8(M xI)U U, X1 for a neighborhood U, of L in M. The term
‘a(x, t)’ in [8, p.744 line 25] should be reas as ‘(x, ¢)’, which is a typographical
error. A reflection ¢ in (M, L)X I is said to be isotopically standard if hah™ is
the standard reflection in (M, L)x I for an hEDiff, (M, L)x I, rel 0(M x I)N
U, xI) for a neghborhood U, of L in M. The term ‘reld(MxI)U U, xTI’
stated here has been written as ‘rel ((M, L)X I)’ in [8, p.744 line 27] and only
this point is our alteration. For a good (3, 1)-manifold pair (M, L), a reflection
a in (M, L)X I is said to be isotopically almost standard if o is isotopically stand-
ard in (M, L—a)x I for each connected component a of L. The letter ‘¢’ in
[8, p.744 line 29] should be read as ‘a’, a typographical error. A smooth embed-
ding ¢ from a (3,1)-manifold pair (M*, L*) to (M, L)xI with ¢(M*, L¥)=
Fix (e, (M, L)X I) is called a reflector of a reflection o in (M, L)X I. (M*, L¥*)
is an imitation (or a normal imitation, respectively) of (M, L) if there is a reflector
¢: (M*, L*)—(M, L) x I of a reflection (or a normal reflection, respectively) a in
(M, L)x 1, and the composite

g=ne: (M*,L*)i(M,L)Xl‘ﬂ(M,L)

is the imitation map, where p, denotes the projection to the first factor.
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DerFINITION. A (3, 1)-manifold pair (M*, L¥) is an almost identical imita-
tion of a good (3, 1)-manifold pair (M, L) if there is a reflector ¢: (M*, L*)—
(M, LYx I of an isotopically almost standard normal reflection e in (M, L)X 1,
and the composite g=p, ¢: (M*, L*)—(M, L) is the imitation map.

In this definition, (M*, L*) is also a good (3, 1)-manifold pair and ¢ gives
a diffeomorphism from a neighborhood U;« of L* in M* onto a neighborhood
U, of L in M. For any components a*, a of L* L with g(a*)=a, there are
neighborhoods Uj«_, Uy -, of L*—a*, L—a in M*, M, respectively, such that
the restriction of g to (M*, U._,«)—(M, U;_,) is homotopic to a diffeomorphism
by a homotopy relative to 9M* U Ups_,+. By identifying M* with M so that
q|0M is the identity on M, we denote any almost identical imitation of (M, L)
by (M, L*). Note that if (M, L*) is an almost identical imitation of (M, L)
and (M, L**) is an almost identical imitation of (M, L*), then (M, L**) is an
almost identical imitation of (M, L) (cf. {7, Prop. 2.1]).

Proposition 2.1. Al results of [8] on almost identical imitations still hold
under the above definition of almost identical imitation.

Proof. It suffices to prove Lemma 5.5 of [8] when we use the term ‘isoto-
pically standard ’in the present sense. We show the assertion that the reflection
ap in (BN, T9)xI extending o, defined in [8, p.755 line 24] is isotopically
standard in the present sense. Then a; must be normal, and our proof will be
completed because we can take this @; as « in [8, Lemma 5.5] with the term
‘isotopically standard’ used in the present sense. To show this assertion, note
that g appearing in [8, p.755 line 7] is in Diffy(B/X 1, rel (BNXI)U Upn yprn)
for a neighborhood U, a of FAUF'Nin BANX1. This implies that

Bt =d b fdN T =dhg f g F@T
belongs to Diffy(B"x I, rel Uryp ;U 8(B"x I)) for a neighborhood Uzp; of T4 %
Iin BAxI. Since af'=d" h™* af k(d")™' and f, d" are af*-invariant, we see that
(h¥) " at h¥ = ot
Thus, af is isotopically standard. This completes the proof.

For the remaineder of this paper, we will adopt the present definition of
almost identical imitation.

3. A construction of an almost identical imitation with hyperbolic
covering property of a trivial tangle. We consider an almost identical
imitation ¢: (B, t*)—(B, t) such that ¢ is a trivial tangle in a 3-ball B with strings
a;,i=1, -+, r, and ¢|dB=the identity and E(t*, B) is hyperbolic (cf. [8]). Let
a¥=q Y(a;),i=1,2, -, 7. We consider a smooth embeddeing f from the dis-
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joint union U}, IXI; of r copies IX 1;,i=1,2, -, 7, of IXI, I=[—1, 1], to B
such that f(Ix 1;)=a; and f(Ix I;) N8B=f((3)x I;). Then we call the tangle,
¢/, in B with strings a/=f(Ix(—1),),1=1,2, -+, 7, a parallel tangle of t on the
support P=U7i., P, P,=f(IxI). Let U*, U be open neighborhoods of ¢*, ¢
in B such that ¢"(U)=U* and ¢q|U*: U*—U is a diffeomorphism. We as-
sume that PCU. Let P*=g (P),t'*=q\(t'),al*=q(al),i=1,2, -, 7.
We illustrate a figure of the trivial tangle zU¢’ in B in Fig. 1. Let F be a disk
in 0B containing 8a; and just one point of da; for all 7, as it is indicated in Fig.
1. Let N, N’ be disjoint tubular neighborhoods of ¢, ¢’ in U, respectively, and
N*=¢ ' N,N*=¢"'N'. Let Fg=cl(F—FN(N*UN"*)), a disk with 3r open
disks removed, and E*=E(t*Ut'*, B)=cl (B—(N*UN’¥)) and Fi=cl (0E*—
F;), a disk with 7 open disks removed.

Lemma 3.1. For 7(>3), we have the following:

(1) E* is irreducible and Fy, F5 are incompressible in E *,

(2) E* has no incompressible torus,

(3) There is no essential annulus A in E* with 0A N0Fz=0,

(4) There is no essential disk D in E* with 8D N\ Fy one arc,

(5) There is no essential 4-pointed sphere for (B, t* Ut'¥),

(6) There is no essential 2-pointed disk D for (B, t* U t'"*) with 0D N 0Fz=,
(7) There is no essential 1-pointed disk D for (B, t* U t'*).

ReMARK 3.2. The conditions (1)-(4) show that (E*, Fy) has Property B’ of
[18], but the support ¥ for the parallel string a* of the string af gives a non-
9-parallel proper disk D¥ C E* with 0D¥ N Fy a union of two disjoint arcs and
hence (E*, Fy) does not have Property C’ of [18]. 'This makes more or less our
argument complicated.

RemARK 3.3. Let E be a compact connected oriented 3-manifold and F, a
compact surface in 9E. In the arguments of [18], the following is a good exer-
cise: (E, F) has Property C’ if and only if the double Dy E of E pasting along F
is simple and semi-simple (so that D E is hyperbolic by Thurston’s hyperboliza-
tion theorem).

Proor oF LEMMA 3.1. We use that the manifold obtained from E* by
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removing open collars of the proper disks D¥f C E*,i=1,2, :--,r, in Remark 3.2
is diffeomorphic to the hyperbolic manifold E(t*, B). We can remove isotopically
the interseations of the disks D¥ with a sphere in int E*, a disk DC E* such that
0DCF; and a torus in int E*. Hence we have (1) and (2) (The incompres-
sibility of Fj is clear). For (3), suppose there is an essential annulus 4 in E*
with 0AN8F,=@. If 0ANFz+@ and 0ANF5+0, then we see from the
hyperbolicity of E(¢*, B) and E(¢'*, B) that A splits B into two regions B, B
such that either B,D#* B4 Dt'* or B} is a tubular neighborhood of a com-
ponent a¥ of #* in B with B)Dt#'* and B,Dt*—a¥. In this latter case,
we obtain a new essential annulus A’ in E* with 804'Cint Fy such that
B, Dt* B4 Dt'* by sliding the loop 04 NF along a tube in 0E* around a¥.
If A Cint Fp, then A also splits B into two regions B,, B} such that B, Dt
B/ Dt’* by the hyperbolicity of E(¢*, B). Suppose there is an essential annulus
Ain E* with 0AN0Fz=0, B,DOt* and B} Dt'*. Then since Fyz and F§ are
incompressible in E*, it follows that after an isotopic deformation of A, the
intersection 4 N * consists of proper arcs connecting the two loops in 84 and
each circle in 04 intersects each arc of 0D¥ N Fz with an odd number of points
transversely. This means that E(¢*, B) has an essential disk, a contradiction.
This proves (3). For (4) suppose there is an essential disk DC E* with 0D N Fy
one arc. 0D can not meet any tube COE* around any a*, since E(¢'*, B) is
hyperbolic. 9D can not also meet any tube C E* around any a¥ with an arc,
since E(t*, B) is hyperbolic. If D meets a tube CE* around some af with
two disjoint arcs, D must be 9-parallel by (3), a contradiction. This proves (4).
If there is an essential 4-pointed sphere S in (B, t* U #'*), then we consider the
intersection S N P*. After an isotopic deformation of S in (B, t*U ¢'*), the 3-
ball Bs bounded by S in B meets * with one improper disk or two disjoint
improper disks. If BsN P* has two disks, then S is not essential, a contradic-
tion. If BsN%* has one disk and S meets only one component of #*U #¥,
then S is not also essential. Thus, S must meet a¥ and a/* for some 7 so that
BsNP¥ is adisk. Since a¥ is a trivial arc in B, we see that Bs N (a¥Ua/*)is a
trivial tangle in Bs, contradicting that S is essential. This proves (5). (6) is
also proved by a similar method except a possibility of the existence of a 2-
pointed essential disk D for (B, t*U#*) such that 8DCF and D meets two
components a¥, a¥(i= j) of t*, and #'* is contained in the 3-ball B,C B, sur-
rounded by D and a disk in F. Such a disk D does not also exist by the reason
that for the complement E; ; of t*U#*—(a¥Ua¥) in B, FNE, ; is still incom-
pressible in E;; and D would be a compressible disk in E; for r>3.
This proves (6). For (7), suppose there is an essential 1-pointed disk D for
(B, t*Ut'*). Let a} be the component of #* U #'* meeting D. Since the tangle
t*U ¢"*—aj is still a non-separable tangle in B, there is a 3-ball B,, surrounded
by D and a disk in 3B, such that B, N (t*U#*)=B,Na} and it is a 1-string
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tangle in B,. Since a¥ is a trivial arc in B, B, Naj} is a trivial tangle in B, and
D is 0-paralle, a contradiction. This proves (7). We complete the proof of
Lemma 3.1.

Using the normal imitation g¢: (B, t*U #*)—(B, tUt’) and the disk FC9B,
we prove the following:

Lemma 3.4. For an r(>3)-string trivial tangle t in a 3-ball B, there is an
almost identical imitation q: (B, t*)— (B, t) with (B, t*) hyperbolic covering
property.

Proof. Let g: (B, ¥ U#'*)—>(B, fU¥’) be another copy of g: (B, t*U#'*)
—(B,tUt"). Let F be the copy of F in 9B. By identifying F with F as it is
indicated in Fig. 2, we have an r-string trivial tangle ¢, with strings &;=a; UaiU
a!Ua, i=1,2, -, r, in the 3-ball B,=BU B.

by by b,

ay a a,

B
a'y a', a',
m /\ - sz
&,l 5/2 a/r

B

&l a2 ‘—lr

Fig. 2

Then ¢ and 7 define an almost identical imitation g;: (By, t§)—>(Bs, #;). Let
b¥=g7'(b)=afUa*Ual*Ua¥t,i=1,2,,7. We denote the disk F°(CdB) by
F,. Let q;: (B, t§)—(Bu, t;) be an almost identical imitation obtained from two
copies of g;: (Bs, tf)—(Bs, t;) by taking the double pasting along the disk F;.
Clearly, ¢, is an r-string trivial tangle. We show that (B,, tf) has the hyperbolic
covering property. Let Ef=E(tf, By), Fi =E(t¥, By) N F,. We may consider
that E¥=E(tf, B,) is the double of E¥ pasing along F§. Clearly, E¥, E¥ are
irreducible. If there is an essential disk DC E¥, then by Lemma 3.1 (1) the
intersection D N Fy, where Fz=F N E¥, consists of proper arcs after an isotopic
deformation of D, which contradicts Lemma 3.1 (4). Hence E¥ is 8-irreducible.
Since F is incompressible in E¥, E¥f is also 0-irreducible. By Lemma 3.1 (1),
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(2), (3), E¥ has no essential torus and no essential annulus 4 with 4 N8F; =,
so that Ef has no essential torus. By the same reason, Ef has no essential an-
nulus 4 with 84 N0Ff=@. Since E¥ is 0-irreducible, we see from this obser-
vation and an argument on the intersection of F; and a proper annulus 4 in E¥
that E¥ has no essential annulus. Thus, E¥ is hyperbolic by Thurston’s hyper-
bolization theorem [23]. Next, we can see from Lemma 3.1 (4), (5), (6), (7) that
(Bs, t¥) has no essential 4-pointed spheres and no essential 2-pointed disk and
no essential 1-pointed disk. It is similar for (B, tf). Then the double (M, L)
of (By, t¥) is 4-prime. Since M=S° (M, L) is 3-prime. By Myers gluing
lemma [8, Lemma 5.3], E(L, M) is hyperbolic. Let M, be the double covering
space of M branched along L. Since by Lemma 1.3 the 2-sphere 3B, lifts to a
closed incompressible surface of genus r—1(=>2) in M,, we see that M, is not a
Seifert manifold over S? (cf. [5, VI.3.4]). By Lemma 1.4, M, is hyperbolic.
Hence the double covering space (B,), of B; branched along #f is hyperbolic.
By Lemma 1.6, (B,, tf) has the hyperbolic covering property. This completes
the proof.

4. The existence of an almost identical imitation with hyperbo-
lic covering property of a good (3, 1)-manifold pair.

Lemma 4.1. Let (M, L) be a good (3, 1)-manifold pair such that 0M has
no 3-pointed spheres. Then there is an almost identical imitation (M, L*) with
hyperbolic covering property of (M, L).

Proof. We can obtain the 3-manifold M from two handlebodies H,,i=
1,2, of the same genus g by pasting two compact connected surfaces F; C0H,
such that for each 7,

(1) Fi=cl(0H;—F;,) is a planar surface,

(2) t;=LNH,is a trivial s;-tangle in H; with g-+s,>3,

(3) Any component of L meets both H, and H,,

(4) Any disk component of F§{ necessarily meets at least two strings of ¢,.

Our assumption that 91/ has no 3-pointed spheres needs for (4). Since
H; is the exterior of a trivial g-tangle in a 3-ball, we obtain from (2) and Lemma
3.4 an almost identical imitation (H,, t¥) with hyperbolic covering property of
(H;,t;). By (3), the imitation maps g;: (H;, t¥)—(H,, t;),i=1, 2, define an al-
most identical imitation map ¢: (M, L*)—(M, L) with L*=#fUtf. We show
that (M, L*) has the hyperbolic covering property. For any component unions
L¥, L¥ of L* with L¥=L*—L¥, let E=E(L¥, M), E;=ENH; and FF=ENF.,.
Let E be a finite regular covering space of E branched along L¥, and E, FF,
the lifts of E;, F?, respectively. Each component of E; is hyperbolic by the
hyperbolic covering property of (H;,#¥). By (1), (2) and (3), F'¥ has no disk,
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annulus, torus component. By (4), (F¥)°=0E-int F'¥ has no disk components.
Then we see from Myers gluing lemma that E is hyperbolic. This completes
the proof.

Let an arc « be in S%. Regarding S? as the 3-fold cyclic covering space of
S? branched along da, we obtain three arcs a;, =1, 2, 3, in S? as the lift of a.
These arcs divide S? into three disks D;,7=1,2,3. Let R=S82x1I, R,=D,; X1,
i=1,2,3,and I=[—1,1]. Let b;=p, X I for a point p; in int D, for each 7 and
I be an r(>3)-component proper 1-manifold in R without loop component and
with 8/C S?x 1 so that /,=IN R, and b;,i=1, 2, 3, are illustrated in Fig. 3. Let
t=Ui10;.

Lemma 4.2. There is a normal reflection o in (R, U t;) X I such that

(1) For each component a of 1, the restriction of the reflection a to (R, (I—a)
U ty) X I is isotopically standard,

(2) Fix(a, (R, IUt)xT)= (R, I*Utf) and the double (W,LUt¥) of
(R, I*U tf) pasting along S*X 1N (R, I* U tf) has the hyperbolic covering

property.
L
N
/ S
/! / 1
|
_ by I by | X
T o ! - '
/‘ \ b3 \
. / \ \
. \ \ \
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1l I
R, R, R,

Fig. 3

Proof. First we take an isotopically almost standard reflection af in (R;, [;)
x I such that Fix (af, (R;, I;)x I)=2(R;, I{) has the hyperbolic covering property
and the restriction of &/ to a boundary collar of R, X I is the standard reflection.
By taking the point p; close to D;, &/ is also a normal reflection in (R;, /; U b;) X I
with Fix (af, (R;, ;Ub;)xI)==(R;, l/Ub,). Next taking an almost identical imi-
tation (R;, I} U b¥) with hyperbolic covering property of (R;, [ Ub;), we have a
normal reflection a; in (R;, [;Ub;) x I with Fix (a;, (R;, 1} U b)) x I)==(R;, I¥ U b¥)
such that the restriction of «; to (R;, (/;—a;) Ub;) X I for any component ¢; in [;
is isotopically standard. The normal reflections ¢, i=1, 2, 3, constitute a nor-
mal reflection « in (R, [Ut,)x I with property (1). Let I¥=I§Ut}. We show
that (W, I*) has the hyperbolic covering property. Let S be any 3-pointed
sphere in (W, I*). Since each component of /i is a null-homologous loop in W
and hence intersects S in even points, S must intersect a component of #f in
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odd points. Then we see that S intersects each component of #§ in just one
point and does not intersect /. Using that (W, /#) has the hyperbolic cover-
ing property by Myers gluing lemma and (W, t§)=2(S?% 3 points) X I, we con-
clude that S is 0-parallel in E(l*, W) and (W, I*) is 3-prime. Let S be any
4-pointed sphere in (W, I¥). Then some component b3 of # does not meet S.
Note that the double covering space of E(bj%, W) branched along /*—»bif is hy-
perbolic by the hyperbolic covering property of (R;, ¥ Ub¥) and Myers gluing
lemma. Hence S is not essential and (W, I¥) is 4-prime. Next, we show the
following:

(8) There is no disk D in W such that D is a component of I} and int D
meets I transversally with 2 points.

To see (#), suppose there is such a disk D. We consider D in W,=S>.
Since /¥ is an (almost identical) link imitation of a trivial link, the linking num-
ber of any two components of /# in S®is 0. By Myers gluing lemma, note that
(83, I#%) has the hyperbolic covering property. Then int D must intersect only
one component of /# with 2 points. The double covering space E, of the exterior
E=E(dD, S®) branched along /##—9D is hyperbolic with boundary of two torus
components. Since D'=D N E lifts to an annulus 4 in E, spanning the two com-
ponents of 9E,, which contradicts the hyperbolicity of E,. This establishes

#).

Let ¥, I¥ be any component unions of /¥ with [¥=I¥—I§. Let Ef=
E(I§, W). By the 3-primeness and 4-primeness of /¥ in W and (§), I¥ is 3-
prime, 4-prime and 2-semi-prime in E§. Note that E(/¥, W) is hyperbolic by
the hyperbolic covering property of (R;, ¥ U b¥) and Myers gluing lemma. We
show that for any finite regular covering space E¥ of E¥ branched along /¥, the
spherical completion (E¥), is hyperbolic. It is obvious when lf=@. Let
I¥=@. Then we can apply Lemma 1.4 to (E¥),. By Lemma 1.3, note that
(E¥), is a Haken manifold with an incompressible surface lifting S? N E¥, whose
component is not diffeomorphic to any sphere, disk, torus or annulus. By this
reason the case (2) of Lemma 1.4 does not occur. If (3) of Lemma 1.4 occurs,
then for some /, containing a component of ¢, the double covering space of E¥
branched along /¥ must be a Seifert manifold. But it is hyperbolic by the hy-
perbolic covering property of (R;, I¥ Ub¥) and Myers gluing lemma, which is a
contradiction. Thus, (E¥), is hyperbolic and (W, I*) has the hyperbolic cover-
ing property. This completes the proof.

Lemma 4.3. For any good (3, 1)-manifold pair (M, L) there is an almost
identical imitation (M, L*) with hyperbolic covering property of (M, L).

Proof. By Lemma 4.1 we may consider that 8]/ has 3-pointed spheres.
Let S;,j=1, 2, ---, k, be the 3-pointed spheres in 9M. For each j, we choose a



ImrtTaTiONs AND BRANCHED COVERINGS 317

boundary collar N; of S; in M so that (N;, L;) with L,=N N L is diffeomorphic
to (R, [Ut,) appearing in Lemma 4.2 with some >3 and each component of L
contains a component of L; not meeting S;. Let M'=cl(M—U}%., N;) and
L'=LNM’'. By Lemma 4.1., we have an almost identical imitation (3’, L'¥*)
with hyperbolic covering property of (M’, L’). We also have a normal imitation
(N,, L¥) of (N, L,) corresponding to (R, I*U tf) in Lemma 4.2. Then we have
an almost identical imitation (M, L*) of (M, L) with L¥=L'*U (U%., L¥). Let
(L*)o, (L*); be any component unions of L* with (L¥),=L*—(L*),. Let (L'*);
=L"*N(L*),, (L¥),=L¥ N (L*);, i=0,1. We denote by E, E’, E; the exteriors
of (L¥*),, (L’*)o, (L¥)o in M, M’, N,, respectively. Let S /=0N,—S, and F;=
S,NE,. Let Ebe a finite regular covering space of E branched along (L*)1, and
E' E, F be the lifts of E', E, F to E, respectively. By Lemmas 4.1 and 4.2
(2), (E' U L F), (UA(E, ),\, *_.1 F;) have the property C’ of [18] (cf. Remark
3.3). Hence by the original Myers gluing lemma in [18], the spherical comple-
tion E, of E is hyperbolic. This completes the proof.

5. Proof of Main Theorem. The following shows that for any given
good (3, 1)-manifold pair, there exist infinitely many almost identical imitations
of it with hyperbolic covering property and with mutually non-diffeomorphic
exteriors.

Lemma 5.1. Let (M, L) be a good (3, 1)-manifold pair. For any positive
real number C, there are a positive number C*>C and an infinite family Y of al-
most identical imitations (M, L*) with hyperbolic covering property of (M, L) such
that

Vol E(L*, M)<C* and sup VolE(L* M)=
(MLYEF

Proof. Let (B, t) be a basic tangle in (M, L) with complement (M’, L’).
Let O" be an m-component trivial link in int B—L. Let (B,#*UO") and
(M’, L'*) be almost identical imitations with hyperbolic covering property of
(B,tUO") and (M', L'), respectively. Then these imitations define a normal
imitation (M, L*U O") of (M, LU O"), where L¥=t*UL’*. By Myers gluing
lemma, (M, L*U O") has the hyperbolic covering property. By taking the 1/m-
Dehn surgery of B and M along each component of O", the imitations
(B, t*UO"—(B, tU 0", (M, L*U O"—(M, L U O") induce almost identical imi-
tations (B, t5)—(B, t), (M, L¥)—(M, L), respectively. By an argument of
[8, §5], there is an n with Vol E(L*U O", M)>C which we denote by C*, and
fixing such an n, we have a positive integer m, such that for all m>m,, E(L%, M)
is hyperbolic with Vol E(L%, M)<C™* and sup,zm, Vol E(L%, M)=C*. If we
take m, as a further large number, E(#f, B) and the double branched covering
space B(t%); of B branched along #f are hyperbolic for all m>m, By Lemma
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1.6, (B, t¥) has the hyperbolic covering property for all such m. By Myers glu-
ing lemma, (M, L¥) has the hyperbolic covering property for all such m. This
completes the proof.

The following lemma is similar to Kojima’s Lemma in [13, Lemma 5.2]:

Lemma 5.2. Let E be a hyperbolic 3-manifold with a torus boundary com-
ponet T and E;=EU ; S'X D? be the adjunction 3-manifold by a diffeomorphism
f: S'x8D*—T. Then E; has no orientation-reversing diffeomorphism except f
such that f(pxdD?), pES', represents a finite number of homology classes of H,
(T,2).

Proof. Since Isom E is finite, there are only finitely many (up to isotopies)
orientation-reversing self-diffeomorphisms g; of E, i=1, 2, -+-, r, such that g(T)
=T and g;x(e;)=¢; ¢;, & =1, for some indivisible element ¢, EH(T; Z). Take
an element e/ of H(T'; Z) so that {e,, e/} forms a basis for H(T'; Z) with inter-
section number Int (¢;, e/)=1. Then we have g,«(ef)=m; ¢,—&; e/ for some inte-
ger m;. By Thurston’s hyperbolic Dehn surgery [23], [24] (cf. [13, Lemma 5.1]),
E; is hyperbolic with S'X 0 the shortest geodesic except f such that f(p X dD?
represents a finite number of homology classes of H,(T'; Z). We consider any f
such that f(p X 9D?) does not represent this exceptional homology classes and
has [ f(p X 0D?)]=b, e;+b! ¢! in H(T; Z) with /=0 and b,/b! == —&, m;/2 for all
. Suppose such an E; has an orientation-reversing diffeomorphism. Then by
Mostow rigidity [23], [24], E; has an orientation-reversing isometry 7. Since
7(S'x0)=8'x0, 7 is isotopic to a diffeomorphism g with g(T)=T and
gf(px0D*)=f(pxdD?%. g|E isisotopic to g; for some i. Then g,4(b; e,+b! ef)
=&l(b, e;+ b e}) for some &=-1, so that & b,+b! m;=&! b; and &/ bi=—¢; b/.
Then b/=0 or b;/b!=—¢; m;/2. 'This is a contradiction and completes the proof.

Lemma 5.3. For a good (3, 1)-manifold pair (M, L), we assume the follow-
ing (1), (2) and (3):
(1) L has no arc component and there is a double covering space M, of M
branched along L,
(2) There is a family 3, of mutually disjoint 4-pointed spheres S;,i=1,2, -+,
m, which split (M, L) into good (3, 1)-manifold pairs whose exteriors and
whose double branched covering spaces associated with the covering M,—
M are hyperbolic 3-manifolds,
(3) There are a subfamily =, of 5. and a finite group G acting on (M, L) such
that each S;E3, splits (M, L) into mutually non-diffeomorphic two good
(3, 1)-manifold pairs and gS; is isotopic to S; in (M, L) for all g€G.
Then there is an isotopy of (M, L) sending %, to a family 3§ such that gS¥=
S¥ for all g=G and S¥ 3.

Proof. Let E=E(L, M) be a G-equivariant exterior and F;=S,NE be a
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surface diffeomorphic to S? with 4 open disks removed. We apply a least area
surface theory in [3] to the family &® of surfaces F;, =1, 2, -+, m. For this pur-
pose, we choose a G-equivariant Riemannian metric on E such that the mean
curvature vector of 9F is zero or inward pointing. By (2) note that F; is incom-
pressible and d-incompressible in E and does not split E into two components
one of which is a twisted /-bundle of P? with two open disks removed. Then
by [3] there is a family ®*={F¥, F¥, .-, F%} such that F¥ is a least area
(imbedded) surface in the isotopy class of F; in E. For i=j, F¥ N F¥=0 since
F; and F,; are disjoint and not isotopic in E by (2). By (1) and [1], any finite
family of mutually disjoint essential 4-pointed spheres for (M, L) is isotopic, in
(M, L), to a family whose members are disjoint from S; for all =1, 2, -+, m.
This means that ®* is a G-equivariant family and isotopic to ® in E. Then we
have a G-equivariant family * of mutually disjoint 4-pointed spheres S¥,i=
1,2, .-, m, for (M, L) extending F ¥, which is isotopic to = in (M, L). Let =§
be the subfamily of =* sent to X, by the isotopy from =* to =. For any
S¥es¥ and any g=G, gSF=S5% or gS¥NS¥=0. In the latter case, (3) means
that gS¥ is disjointedly parallel to S¥ and S¥ splits (M, L) into two non-
diffeomorphic good (3, 1)-meanifold pairs. Since g is periodic, this is impos-
sible. This completes the proof.

DeriNiTION.  Let (M, L) be a good (3, 1)-manifold pair. A 2-string tan-
gle t in a 3-ball B is a piece tangle of a component a of L in (M, L) if (B, t)C
(int M, int a) and BN (L—a)=0 and there is an arc component e of a-int ¢ such
that 0¢e COB and e is trivial in the complement of int BU (L—int e) in M. This
arc e is an extra arc of the piece tangle (B, #).

Lemma 5.4. Let (M,L)=(S? 3 points)xI. For a component b of L,
let B=E(b, M), a 3-ball and Ly=L—b. Then there is an almost identical imi-
tation of (M, L,Ub)=(M, L), written as (M, L¥Ub) such that (B,L¥) has the
hyperbolic covering property and has no periodic map.

Proof. Take two disjoint piece tangles (B, t;), 7=1, 2, with disjoint extra
arcs of a component a of L, in (B, L;). By Lemma 5.1, we have two almost
identical imitations of (M, L) with hyperbolic covering property and with non-
diffeomorphic exteriors, written as (M, LyUb), (M, L}’ Ub). Consider (B, Lj),
(B, Lj3’) as almost identical imitations with hyperbolic covering property of
(B, 1)), (By t,), respectively. Let My=M—(int B,Uint B,) and L,=M,NL.
Since (M,, L) is a good (3, 1)-manifold pair, we take an almost identical imita-
tion with hyperbolic covering property (M,, L¥) of (M, L,). Replacing (B, t,),
(By, t,) and (M, L,) with (B, L3), (B, L3’) and (M,, L¥), respectively, we obtain
an almost identical imitation (M, LYUb) of (M, L). For a trivial knot O in
M—(L§Ub), let (M, L¥U bU O) be an almost identical imitation with hyperbolic
covering property of (M, LYUbU O). By Thurston’s hyperbolic Dehn surgery
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[23], [24] and Lemmas 1.6, 5.2, there is a positive integer m, such that for all
m>my,, the 1/m-Dehn surgery of M along O produces an almost identical
imitation (M, L} Ub) of (M, LYUb) (and hence of (M, L)) such that (B, L¥) has
the hyperbolic covering property and the core O’ of the solid torus used for the
Dehn surgery is the shortest geodesic in the complete hyperbolic manifold B— L
with (B—L¥) totally geodesic and E(L¥, B) has no orientation-reversing dif-
feomorphism. Suppose (B, L¥) has a periodic map f, which must be orientation-
preserving. By Mostow rigidity, the restriction of f to B—L¥ is isotopic to an
isometry @ with the same period as f. Then we have a periodic map f’ on
(B, L¥) with the same period as f which coincides with @ outside a small tubular
neighborhood of L¥ in B. Since @(0')=0’, we have f'(0)=0’. By the
(—1/m)-Dehn surgery along O’, we obtain from f’, which is orientation-preserv-
ing, a periodic map f” on (B, L})=<(B, L) with the same period as f. Any two
of (B, L}), (B, Ly’) or (M,, L¥) are not diffeomorphic, so that by Lemma 5.3 we
may have f”/(B, L})=(B, L}) and f”(B, L}’)=(B, L3’). 'This means that f”’ pre-
serves orientation-preservingly the component af of L} corresponding to a in L,.
By Smith theory, we have Fix (f”/, B)=a*. Then f” must act on the arc com-
ponent L}—a? freely, which is impossible. Thus, (B, L¥) has no periodic map.
This completes the proof.

Proor oF MAIN THEOREM. By Lemma 5.1, we may consider that (M, L)
has the hyperbolic covering property and Vol E(L, M)>C. Let (B,t) be a
basic tangle for (M, L) with complement (M’, L’). Let O be a trivial knot in
B—t and (B, t,) be a piece tangle of O in (B,tU0O). Let B'’=B—int B, and
(tUO)'=B'N(tUO). We take the 2-string tangle (B, L¥) appearing in Lemma
5.4 as an almost identical imitation of (By, t;). Replacing (By, t,) by (B, L¥) and
(B’, (tU O)’) by an almost identical imitation with hyperbolic covering property
(B, ((UO)'*) of it, we obtain an almost identical imitation (B, #*UO) of
(B,tUO). Further, replacing (B, tU O) by (B, #U O) and (M’, L") by an almost
identical imitation with hyperbolic covering property (M’, L'*) of it, we obtain
a normal imitation (M, L*UO) of (M,LUO). By Myers gluing lemma,
E(L*U O, M) is hyperbolic. Let C*=Vol E(L*UO, M). By Lemma 1.6 and
Myers gluing lemma and Thurston’s hyperbolic Dehn surgery, there is a positive
integer m, such that for all m>m, the 1/m-Dehn surgery along O produces from
the imitation map (M, L¥U O)—(M, LU O) an almost identical imitation map
qm: (M, LE)—(M, L) with (M, L¥) hyperbolic covering property. Then C*>
Vol E(L%, M)=Vol E(L, M)>C (cf. [23], [24]), for there is a normal imitation
map E(L%, M)—E(L, M), which is a 8-diffeomorphic degree one map. Note
that given N<-+oo, we have only finitely many regular covering maps p:
E(L, M)~E(L, M ) branched along L, with covering transformation group of
order <N for all component unions Ly, L, of L with L,=L—L,. Let p}: E%—
E} be the lift of this covering map p: E(L,, M)—E(L,, M) by the imitation map
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qn: E¥=E((L¥%), M)—>E(L,, M) induced from ¢,. Let O'CE¥ be the core of
the solid torus used for the Dehn surgery. By a property of imitation, p¥ lifts
O’ to E*% trivially and, in the spherical completion (E%), of E%, any component
of the lift O’ of O’ is null-homologous and any two components of O’ has the
linking number zero. By the finiteness of the coverings p, we have an integer
my>m, such that O’ consists of the shortest geodesics in the hyperbolic 3-mani-
fold (E*), for all such p and all m>m, By Lemma 5.2, we have an integer
m,>m;, such that the exterior of O'—O{ in (E ) has no orientation-reversing
diffeomorphism for any component Of of O’ and any m>m, Let G be the
covering transformation group of E(L,, M) and G*=Isom (E¥),. By Mostow
rigidity, we have a monomorphism G—G*. Suppose |G|<|G*|. First, we
show that the action of G* on (E%), is orientation-preserving. To see this,
note that G translates the components of O’ transitively and g*(0')=0" for all
g*¥*EG* and by Mostow rigidity each element of G is isotopic to an element of
G* in the exterior of O’ in (E%),. Then if G* is not orientation-preserving,
then we see that there is an orientation-reversing element g¥ of G* with g¥(O1)
=01 for a component Of of 0', which contradicts our choice of m,. Hence G*
acts on (E%), orientation-preservingly. Then G* acts on a pair (E¥),, 0), ob-
tained from the pair ((E%¥),, O') by the G-equivariant (—1/m)-Dhen surgery
along all components of O'. Clearly, (E¥), is obtained as the spherical comple-
tion of the covering space E* over E¥ whose covering map p* is the lift of the
covering map p: E(Ly, M)—E(L,, M) by the imitation map gf : E¥=E((L¥),, M)
—E(L,, M) induced from the imitation map (M, L¥U O)—(M, LU O). Further,
O is obtained as the lift of OC E(L}, M)CE* by p*. Note that (E%),, O) splits
into |G| copies (B, L¥);(1<i<|G]|) of (B, L¥) and one good (3, 1)-manifold
pair (X, Ly), not diffeomorphic to (B, L¥). Since O is split from L in M, the
covering monodromy z,(M—L)—G extends to an epimorphism z,(M—(L U O))
—G X Z, sending a meridian of O to 1€Z,. From the Myers gluing lemma and
the hyperbolic covering property of (B’,(tU O)'*), (M’, L'*) we see that E(Lyx, X)
and the double covering space of X branched along Ly are hyperbolic. Since
|G| <|G*|, by [1] there are a non-trivial element g*€G* and an index 7 such
that g*(B, L¥); is isotopic to (B, L¥), in (E¥)A, 0). By Lemma 5.3, (B, L¥) has
a periodic map, which contradicts Lemma 5.4. Hence |G|=|G*| and the
monomorphism G—>G* is an isomorphism. Since sup,z,, Vol E(L%, M)=C",
we complete the proof of the case when N<+oo. When L=, we have that
O’ consists of the shortest geodesics in (E%), for any finite regular covering map
p: E (Loy M)—E(Ly, M). Since we used N only for this assurance, we can take
N=-+o00. This completes the proof of Main Theorem.

RemMARK 5.5. In the above proof, the sphere S=0B for the basic tangle
(B, t) satisfies (3) of Main Theorem.
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6. Applications. We call (M, L) a good pair if (M, L) is either a good
(3, 1)-manifold pair or L=@ and M is a good 3-manifold (i.e., a compact con-
nected oriented 3-manifold with M,=M). (M, L) is called a good G-pair if G
is a finite group acting faithfully on a good pair (M, L) and orientation-preserv-
ingly on M and the G-orbit set, (F(G, M)U L)/G of the G-set F(G, M)UL is a
good graph or @ in the G-orbit 3-manifold, M/G of M, where F(G, M) de-
notes the union of the fixed point set Fix (g, M) for all non-trivial elements g
of G. M is called a good 3-manifold with G-action if (M, @) is a good G-pair
(i.e., M is a good 3-manifold and G acts on M faithfully and orientation-preserv-
ingly).

DEeFINITION. A good G-pair (M*, L*) is a normal (or an almost identical,
resp.) G-imitation of a good G-pair (M, L) with G-imitation map q: (M*, L¥)—
(M, L) if q is 2 G-map and the orbit map g/G: (M*/G, (F(G, M*)U L¥)/G)—
(M|G, (F(G, M)U L)/G) of the G-map g: (M*, F(G, M*)U L*)—(M, F(G, M)
U L) defined by g is the spherical completion of a normal (or an almost identi-
cal, resp.) imitation map between good pairs.

When (F(G, M*)U L*)/G is a graph, g|/G is called a graph imitation in [8].
By a general property of imitation in [7], a normal G-imitation is a normal imi-
tation. If g¢: (M*, L*)—(M, L) is an almost identical G-imitation, then the
orbit map (¢| M*)/G: M*/G—M]|G is homotopic to a diffeomorphism. Further,
if L&F (G, M), then g| M*: M*—M is G-homotopic to a diffeomorphism and
we can write (M*, L*) as (M, L*). We first consider a good 3-minifold with
free G-action.

Theorem 6.1. For any good 3-manifold M and any positive number C,
there are an infinite family I of normal imitations M* of M and a number C*>C
such that

(1) M*is a hyperbolic Haken manifold with

Vol M*<C* and sup Vol M* = C*,
M*eg
(2) If G is the covering transformation group of any finite regular (unbranched)
covering M—M, then G is conjugate to Isom M* in Diff M* for the Lift
g: M*— M of the imitation map q: M*—M by the covering map M—M.

Proof. Let O be a trivial knot in int M. Take an almost identical imita-
tion ¢: (M, O*)—(M, O) such that (M, O*) has the hyperbolic covering property
with Vol E(O*, M)>C and has the property (2) of Main Theorem. Let C*=
Vol E(O*, M). Let g,: M%—M be a normal imitation map obtained from ¢
by the 1/m-Dehn surgery along O* and O. By Thurstons’ hyperbolic Dehn
surgery argument, there is a positive integer m, such that M7 is hyperbolic with
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the core Of of the solid torus used for the Dehn surgery the shortest geodesic
and lim,, . Vol M%=C™* with Vol Mk¥<C*, for all m>m, Let §,: MEX—M
be the lift of g, by any finite regular covering M—M with covering transfor-
mation group G. Let G*=Isom M%. By Mostow rigidity, there is a mon-
omorphism G—G*. Since the lift O% of O} consists of shortest geodesics, G*
acts on (M%, OF), so that G* acts on E(O%, M%). By (2) of Main Theorem,
Isom E(O%, M%)=G. By Mostow rigidity, there is a monomorpbism G*—G.
Hence the monomorphism G—G* is an isomorphism. We can previosly as-
sume that M is Haken, so that M7 is Haken for all m>m, 'This completes the
proof.

By taking G={1} in Theorem 6.1, we obtain a hyperbolic version of a
Haken manifold with no periodic map in [11]:

Corollary 6.2. For any good 3-manifold M and any positive number C,
there are an infinite family I of normal imitations M* of M and a number C*>C
such that M* is a hyperbolic Haken manifold with no periodic map and

Vol M¥*<C* and sup Vol M* = C™.
M*eS
Kojima showed in [14] that any finite group can be realized as the (full)
isometry group of a hyperbolic 3-manifold. We can obtain a similar result:

Corollary 6.3. For any finite group G and any positive number C, there
are an infinite family  of hyperbolic Haken manifolds M* and a number C*>C
such that

Isom M*=G, Vol M*<C* and sup Vol Mf* = C*.
M*eg

Proof. For any finite group G, taking M to be a connected sum of some
copies of S*x S? we have an epimorphism 7,(M)—G, so that G is the covering
transformation group of a regular unbranched covering space M over M. Then
the proof is completed by Theorem 6.1, since Vol M*=|G| Vol M* for the
lift M/*—M* of the covering map M—M by a normal imitation map M*—M
with M* hyperbolic.

Corollary 6.4. For any integer N>1, there are N normal imitations of
S'x S*x S which are hyperbolic 3-manifolds with the same volume but with mut-
ually non-isomorphic isometry groups.

Proof. Let G,(p, q,7)=Z»PZ,DZ, for integers n(>2), p(=0), ¢(=0),
7(>0). Let n be fixed. If an integer m is sufficiently large, then there are at
least N mutually non-isomorphic groups among the groups G,(p, ¢,7) with
m=p-+q-+r. Let M=S8"xS'x S", and M* a normal imitation of M in Theorem
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6.1. Taking a regular covering M—>M with covering transformation group
G.(p, g, 7), we obtain a normal G,(p, ¢, r)-imitation M* of M=<S*x S'x S* with
Isom M*=G,(p, q,7) and Vol M*=n" Vol M*. Since a normal G,(p, g,7)-
imitation is a normal imitation, we complete the proof.

Next, we consider a good 3-manifold with non-free G-action.

Theorem 6.5. For any good 3-manifold M with non-free G-action and
any positive number C, there are an infinite family X of almost identical G-imita-
tions M* of M and a number C*>C such that

(1) M*is a hyperbolic Haken manifold with

Vol M*<C* and sup Vol M* =C*, and

M*eSg

(2) G is isomorphic to Isom M*.

Proof. Since (M/G, F(G, M)/G) is a spherical completion of a good (3, 1)-
manifold pair (M’, L"), we apply Main Theorem to (M’, L’) with N taking that
N>|G|. Then we obtain an infinite family ¥ of almost identical G-imitations
M* of M with G=Isom M*. On volume, we can previously assmue that M
is hyperbolic with Vol M >C by an argument of [8, §5] (cf. Lemma 5.1). Then
the proof of Main Theorem assures that Vol M*<<supm*eg Vol M* <+ oo and
we can call this last number C*. By (3) of Main Theorem, M* is Haken.
This completes the proof.

Riley [20] observed that for any hyperbolic knot k& in S° the orintation-
preserivng subgroup Isom™ E(k, S°) of Isom E(k, S°) is a dihedral group D, of
order 2d or a cyclic group Z; of order d for some d>1, according to whether
k is invertible or not. As a consequence of Main Theorem, we obtain the fol-
lowing realization result of these groups:

Corollary 6.6. For any positive integer d and any positive number C, there
are two infinite families Y, Y’ of almost identical knot imitations O* with hyper-
bolic covering property of a trivial knot O in S* and numbers C*, C'*>C such that

(1) Each O*€S is an invertible knot with

Isom* E(O*, S%) = Isom E(O*, $*) = D,
and
Vol E(O*, S)<C* and sup Vol E(O*, §%) = C*,

O*eg
(2) Each O*€' is a non-invertible knot with
Isom* E(O*, S*) = Isom E(O*, §%) = Z,,
and
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Vol E(O*, 8%)<C'* and sup Vol E(O*, S% = C'*.
o*ey

Proof. Let O be a great circle of S°. Let D, and Z, act on (S°, O) linearly
so that OG- F(D,, $%) and ONF(Z,, S°)=@. Then note that if (S3, O*) is an
almost identical D,;- or Z,-imitation of (8% O), then O* is an almost identical
knot imitation of O. By Main Theorem and an argument of [8, §5], we have
infinite families I, I’ of almost identical knot imitations O* of O and numbers
C*, C’"*>C auch that E(O*, S%) and the double covering space of S* branched
along O* are hyperbolic, and Isom E(O%*, S%) and Vol E(O*, S%) have (1) or (2)
stated above, according to O*€J or O*€J’. Then each O*€ is invertible
and by Mostow rigidity, each O* &€’ is non-invertible. By (3) of Main Theorem
and Lemma 1.7, each O*€J U I’ has the hyperbolic covering property. This
completes the proof.

Wielenberg [26] constructed, for any integer N>1, N hyperbolic links in
S* whose exteriors have the same volume. We have a similar result regarded
as a link version of Corollary 6.4.

Corollary 6.7. For any integer N>1, we have N links in S* with hyper-
bolic covering property which are normal link imitations of a fixed link in S°, a split
union of a Hopf link Ly and a trivial link, and whose exteriors have the same vol-
ume and mutually non-isomorphic isometry groups.

Proof. Let L be a split link in S°® of Ly and a trivial knot. Apply Main
Theorem to (S*% L). We obtain an almost identical imitation (8% L*) with
hyperbolic covering property of (S% L). Let G,(p, q)=Z,»PZ,q for integers
n(=>2), p(=0), ¢(=0). For a fixed =, let m be a large positive integer such that
there are at least N mutually non-isomorphic groups among the groups G,(p, q)
with m=p-+q. Let (S% L)—(S? L) be a regular covering branched along Ly
with covering transformation group G,(p, q). Then L is a split union of Ly and
an n”-component trivial link, whose link type is independnet of a choice of p, ¢
with m=p-+q. 'The amost identical G,(p, g)-imitation (S%, L*) of (S?, L) lifting
the imitation (S% L*) of (S% L) has the property that L* is a hyperbolic link
with Isom E(L*, S%)==G,(p, q) and Vol E(L*, S*)=n" Vol E(L*, S°). Further,
by the hyperbolic covering property of (S% L¥*), the double covering space of
3 branched along L* is hyperbolic, since it is a regular covering space of S*
branched along L* (with an abelian covering transformation group). By (3) of
Main Theorem and Lemma 1.7, (S% L*) has the hyperbolic covering property.
This completes the proof.

We remark here some results in [10] which may be interesting in comparison

with Corollaries 6.4, 6.7. Namely, for any good G-pair (M, L) with F(G, M)U
L@ and any integer N>1, we have N almost identical G-imitations (M*, L¥*)
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(with M*=M if L=*@) of (M, L) whose exteriors E(L*, M*) are mutually non-
diffeomorphic hyperbolic 3-manifolds with the same volume and with isometry
group isomorphic to G. For any good 3-manifold M with free G-action and
any integer N >1, we have N normal G-imitations M* of M which are mutually
non-diffeomorphic hyperbolic 3-manifolds with the same volume and with
isometry group isomorphic to G.
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