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1. Introduction

Recently, in the case of Rd with the standard flat metric, Schrϋdinger ope-
rator with magnetic fields has been studied by many authors, e.g., B. Simon
and A. Iwatsuka. The semi-group generated by this operator can be represent-
ed in terms of stochastic oscillatory integrals (see [12] and [20]). Hence pro-
babilistic methods play an important role in the study of this operator and its
spectral properties are closely related to results in the stochastic analysis. The
purpose of this paper is to study the spectral properties of Schrϋdinger operator
of magnetic fields on R2 with a rotationally invariant Riemannian metric g.
It is well known that if g is the standard flat metric, then Schrϋdinger operator
of magnetic fields can have a wide variety of spectral porperties, (see, for example,
[3]). In our case, the above variety still remains. In fact, we will show several
similar facts to the results obtained by K. Miller-B. Simon, [14], A. Iwatsuka
[8],[9],[10], etc.

Let M be a complete Riemannian manifold with a Riemannian metric g,
a be a real valued differential 1-form on M and Δ be the Laplace-Beltrami op-
erator on M, We consider a differential operator L(a) on M with the domain
Co(M)c defined by

£(*)/= -y(Δ/+2V^ΐ <# a> -(v^ϊδα+llαll1)/)

where <(*,•)> and || || denote the Hermitian inner product and the norm in
complexified cotangent bundle T*(M)C which are defined from g respectively,
and Q?(M)C is the space of all complex valued C°°-functions with compact sup-
port in M. In the case of M=Rd with the standard flat metric g, the operator
L(a) is usually called the Schrϋdinger operator with the magnetic field da (see
[3]). Under some mild conditions, L(a) is essentially self-adjoint on C%(M)C

(see Section 3). Then L(a) can be uniquely extended to a self-adjoint operator
H(a) on L2

C{M\ dm), the Hubert space of all complex valued functions on M
which are square integrable with respect to the Riemannian volume dm. We
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now consider a diffusion process (X(t), Px) on M starting at x generated by Δ/2
and S(t, a) be the stochastic line integral of a along the path of the diffusion
process {X(s); O^s^t} i.e.

where o stands for the Stratonovich symmetric stochastic integral (see [6]).
It is known that the semi-group {Qt} ^ 0 generated by H(a) can be written in the
following form:

(1.1) (Qtf)(x)=;Ex[f(X(t))e^s«.«)] for f(=Uc{M;dm)

where Ex[ ] is the expectation with respect to Px and that {Qt}t^o is symmetric
with respect to dm (see [5], [19]).

Throughout this paper, we always assume that M=R2 and the Rieman-
nian metric g is given by

in polar coordinates (r> θ) where g(r) is a positive C2-function on (0, oo) satisfy-
ing the condition (2.1) stated in Section 2. We also assume that the differential
1-form can be written in the form

a(r, θ) = k(r)dθ

where k(r) is a positive smooth real valued function on (0, oo) with lim k(r)=0.
r->0

It is easily seen that | |α||(r, θ)=k{r)jg{r) and ||έte||(r, θ)=\k'(r)\lg(r) for (r, 0 ) e
(0, oo) x S1. Then we can show that L(a) is essentially self-adjoint on CQ(R2)C.
In this paper, we will concern with the spectral properties of H{ά) in this case.
We will first show that if lim ||έ/α||(r, 0)=lim | k\r) \ lg(r)=0, H(a) has spectrum

[0, oo). Furthermore, we can describe a fine structure of this spectrum in terms
of the limit lim ||α||(r, θ)=lim k(r)lg(r). These are analogous to the results by

K. Miller and B. Simon [14] (see also A. Iwatsuka [9]), (for details, see Theorem
2.1 in Section 2). We will next show by combining results in the functional
analysis and probabilistic methods that if lim\\da\\(ryθ)=Hm\k'(r)\lg(r)=ooy

the spectrum of H(a) is discrete (see Theorem 2.2). We will also give a remark
in the case of lim ||<te||(r, 0)=lim \k'(r)\!g(r)=\0>0. In this case, Hίa) has

point spectrum. Furthermore, in the case of k(r)=\Qfog(ξ)dξi λ 0 >0, it holds
that a is harmonic and the multiplicity of the least eigenvalue of H(a) is infinity,
(For details, see Remark 2.1). Finally we assume that there exist constant r 0 >0
a n d ^ > α 2 + l such that
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k(r) = rp for ^='0

where a2 is the constant given by (2.1) below. Then it is clear that lim||ώt||(r,0)
= 00. In this case, we will give a result on the asymptotic distribution of
eigenvalues of H(a). In the case of M=R2 with the standard flat metric g,
this problem was discussed by Colin de Verdiere [2] (also see Tamura [21]),
and our result is easily obtained from their results.

The organization of this paper is as follows: In Section 2, we will sum-
marize our main results. In Section 3, we will prove that the operator L(a)
is essentially self-adjoint on C%(R2)C. Section 4 will be devoted to the proof
of Theorem 2.1. In Section 5, we will give the proof of Theorem 2.2. The
proof of Theorem 2.3 will be given in Section 6.

2. The problems and the results

As we stated in the introduction, throughout this paper we always assume
that the Riemannian metric g on R2 is given by

- »-Gό \OIJV > ~ // 1 r\

where g(r) is a positive continuous function on (0, °°) such that there exist
K>0, au α 2 ^ l and 0<r !<r 2 satisfying

(2.1) g(r) = r"ι for O o ^ , g(r) = Kr** for

and g has derivatives of every order on (0, 00). Then the Laplace-Beltrami
operator Δ with respect to the Riemannian metric g can be written in the form

9 L l M 9 l < L for (r,^)e(
dr2^ g(r) dr g(rf dθ2

In addition, we consider a differential 1-form a on R2 given by

α(r, θ) = k(r)dθ

where k(r) is a positive smooth real valued function on (0, 00) with lim&(r)=0.

Then L(a) can be written in the form

2 + g(r) dr^g{rγdθ2/ g{r)2 dθ^ 2 g{rf

in polar coordinates (r, θ). We obtain the following lemma.

Lemma 2.1. (1) L(a) is essentially self-adjoint on Co(R2)c-

(2) L(a) can be uniquely extended to a self-adjoint operator H(ά) defined on

Uc{R2\dm).
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The proof of Lemma 2.1 will be given in Section 3.

We also consider a Sturm-Liouville operator A on (0, oo) given by

Then the boundaries 0 and oo are entrance and natural with respect to the ope-

rator A in the sense of Feller [13] respectively. Hence there exists a unique

diffusion process (X(t)9 Px) on R2 generated by Δ/2 (cf. [7]).

We now consider the stochastic line intergral S(t, a) of a along the path

of the diffusion process {X(s); O^s^t}. Then there exists a symmetric conti-

nuous semigroup {Qt}feo o n L2

C{R2\ dm) such that

(2.3) (Qtf)(x) = Ex[f(X(t))e^t>«)] for f^L2

c(R2;dm).

Furthermore, the generator of the semi-group iQt}t^o o n Lc{R2; dm) coincides

with —H(a). We now state our results.

Theorem 2.1. Suppose that lim k\r)jg(r)=0. Then H(ά) has spectrum

[0, oo). Furthermore,

(1) If lim k(r)lg(r)= ooy then the spectrum of H(a) is a dense point spectrum

in [0, oo) and there is a complete set of eigenfunctions.

(2) If lim k(r)lg(r)=cΦθ, then the spectrum of H(ά) is a dense point spe-
r->oo

drum in [0, ̂ c2] and absolutely continuous in [^c2, oo).

(3) If \\mk{r)lg(r)=ΰi then the spectrum of H(ά) is absolutely continuous

in [0, oo).

Theorem 2.2. If limk'(r)/g(r) = ooj then the spectrum of H(a) is discrete,

and the least eigenvalue of H{ά) is positive.

REMARK 2.1. We now consider the case of lim k'(r)lg(r)=\0>0. Let Hm

be the operator defined by (4.4). Since limk{r)jg{r) =00, and so lim V(r)=oof

where V(r) is given by (3.2) below. Hence Hm has only discrete spectrum {λj,},

#=1,2, •••. Let φnm(r) be the normalized eigenfunction corresponding to \n

m.

Then, as in Section 4, φϊnir)^"1™* is an eigenfunction of H(a) corresponding

to λ i . We consider the special case, k(r)=\0 fog(ξ)dξ, λ 0 >0. Then

δa = 0, da(r, θ) = \Qg(r)drΛ dθ ,

and so

where d is the exterior differential operator, δ is the dual operator of d and
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Δ = — (dS-{-8d). Hence a is harmonic.
Let us set

and

um(r, θ) = vm(r) e-^=ϊ", m = 0, ± 1 , ± 2 , - .

Then um^L%(R2\ dm), and it is easy to see

Hence um(ry θ) is an eigenfunction of H(ά) with respect to eigenvalue λo/2.
Moreover, we set, for φ^Co(R2)c.

where φ(my r) is a Fourier coefficient of 0f—»<p(r, θ)> i.e.

Then we have

((//(on——) <p,φ) = — 2J \ I— \Vm (?) ψ\rn, r))\Δ\ vjr)\Δg(r) dr dβ^ϋ .
2 2 «=-o° JR2 dr

Hence the least eigenvalue of H(ά) is λo/2 and the eigenfunctions corresponding
to λo/2 are:

^(r,0),m = O , ± l , ± 2 , .

Furthermore, the multiplicity of λo/2 is oo. In this case, if g is the standard
flat metric, then

a(x, y) = ydx—xdy (x,

Therefore a is the vector potential of a constant magnetic filed on R2. It is a
classical result that the multiplicity of all eigenvalues is infinity in this case, (see
[3], [19]). For the spectral property of H(a) with perturbed constant magne-
tic fields, (see [1], [8]).

In the case of lim \\da\\(r, 0)=lim k\r)jg{r)=°oy let 0 < λ j ^ λ 2 ^ be the

eigenvalues of H(ά). Then we set, for λ > 0

(2.4) N(X) = Σ 1
Λ M < Λ
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Now we are in a position to state a final result.

Theorem 2.3. Suppose that there exist ro>O andp>a2+l such that

(2.5) k(r) = rp for every r^r0.

Then, as λ-> °°

(2.6)

with

*»ω(λ) = ψ- Σ ((λ-(2»
2 \

b(x)=\\da\\(r,θ) for x = (r, 0)e(O, oo)χS 1

0°=0 attdf+ denotes the positive part of a function f.

REMARK 2.2. If g is the standard flat metric, then Theorems 2.1 and 2.2
mentioned above can be obtained as special examples of general facts. The
details can be found in K. Miller-B. Simon [14], A. Iwatsuka [9], [10], H.L.
Cycon, G.H. Froese, W. Kirsch and B. Simon [3] and references therein. As
we stated in Section 1, if g is the standard flat metric, Theorem 2.3 is a special
example of a result of Colin de Verdiere [2]. In R3, Tamura [21] has also dis-
cussed the asymptotic distribution of eigenvalues of H(a).

3. Essential self-adjointness

Before proving the main theorem, we will show Lemma 2.1 by using the
same idea as the case of the standard flat metric g (see [4], [16]). We first note
that the Riemannian volume dm can be written in the form

dm = g(r) dr dθ .

For all u^L2

c(R2\ dm), the ZΛnorm of u is given by

\\u\\l=\~(£\u(r,θ)\>dθ)g(r)dr.

We consider a subspace D of L%{R2 dm) spanned by finite linear combina-
tions of products vm(f)e-v~w» m=0, ± 1 , ± 2 , ••• where ^(r)eC?((0, oo)) if

nφO, and vjf) = [** u(r, θ) dθ for some function u£ΞCZ(R2)c if m=0. Here
Jo

Co((O, oo)) is the space of all C°°-functions on (0, oo) with compact supports.
Then D is dense in L%(R2 dm) since

C7(0, oo)®L(S1)cJDcL2((0, oo),g(r) dr)®L2

c{S\ dθ) = L2

C(R2; dm),

where L^1) is a space generated by finite linear combinations of Sι={e~^τΓιme)
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m=0, ± 1 , ± 2 , •••, 0^<9<2τr}, and L2

C(S\ dθ) is the Hubert space of complex
valued square-integrable functions on S1 with respect to dθ. For this proof, it
is sufficient to show that L(a) is essentially self-adjoint on D. We also note that
for a fixed integer my L(a) acts on functions of the form v(r) e~vτΓιmB by

L(a) (v(r) e-^mθ) = (Lm υ(r)) e'^m

where

+S\r) 9 (m-k(r)

So we only need to prove that Lm is essentially self-adjoint with domain Dom(LΛ),

where Dom(LM) is {ϋ(r)=(2*«(r, θ) dθ;u<=CZ(R2)c} if » = 0 , and on CS"((O, oo))
Jo

if wΦO.
We first consider the case of wΦO. To do this, let U be a unitary operator

from L2((0, oo),^(r) dr) into L2((0, oo), dr) defined by C7: ̂ (r)h^ y/tfr)φ(r). U
takes CSΓ((O, oo)) into itself and

where

(3 2) V(r) =
4 g(r)

Then V(r) is in the limit point case at infinity since V(r)^ (see [16],

3Theorem X. 8), and V(r) is in the limit point case at zero since V(r)7t near

l a2 8 r

zero, (see [16], Theorem X.10). Hence — + V(r) is essentially self-adjoint
on CΓ((0, oo)) (cf. [16]) and so is Lm on C?((0, oo)).

Next, we consider the case of m=0. If <p^Dom(L0), then there exists u^

Co(R2)c with φ(r)= [** u(r cos (9, r sin (9) rfβ. Clearly
Jo

(3.3)

and

(3.4) ^

which implies that Hm9>'(r)/r=^rΔί/(0, 0). Furthermore it is easy to see by

(3.4) that

(φ, Lo Ψ)-C* = (A) ?»>
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where -£2=L2((0, °°),g(r)dr), which means that Lo is symmetric. Now we
show that Lo is essentially self-adjoint. Let Lf be the adjoint operator of Lo and
Dom(Lf) be the domain of Lf([27]). Since Lo is a real operator, we need only
prove that if (Z#0+l)* φ=0 and φ is a real function in Dom(L?), then φ=0.
Since (L0-\-l)*<p=0 implies that (<p, (L 0 +l) ψ)χ2=zθ for every ψGDom(L0), we
can show that (L 0 +l) <P=® m the sense of distribution. By the hypoellipticity
of Zro+1, we obtain that 9?eC°°((0, oo)), where C°°((0, oo)) is the space of infi-
nitely differentiable functions on (0, oo). Therefore ( L o + 1 ) ^ = 0 . Using the
formula for integration by parts, we get

(3.5)

0 = φ\ε) φ{ε)g{ε)-φ'{R) φ(R)g(R)+^ {φ'(rf+(^+1) φ{rf}g{r) dr .

We set

c = lim {φ'(ε)φ(ε)g(ε)+\U<p\rγ+{^+ήφ(rf}g(r)dr} ,

(this limit may be infinite). To prove c—0, we first assume that
If £>0, then there exists a positive number i?0^max{r2, 1} such that

(3-6)

ψ'(€)φ(ε)g(ε)+\Uψ'(rf+(^+l)φ(rf}g(r)dr^ for every R^Jt, .

Therefore, by (3.5) and (3.6),

•j- (φ(R)2g(R))^c+φ{Ryg'(R) for every R^RΰaK

which implies

φ(Rγg(R)-φ{Rΰγg(R0)^c(R-Rΰ)+ \* <p{rfg'{r) dr .

Taking the limit as R-^oo, we have

lim φ(R)2g(R)= oo

which contradicts the fact that \ φ\r)g(r) dr <oo .
Jo

Similarly, if £<0, then there also exists a positive number i?0^max{r2, 1}
such that

\ (S ) ^\ for e v e i τ ^^
and then we have
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φ(Rfg(R)-φ(Rofg(Ro)^c(R~Ro)+ Γ φ(r)2g'(r) dr for every R^R,.
JRo

Hence, we have

Urn φ(R)2g(R) = — oo

φ%r)g(r)dr>0. Combining above results,

we have °

Kmφ(R)φ'(R)g(R) = 0
(oJ) +

φ{ε) φ'(ε)g(6)+ Γ iφ'(rγ+(^ζ+1) φ{rf} g(r) dr = 0 for every £>0 .

We now take a ψ eDom(L0). Since (L 0 +l)* 9>=0, it holds that

lim
3 8

and for every £>0,

(3.9) 0 = ^,'(6) *(e)*(β)+J" {9>'

Combining (3.6) and (3.7), we have

(3.10) lim iφ(ε) ψ'(€)g(ε)-φ'(ε) ψ(ε)g(ε)} = o.

Since by (3.3) and (3.4), there exists a function ψ^Dom(L0) such that li
and limψr(ε)l6 exist and are not zero, it follows from (3.10) that

(3.11) lim φ(S)g(S) 6 = 0 and lim φ'(S)g(S) = 0 .

Moreover, in view of (3.7) we know that φ\S) <p(£)g(S)^0. First, we consider
the case where for some £>0, φ\B) φ(£)g(6)=0. Then we have, by (3.7),

φ(rf} g(r) dr = 0

Hence by suing (L 0 +l) φ(r)=0, we obtain φ = 0 on [0, oo).

We next consider the case where φ\S) φ(S)g(£)<0 for every £>0. With-
out loss of generality, we may assume that <p>0, φ'<0, and then φ is a mono-
tone decreasing real valued smooth function. Now choose a function φn G C°°(R)
satisying O r g φ ^ l with
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( x if
Ux) = J *+\ if

and set φJjή—ΦniΦ (#))• Then we have

0 = -φ\€) φn(ε)g(ε)+φ'(R) φn(R)g(R)

— J iφ'(r) 9)»(r)+(-ττ2-+1J 9>(r) Ψn{r)} g(r) dr .

Since lim φ'{R) φn(R)g(R)=O and lim φ\ε) φn(ε)g(ε)=O by (3.11), we have

0 = Γ iφ'(r) φ>n(r)+(fΆ+ ί) φ(r) φn(r)} g(r) dr
Jo ^£[τ) '

(3.12) sκ '
= (" {^'(r)2 φί( 9,(Λ.))+(*fe^+1) φ{r) φn(r)} g(r) dr .

0 Sv)

Taking n-+oo in (3.12), we get

\<p'(r) +( v ' -f-1 I φ(f)} g{y) dr = 0Γ
Jo g ( f

and therefore φ = 0 on [0, co). So Lo is essentially self-adjoint.

4. The point spectrum and the absolute continuous spectrum

In this Section, we first follow the method of Miller-Simon (see [14]) to
assert that if lim k'(r)lg(r)=0y then H(a) has the spectrum [0, oo). To prove

this we first recall WeyΓs criterion for the spectrum, i.e., λ is a spectrum of
H(a) if and only if there exists a sequence iφn}7~i with ||0>J| = 1 and

lim \\(H(a)-\) φn\\ = 0

where || || denotes the norm on L2

C(R2\ dm) (see cf. [15]). Since lim k'(r)/g(r)=

0, we can find a positive increasing sequence (rn}^i with rnl=o(n~ι) as n-+oo
and

(4.1) * M < _ J _ for every r>rn .
g(r) ~n.V y -

Take a fixed smooth function φ with | |φ| | = l, vanishing outside the interval
(0,1). For a fixed real number v, we define a sequence of functions {<pn}7.i in
L2

C(R2; dm) by

φ.(r, θ) =
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where [•] denotes Gauss's symbol, i.e. [k(r)] is the greatest integer which is less
than or equal to k(r). Then it is not difficult to show that

J_ ^ Φ (r—rn \ -^-llk(r
1 n2 dr2 V n 1

ngjry dr

(r-rΛ
\ n 1

"* (rt

Hence we have

(4.2)

-+2

y dφ (r-rΛ
n dr y n /

+_J>iL

where Aβ(r)={[Λ(rB)]—k(r)}jg(r). Now write these terms by /^re), I2(n),I3(ή),
/4(»), J5(n) in the right hand side of (4.2). We will prove that 7A(re)-^0, A=
1, 2, 3, 4, 5, as «-»<>o. First, since

wΓdθ[\φ(r)\2g(rn+nr)dr
Jo Jo

and lim g(rtt-\-nr)jg(rn)=ly we see that Ĵ w)—>0 as n->oo. In the same way, we

can prove that I2(ή)->0 as ra->°o. Next, consider 73(w), Since we have

r / v Jθ Jθ SC dr

dθ[ \φ(r)\2g{rn+nr)dr
Jo

and lim g'(rn-\-nr)lg(rn-\-nr)=O, it follows that 73(w)-»0 as w->oo. Similarly,

we can show that /4(w)->0 as w->oo. At last, consider I5(ή). For every r in

[rn} rn-{-n], it is easy to see that
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g(r)
Krn)-k(r)

g(r)
< — I — - , c: constant.
~ r . 2"

which implies that I5(ή)->0 as n->oo. Then we obtain

\\(H(a)-v2)φn\\2-+0 zsn->oo

and hence v2 is a spectrum of H(a). Since v is arbitrary real number, this show
that the spectrum of H(ά) equals to [0, oo).

To analyze the spectrum further, we note that

(4.3) H(a) (v(r) * - ^ - ) = (Hm v(r)) e~^"

for every fixed integer m, where

[ } m lldr*^ g{r)Qrr 2\ g(r) )

which is the closed extention of Lm given by (3.1) above.
Let U be a unitary operator from £2((0, °°)yg(r) dr) into £2((0, oo), dr) given

by φv-*φ\/~g . Then, as in Section 3, we have

where V(f) is the function given by (3.2).
At first, we consider the case of lim k(r)lg(r)= oo. Then UHm U~ι has only

/•-><*>

discrete spectrum and so Hm discrete spectrum, since J^(r)->oo asr-^oo (see [24]).
This implies that there exist eigenfunctions {φn

m}n=ι of Hm which can form a
complete orthonormal system in L2((0, oo); g(r) dr), (see cf. [15]). In other
words, the eigenfunctions {φn

m(r) e~^^ίmθ}n

m^iϊ,±2,.. of H{a) can form a complete
orthonormal system in L2

C(R2\ dm). Let λ^ be the eigenvalues of H(a) cor-
responding to φn

m{r) e~^~lmθ, m=0, ± 1 , ± 2 , •••, n=l, 2, •••, respectively. As-

sume that U U {λϊ,} is not a dense in [0, oo). Then there exists an open
m=-oon = ι cβ oo

interval (α, b)d[0, oo) such that {a, b) Π ( U U {λU)=φ. Let E be the spec-
m= - o o « = i

J oo

XdE(X). Then E((a,b)) and
o

£({λU) are orthogonal for every m=0, ± 1 , ± 2 , •••, Λ = 1 , 2, ••• and so £((α, δ))
= 0 . This shows that (a, b) is contained in the resolvent set of H(a), which
contradicts the fact that (a, 6)C[0, oo)=σ(H(a)), where σ(H(a)) denotes the

spectrum of H{a) (cf. [22]). Hence H{a) has a dense point spectrum U U {λ?,}
in [0, oo).

Next, we consider the case of lim k(r)lg(r)=c. In this case, since V(r)->% c2
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as r-^ooy the spectrum UHm U~ι is discrete in [0, \ c2] and absolutely continuous
in [i c2, oo) (cf. [18], [23]), and so is Hm. Let σdis(Hm) be the discrete spectrum

CO

of Hm. Then by using (4.3), we know that H(a) has a point spectrum U ordis(Hm)

in [0, \(?\ and absolutely continuous in [̂  c2, oo). Moreover, by the same
CO

proof as above argument, U σdis(Hm) is a dense set in [0, \ c2].

At last, if we consider the case of limΛ(r)/gr(r)=0, then the spectrum of

t/i/m t/"1 is absolutely continuous in [0, oo) and so is the spectrum of Hmy since
F(r)->0 as r-^oo (cf. [18], [23]). Consequently, H(a) has absolutely continuous
spectrum in [0, oo).

5. The discrete spectrum

In this Section, we give the proof of Theorem 2.2. Throughout this Sec-
tion, we always assume that lim k'(r)/g(r)= oo. For every φGC^(R2)c

y we have

φ(r,θ)= Σ φ(m,r)e-v^*
m=z-oo

where φ(m, r), is a Fourier coefficient of <p, i.e.,

Moreover, letting

we obtain

= Σ (
«=-«»J(o,βo)χs1

= 4" Σ
2 m=-«

where we used the formula for integration by parts in the second equality.
Hence, setting

Mr) = τ i w r e ( 0 oo)

we obtain

lim X(r) = oo
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and

(5.1) (H(a)φyφ)^[ λ\{r)\φ(ryθ)\2g(r)drdθ for every φ(ΞCϊ(R2f .

Following an idea of A. Iwatsuka [10] and using (5.1), we now prove that

H{a) has only discrete sepctrum. First we note that for every s^R, setting

\(r)=\(r)Λs> we obtain that

λ(r) -> s as r->oo

(H(a)φyφ)^R2\(r)\φ(r,θ)\2g(r)drdθ for every <pϊΞC?(R2)c .

Hence we obtain

(5.2) H(a)^s+K

where K denotes the operator of multiplication by \(r)—s. As we will see

in the Lemma 5.1 below, the operator K is relatively compact operator with

respect to H(ά). For any v^<ress(H(cή) there exists a sequence {wft}Γ=i in Dom

(H(a)) such that

\\uk\\ = 1 and uk -> 0 weakly as k -> oo

> 0 as k -> oo

where <ress(H(a)) denotes the essential spectrum of i/(α). Furthermore, Kuk->0

strongly as &->°o (see [11]). On the other hand, by (5.2) we have

(H(a)uk,uk)^s+(Kuk,uΛ).

Hence we have

which implies that

(5.3)

Since s is arbitrary, it follows from (5.3) that H(a) has only discrete spectrum.

Therefore it only remains to show that K is relatively compact operator

with respect to H(ά). To do this we first note that for all <p^Lc(R2;dm)>

and μ > 0 , we have, by (2.2)

Hence if we can prove the following lemma, then the proof of Theorem 2.2 is

complete.

Lemma 5.1. Let K be an operator of multiplication by a bounded mea-
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surable function k(r, θ) on R2 with lim k(r, 0)=O. Then for every positive num-

her μ> K(μ—Δβ)~ι is a compact operator in L\R2\dm)} (the space of all real
square integrable functions on R2 with respect to the Riemannian volume dm).

Before proceeding to the proof of this lemma, we give several remarks.
Let {Kt} be the semi-group of the diffusion process (X(t), Px) introduced in
Section 2. Then {Kt} is a family of symmetric operators on L\R2\ dm)
with respect to dm and there exists a positive continuous kernel function
k(t, (a, θλ)y (b, θ2)) such that

Ktf(ay Θ1)=\ χ k(t, (a, θλ)y (b, Θ2))f{bs Θ2)g(b) db dθ2

for ( ^ ^ G ^ o o J x S 1

(see for example [5]). Hence it is easy to see that for μ>0

(μ-AI2)->f(a, θ,) = j ( o ^ G(μ, (a, θλ), (b, Θ2))f(b, Θ2)g(b) db dθ2,

where

(5.4) G(μ, (a, <?,), (b, θ2)) = j ~ β-« k{t, (a, ΘJ, (b, θ2)) dt.

By using (5.4), it is easy to see that

(5.5) ( G\μ, {a, ΘJ, (b, Θ2))g(b) db dθ2 = Γ *-«•*.*(«, (a, ΘJ,(a, θj) dt.

On the other hand, as we stated in Section 2, the boundary 0 and oo are
entrance and natural with respect to the operator A given by (2.2) in the sence
of Feller, respectively. Hence there exists a unique diffusion process (r(t), Pa)
on (0, oo) (see [7]). Furthermore, there exists a positive continuous kernel fun-
ction p(t, a, b) such that

Eβ[f(r(t))] = \~f(b)ρ(t, a, b)g(b) db for every /eL2((0, oo),g(b) db)
Jo

where L2((0, oo), g(b)db) is the space of all real square-integrable functions on
(0, oo) with respect to g(b) db, and Ea denotes the expectation with respect to
the probability Pay ([7], [13]). Setting

we obtain

(5.6) ft(ί, (α, θx), (b, θ2)) = p(t, a, b) Ea[q{Ύ{t)y βl9 θ2)/r(t) = b]

where q(t, θu θ2) is the transition density of the Brownian motion on S1 with
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respect to uniform measure on S1, (see [7]).

Proof of Lemma 5.1. (1) 1-st step. We first consider the case where
g(r)=r*. In this particular case, the diffusion on R2 with generator Δ/2 can be
represented as the skew product of its Bessel part BES(α-f-l) with generator

A U+
2 \dr2 r drJ

and an independent circular Brownian motion BM^S1) run with the clock Ύ(t)=
rt
I r(s)~2* dsy therefore, we obtain
Jo

(5.7) k(t, (a, θx), {a, <?,)) = P(t, a, a) Ee[q(^(t), θlt ^)/r(ί) = a].

By using the eigenfunction expansion of q(t, θ^ θ^, we obtain

lt θ1)Kt) = a] = E.[ Σ exp{-»2 T(ί)}/r(ί) = a]
nez

T(ί)} dx/r(t) = a]

>lr(t)=a].

By combining this with Schwarz* inequality, we have

/2Kt) = a]

= a]

(Ct } 1/2

r 1
 E.[ {jo φ ) 2 β * } Kt) = a]

ί ft 11/2

^Vπf1 >{Ea[ j o r(ί)2- Λ/r(ί) = β]}

= V π r 1 j \ £•„[?• (ί)2te/r(ί) = β] ds\ (Fubini's theorem)

ί rt Λoo Λ 1/2

= V>rΓ 1 \p(t, a, a)'1 j ^ j ^ r*-f (*, β, r)^(ί-ί, r, a) dr dsj .

Furthermore, by using the formula I ll{x)^exj\/2πx> we obtain

t**p{s, a, r)p(t-s, r, a) dr

J o r . ( / l J /

.« (((α2

= Jo , ( ί -
t—s
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)2« e-Γ (x+ά)
J-a

22« Γ (x)2" e-
Ja

+2 2 * a* Γ e-
J-a

22* Γ (x)2* e-tχ2/2s{t~s) dxβπ
Jo

Jo

22«

^ 22"-1 [° {y)*~li2 e-ty/2s(t-s) dy\2n
Jo

+2

= 2 2 - 1

= 2?-v*{s(t-s)}* Γ(«+l/2)/2πrα- ί»+i/2+22

Combining this with (5.8), we can find

^VπΓ1 {p(t, a, a)'1 ̂  J~ t3* p{s, a, r) p{t-s, r, a) dr ds}

Sir' [pit, a, ar\[

which implies the following inequality.

k(t, (a, θx), {a, θ,))

&-ι {P(t, a, a) j2

Hence by (5.5), we have

(5.9)

T j ; e-" {p(t,a, a)

=ί e~ fe
\/πa2*
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To complete the proof, let Kn be the operator of multiplication by ktt(r, θ)
=/„(/•, θ) k(r, θ) on R2, where /„ denotes the characteristic function of Bn=

if

if r>n.

Now, by using the method of Example 6 in p. 117 of [17], we will show that
Kn(μ—Δβ)~ι is a Hilbert-Schmidt operator. In other words, it is sufficient
to prove that

(5.10)

is valid. For this purpose, we can use (5.9) to get

( k.(a, θtfA χ G\μ, (a, θx\ (b, θ2)) b« dbdθ2) a* dadθx

^ J Ma,θM"e-» {2-^Γ(α+l/2)+22a_1 V* Λ β β

(o,«)χs1

co.^xs1 Jo

<CX)

which proves (5.10). Since lim \\Kn—K\\oo=0y K^μ—Aβ)'1 converges in norm

to K{μ—Δβ)~ι and so K(μ-Aβ)"1 is a compact operator.
(2) 2-nd step. We now return to the general case in which the metric g

is given by (2.1). We first note that for every compact set S in R\{0}> the
Laplace-Beltrami operator Δ restricted on S is uniformly elliptic. We now
take a compact set S in R2\{(r, θ) 0<r<r3}, where 0<r 3 <r 1 . Then it is known
that there exist positive constants cl9 c2 such that

<:_^. e x p ^.pfaθMb.θjη f o r e v e r y ( β | β i ) f

where p((α, ̂ !), (6, ̂ 2)) denotes the Riemannian distance between (a, θ^) and
(by Θ2)y (cf. [25]). Therefore, by combining this with (5.5), we can show that
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there exists a positive constant C satistying the following inequality

( G\μ, (a, θx)9 (ft, 02))*(ft) dbdθ^C for every (α, ί j G S .

Hence for the proof of Lemma 5.1, it is sufficient to show that for r 4e(r 3, r j ,

(5.11) ( f G V , (*, *i), (ft, β2))^(ft) dbdθ2<oo,

where S(r4)= {(r, 0)^(0, oo)χS 1 ; 0 < r ^ r 4 } . Now we fix a positive constant r5

such that rA<rs<rl9 and set

Let (^(ί), Piaji)) be the diffusion process generated by the operator

Δ ( + +
2 2 \dr* r dr r2* Qθ2

discussed in the 1-st step, we set

and we consider the probability measure μ(β βl)(dsdθ) on (0, oo)χ35(r5) defined
by

μ(a,βl)(dsdθ) = P(a.βl)[τ(=ds,X(τ)<=dθ].

Let ko(t, (a, flj), (b, θ2)) be the probability density function of the minimal dif-
fusion process {£(t); 0 ^ ί < τ } , i.e. for every bounded continuous function/,

6) K{t, (a, θi), (b, Θ2))f((b, θ2)) b" dbdθ2 for every (b, 0 2)eS(r 5)

where E(βt0l) denotes the expectation with resepct to P(β>βl) Then by (2.1),
the transition density function k(t, (a, 0-̂ , (ft, θ2)) in the general case can be re-
presented in the following form:

k(ty (a, θx), (ft, θ2)) = ko(ty (a, θλ\ (ft, θ2))+~k(t, (a, θt), (ft, θ2))

where

h(t, (a, θλ), (ft, θ2)) = Γ ( k(t-s, (r5, 0), (ft, θ2)) μ(a>θl)(dsdθ).
Jo JθS(r5)

It is easy to see that

( ( Γ e-"' t h{t, (a, θx)f (a, Θ1))dt] a* dadθx<oo .
JS(r4) Uo )

Furthermore, the results obtained in the 1-st step implies that
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{ J~ e-" t.ktf, (a, θx), (a, ' dadθx<°o .

Combining these and (5.5), we obtain (5.11). Hence the proof of Lemma 5.1
is now complete.

6. Asymptotic distribution

By using a usual method in the Malliavin calculus and the probabilistic
representation of the semi-group Qty we can show that there exists the C°°-
density h(t, x> x) of the kernel of the operator Qty t>0, with respect to the
Riemannian volume dm. For details of the proof, see [5], [6] and [26]. We
next note that

(6.1) m({x\\x\<\}\? λ a s λ
α 2 + l

and

(6.2) b(x) = b(r,θ) = ̂ -=pr»-1-«* if

sin

As in [2], setting

Na(\)=\ybUX)tn(dx) λ>0,

we have

t

Jo 2πt JΛ2

 s i n h ί ^ I

Hence combining (6.1), (6.2), (6.3) with the Tauberian theorem, it is sufficient
for the proof of Theorem 2.3 to show that as t J. 0

<6.4)
sinh t—~

Since /^ e λt dN(\)=fR2h(t, x, x)m(dx), the relationship (6.4) is reduced to
the following asymptotic formula

(6.5) j r f h(t, x , x)m(dx) - ^ ^ 2

Kχ) m{dx), as ί | 0 .

Next, on the two-dimensional standard Wiener space (Wl> P) we consider
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the following stochastic differential equation: for w=(w1

y w2)^Wl,

dr(t) =

(6.6)

o \ \ / /

g(r(t))

r(0) = a>0

\ 0(0) = θx.

It is known (cf. [6]) that there exists a unique solution (re(t, a, w1), θ'(t, (a,
w)), t>0 of (6.6). Furthermore, it is easily seen that

1) r*(t, a, w1) is independent of w\t).

2) θ\tΛa,ΘXw) = θϊ+ε\ — ^ - ^ , for wit) = (toHt), zv*(t)).
Jo g(r*(sy a, w1))

We now denote by δ the Dirac δ-function at y associated with the Riemannian
volume dm, i.e., for any C°°-function/ with compact support

\^δy(x)f(x)dm(x)=f(y).

Then it is known (cf. [5]) that

h{6\ (a, 0), (a, 0))

(6.8) = ( expίV 1 1 ! Γ k(r\t, a, wι))°dθ\t, (α, 0), w)}
Jw Jo

.δ(β,o)(r8(l, a, w1), θ'(ί, (a, 0), w))P{dw)

where the right hand side means the generalized expectation in the sense of
Watanabe [26] (also see [6]). Then (6.8) can be rewitten in the form.

h{ε\ (a, 0), (a, 0))

(6.9) = £[exp V = ϊ Γ k(r\t, a, wι))odθ\t, (a, 0), to)}
JO

l(r\ί, a, to1), θ\l, {a, 0), to)) = (a, 0)] k{S\ {a, 0), (α, 0))

where J?[ /(r'(l, α, w1), θz(l, {a, 0),w))=(a, 0)] is the conditional expectation with
respect to the Wiener measure under the condition (fε(l, a, w1), θ\\,(a,ϋ),w))
=(α, 0). Set

1(6, a) = E[expW^Λ Γ k(r%t, ay w
ι))odθ\t, (α, 0), w)}

Jo

l{r\\, a, w1), θ\\, {a, 0),«,)) = (a, 0)],

and let £Fι be the σ-fίeld generated by {w\t); 0 ^ / ^ 1}. Then
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1(6, a) = E[E [exp W=ϊ Γ k{r\t, a, wι))odθ\t, (a, 0), to)}
(6.10) J o

liθ\l, (a, 0), to)) = 0} f l f f 1 ] / ^ , α, z*1) - α] .

Since {w1^); O ^ ί ^ l } and {w2(ί); O ^ ί ^ l } are independent under the Wiener
measure, there exists a Brownian motion B(t), O^t^l which is independent of

such that

(6.11) θ\t, (a, 0), to)) = B(£ψ(t, a, w1)),

where

ds
φ°(t, a, *,>)=

o g(r*(s, a, wι)

Furthermore we can construct a Brownian motion B(t), O ^ ί ^ l , on the Wiener
space {WQ, P} such that

1) B(t), O ^ ί ^ l , is independent of {w\t); O ^ ί ^ l } ,

2) E[exp{χ/=T Γ k(r\ty ay w'))odθ\ty [a, 0), to)}
Jo

=ΐ [ k(r\t, a, w'))odB{B^\t, a, w1))}
Joo

= E[ex.PW'=ϊi\1 Kf(t, a, wψdS(6ψ(t, a, w1))
Jo

Therefore we obtain

(6.12) I(S, a) = E[txp {--f- ( {k{r\t, a, wι))-l{wι)f dφ\t, a, w1)}
Z Jo

where

(6.13) k(wι) = — — — Γ k(r% a, wι))-dφ\t, α, w1).

For every continuous function/ on [0, 1], we set

yU? = Γ (f(t)-ff dφ\t, a, w% Ϋ[ff = ί1 (f(t)-ff dt
Jo Jo

where
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We also use the following notations

f(t,a,toι) = k(r'(t,a,m1))-k(a)

(6.14) /ί(ί, a, zo1) = k'(a)(r% a, wι)-a)

fl(t, a, w1) = f(t, a,«»)-/!(«, a, w1).

Then we obtain that

/ϊ(ί, «, α*1) = k"(a+v(t, a, w)(r'(t, a, w»)-α))(r (ί, β, a;1)-*)2

for some 0<j7(ί, α, α>)<l .

Then (6.12) can be rewritten in the following form

1(6, a) = E[exp{-^-V[f\ , a, ̂ ^ 1 , a, wι) = a] .

We now note that by (6.6)

(6.16) r% a, w>) = β + ^ + ί " (' l^f i f i fgLfc .

Jo ^(rf(ϊ, α, ro1))

Next we set, for every fixed c>0,

β(6, c) =
Then

for

Next, we set r*=r 0 Vr 2 and fix constants 6lf ό2 such that r*<bι<b2. We also
define σ'(blt a, τv1) by

inf {t O^t^l, r*(ty a, w1) = b^, if

l,if { } = Φ,

and let A1[Sya]={zo1;σ2(blyayw
1)=ί}. For a fixed positive constant δ satis-

2fying — < δ < l , we set

A2[e,a] = {w1; max \w\t)\ <6~a~B)}.

Then by using (6.14), (6.15) and (6.16), we can show the following results:
There exist positive constants £*>0, i£Ί>0, K2>0 such that if b2^a^a(S,c)
and w1eA1[€, a]f)A2[Sy a] then
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£2V[f\( , a, ̂ 1 ) ] 2 ( l - i ^ 1 6 δ ) - ^ 3 ( δ - ( 2 / 3 ) ) ^ ε 2 F [ / ε ( , α, w1)]2

for 0 < £ < £ * .

By combining this with several results in the theory of 1-dimensional diffusion

processes, (cf. [7]). We obtain that as £ I 0,

J s l 5 1(6, ά)k(€\ (a, 0), (a, 0))g(a)dadθ1

( 6 1 7 ) lr\\, a, w1) = a]k{€2, (a, 0), (a, 0 M «

a,w>)]2lrχi,a,w>) = a]

k(S2, (a, 0), (a, 0))^(α)

^ ί Γ *[exp { - f w - ^ 1 ] 2 } M 1 ) = 0 ]

g(a)da(l+o(l))

where /̂ jCs.ajίzϋ1) and IA:ιu,aίpι) are the indicator functions of Ax\β, a] and
^42[£) Λ] respectively. Furthermore, for a fixed positive constant ft2) as £ I 0,

( ι [' 1(6, a)k(ε\ (a, 0), (a, Q))^a
JS JO

(6.18)

and

— \ dθγ\ £Texρ{— —
ZπS Js1 Jo 2

(6.19) /

^ 2^r£2 J

On the other hand,

J(6, a) = £[exp{- ^--^Άγ[w1]2}lw\l) = 0]
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can be rewritten in the following form:

J(β,a)

E [ { £ M [ (w\s)- \* wχt)dt)dw%s)yi&]}lw\l) = 0].
z g(a) Jo Jo

Hence

g(a)

( 0 )

^ϊε2^- Γ w\s)dw\s))l3ι Π
g(a) Jo

gψ)

=E[exp{V=ϊε**jή-S(l, w)}Ml)=0]

where S(ί,w) is the stochastic area of Levy, i.e.,

5(1, w) = i - Γ (wXi)^ 2 ^)-^ 2 ^)^ 1 ^)).
2 Jo

Combining this with (6.17) (6.18) and (6.19) we obtain that as £ J, 0,

£, α)^(62, (α, 0), (α,

7ΓC J 5 «/0

s 1 Jo

Here we used the following formula: for every

JM
2£[exp{V-lλS(l, w)>/w(l) = 0] = -

(for example, see [6]). Hence as ε [ 0,

L \ΪC) /(£' a)k(β2'(β' 0)> (α> °))si.a)dadθι
(6.21) μ2b(xl

sinh
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We now set

M\a,«i) =

For sufficiently small 7!>0, we set S(ά) = αγi.

Next, for sufficiently small 7 2 >0, w e s e t

A(β, <> 72) = Γ ^[exp i-ζ- V\f{ , β, w1)]2} M'(a, w>)> M -
Jβ(β,c) 2 £ 7 2

/r (l, β, w1) = a]k(S2, (a, 0), (β, 0))^β)ώ .

and

Λ2{£, c, y2) = Γ
Ja(ζ,c)

jr'{\, a, to1) = «]&(£2, (β, 0), (α, 0))g(a)da

Then it is easy to see that

(O.ZZ) Jβ(β.c)

Next we note that

max (
Jo g(r\sy ay w

1))

and without loss of generality we may assume

Hence setting σz{wι)=mί{t\ r*(t, ay tv
1)=r*}, we obtain that for any a^a(S, c)

P[M'(a, w>) > Ά r \ ί , a, w>) = a]
fcT2

«;1)>iί|I, σ\wι)^\ fr\\, a, w1) = a]

+P[σ'(w1)<ί Ir'(ί,a,w1) = a]

I w\t) \ > ̂ - - ^L/r'(l, a, w1) = a]
εγ2 Ύz

Therefore, for sufficicently small £>0,
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Γ
Jα(β,c)

Then by using the theory of 1-dimensional diffusion processes (cf. [7]), we can
show that the integral in the right hand side converges.
This implies

(6.23) #,c,72H.

Next we note that

V[f(;a, a,1)]^ F[/K , a, w>)]-F[/3( , β, «»)].

Hence

A2(6, c, y2)

<ί Γ P\v[f\(.yay » ι)]g4F[/;(.,β, w1)],
Jβ(8,c) L

w i ) ^ ^ . / r (l, β, w1) = ψ ( £ 2 , (α, 0), (a, 0))g(a)da

Γ
Jα(s,c)

M'(a, «,»)^.M/r (l, σ, w1) = α]*(£2, (α, 0), (α,

=#!(£, c, 72)+B2(£, e, y 2 ).

By using same arguments as above, it is easily seen that as 6 J. 0,

(6.24) Bz(€, c, γ 2 ) ^ 0 .

Furthermore there exist positive constants K3 and K4 such that for a^a(6, c) on

the iw' M'i^w1)^
I 6 "2

V[fl( •.«, w1)] ̂  ^ K ] I *'(«) 16-1 A'(α) I V[z\ , α, w1)

where

Jo £(re(ί, α, w1)1))

Combining these we can show that there exists a positive constant K5 such that
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Γ P\rίn(->*. ^)]^V[fl{ , a, w1)], M\a, to^M-
Jα(ε,c) L c 2

/r (l, a, zv>) = «]*(£2, («, 0), (a, 0))g(a)da

Jβ(S,c)

/r (l, a, w1) = α]/ί(ε2, (α, 0), (a, 0))g(a)da

Jβ(β,c) L

/r (l, α, wι) = ajk(S\ (a, 0), (a, 0))g(a)da .

Hence by using same arguments as in the proof of F-(10.22) in [6], we can
show that there exist positive constants γ 3 and K6 such that

Bλ{ε, c, γ 2 ) ^ Γ exp{-K,{-£-B^-^}k{B\ {a, 0), (a, 0))g(a)da
Jadtc) o{a)

which implies that as 6 I 0, B^S, c, 72)~^0 Combining this with (6.19), we ob-
tain that as S I 0, A2(6, c, 72)~>0 Therefore we complete the proof of follow-
ing: for every c>0,

Ja(i,c)

l, a, w1) = a]k{S\ (a, 0), (α,

as £ I 0. Combining this with (6.21) and (6.23), we can complete the proof

of Theorem 2.3.
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