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1. Introduction

In the previous paper [3] we considered singular perturbations of symbolic
flows and showed the existence of poles of the zeta functions associated with
perturbed symbolic flows. The purpose of the present paper is to remove some
conditions required in the previous paper.

Our aim in studying poles of the zeta functions is to show the validity of the
modified Lax-Phillips conjecture for obstacles consisting of several small balls.
The modified Lax-Phillips conjecture is concerned with the distribution of poles
of scattering matrices. About this conjecture, see Lax-Phillips [8, Epilogue]
and Ikawa [5]. When we want to apply Theorem 1 of the previous paper to this
conjecture, we have to require some additional conditions on the configuration
of the centers of balls, that is, the conditions (A.2) and (A.3) of [3, Section 4].
As a consequence of the improvement of the theorem, we can show the validity
of the modified Lax-Phillips conjecture for all obstacles consisting of small balls
whose centers satisfy only (A.I) of [3].

Now we shall introduce notations for the statement of our main theorem.
Let L be an integer>2, and let A=[A(i,jy\it.=lt2,...>L and B=[B(i,j)]itj=h2,...,L be
zero-one LxL matrices.

For i,j G {1, 2, •••, L}, we denote i-*j when there is a sequence il9 i2y •••, ip

such that B(iu i ) = l , B(iq+l9 iq)=ί for q=l, 2, •••,£—1 and B(j, ip)=\.
We assume on B the following:
There is \<K<L such that

(1.1) B(iJ)=0 for all; ifi

(1.2) i-+i for all l<ί<K,

(1.3) i -+j implies j -g i if i,j<K.

We assume also the following relation between A and B:

(1.2) B(i,j) = 1 implies A(i,j) = 1 .
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Let/ε, hz be functions with parameter £ > 0 satisfying

/..A.eff^ΣJ) for all 0<S<Sly

where £x is a positive constant, and let &e£?e(2;i) satisfy

ί ( ) 0 if B ( f i , g 2 ) = l

U ( f ) > 0 if £(&,&) = 0.

We assume that

(1-4) III/.-/0III., IIIA.-Λblll.-O as £ - 0 .

For 0<£<£ly we define zeta function Zz(s) by

Zs(s) = e x p ( S - Σ

where

)+*(« log e
and

Our main theorem is the following

Theorem 1. Suppose that (1.1)~(1.4) are satisfied, and that

(1.5) /o(«>O /orα// f e Σ J ,

(1.6) Ab(f) ίί reα//or αflf f e Σ J iwrA ίA ί̂ fi(f!, ξ2) = 1.

^ -D ̂  neighborhood of s0 in C and €0>0 such that, for
every 0<S<60, Zt(s) is meromorphic in D and has a pole sz in D with

ss->s0 as

Compared with Theorem 1 of the previous paper, the present one requires
neither the condition (1.2) nor (1.4) nor (1.10) in [3]. The removement of the
additional conditions gives us the following result on the modified Lax-Phillips
conjecture:

Theorem 2. Let Pjy j= 1, 2, •••, L, be points in R3, and set for £>0

0, = Uί-itf,..,, Ojιt = ix; \x-Pj\<S}.

Suppose that

(A.I) any triple ofP/s does not lie on a straight line.

Then, the modified Lax-Phillips conjecture is valid for OB if 0 < £ < £ 0 .
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The amelioration of the theorem is done with the aid of the results of

Adachi-Sunada [1] and of Pollicott [10], Haydn [2].

The main reason why we had to assume the additional conditions was to

guarantee the Property P of Parry [9] for Xz s. Indeed, this property was

essentially used in [9] for the proof of meromorphic extension of the zeta func-

tion. But Pollicott [10] and Hadyn [2] proved Theorems on the meromorphic

extension without using the Property P. If we use the argument of [10,2], it suf-

fices to consider the spectrum of the Perron-Frobenius operator Xes. To

get informations of the perturbed operator X2tS, first we have to consider the un-

perturbed operator Xs. But we cannot apply the standard Perron-Frobenius

theorem to the unperturbed operator because we do not assume the unperturb-

ed system to be topological mixing. To overcome this difficulty, we decompose

the unperturbed dynamical system into a direct sum of irreducible subsystems,

and apply the generalized Perron-Frobenius theorem in [1] to each subsystem.

In order to extract informations of the spectrum of perturbed operator from

those of the unperturbed operator, we shall follow the argument done in [3].

2. Decomposition of X 's

Hereafter we shall use freely notations used in [3]. As in [3], we introduce

an operator X's in C(ΣJ) defined by

s))u(v) for

<2 '> - " " < » = 10 for ξ S Σ ( 2 ) ,

where

(2.2) ro(ξ;s)=-sfo(ξ)+ho(ξ),

and Σ5(η1,e1)=i indicates the summation taken over all ^ e Σ J such that σAη=ξ

and B{τjiy £ x )=l .

In this section we shall consider the spectrum of X's in the space S^Σl) .

To this end, as mentioned in the introduction, we consider the spectrum of the

operator-Γ, in the unperturbed dynamical system Σc, and compare the spectrum

of X's with that of Xs.

2.1. On the decomposition of Xs

Let us say that i and j are equivalent when iη*j* Then the conditions

(1.2) and (1.3) on B imply that this gives an equivalent relation in {1,2, •••,!£}.

Therefore, by changing the numbering of the elements of {1,2, ---,K}, we may

assume that the set {1,2, -~>K} is decomposed into equivalents classes

Mj = iip ij+h . - , ij+ι-l} (j = 1, 2, . " , /).
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We shall denote by Cj the (ij+1—ij)x(ij+1—ij) matrix [B(iJ)]itjGMj. Note that
each Ci is irreducible. We set

y and £(£„ ξi+ι) = 1 for all i}

and

Sέ = {? = (fi, f» - ) ; 1 ^ , < ^ and B(ξit ξi+1) = 1 for all»}.

Regarding Σcy and Σc as subsets of Σί, we have a decomposition

(2.3) C(ΣΪ) =

For ι*eC(Σ3) we denote by [u] and [«]y the restrictions of u to Σc and Σcy re-
spectively. Conversely, for functions in Σc or in Σcy we shall often treat them
as functions defined in Σ3 by extending them by zero in the outside of Σc or of

Let Xs be the operator in C(Σc) defined by

v;s))v(v) for

and let -CjιS, be the operators in C(ΣCJ) defined by

^ ; ί ) ) ^ ) for »

where σc and σCj denote the restrictions of σA to Σc and Σc ; respectively.

Then Xs has a decomposition

(2.4) _LS = -i-

By using the notation introduced in the above, we have for all

Note that the conditions (1.5) and (1.6) imply that r0 is real valued in Σί y for

2. Thus, taking account of the indecomposability of Ci we can apply Theo-

rem 3.8 and Lemma 3.11 of [1] to Xj s and get the followong

Lemma 2.1. For s^R, Xjs has a decomposition

Σ

with the following properties:

(ii) λ , l 5 > 0 α»rf - dX' 1 s > 0 .



SINGULAR PERTURBATION OF SYMBOLIC FLOWS 165

where vjXsίΞ rV> 0 Sy(Σί y )* satisfying vjXs(ρjXs)=lf

(v) Eijkβts.. = Kk>EjtktS, EjXsSjtS = S,β,XΛ = 0 ,

(vi) the spectral radius of Sjs<\jls.

Hereafter, we shall denote often XjΛtS as XjtS. Note that we have for each j

\jS -> oo as s —» — oo y

Xjs —> 0 as s —> oo .

Thus, by changing the numbering of Xjs if necessary, we may suppose that
for some so€ΞR

(2.5) 1 = λ1>So = X2,s0 = ••• = λM o>λ/H-1 > ί o> ••• >λ / # 5 o .

Then, by using the perturbation theory we have immediately the following

L e m m a 2.2. There are a neighborhood of sQ in C and a constant δ > 0 such
that for all s^D we have a decomposition

h kj ^

with the following properties:

(iϋ) ^

(iv) |λ , s - l | < δ ,

(v) | λ ; , M - l | > 2 δ , l - δ < | λ y , M | < l + δ for k>2,

(vi) the spectral radius of Ss < 1—2δ.

2.2. On eigenvalues of X i
With the aid of the results of the previous subsection, we shall consider the

decomposition of X's. First remark that for any positive integer m and for
we have an expression

(2.6) -C',"u(ξ) = ^ Σmexp(SmrQ(Vm, Vm-u - , V» ξ; s)) u(Vm Vm^ - , ^ , f ) ,

where the summation is takenover all ηl9η2, '",ηm satisfying B(ηlyξ1) = ly B(η2,971)
= 1, •••, B(ηmy ^7m-i)=l If ? e 2 c , all (97̂ , •• ,971, ξ) in the right hand side of
(2.6) belong to Sc Thus we have

(2.7) £?u{ξ) = £Ίu(ξ) for all
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Lemma 2.3. For each pair j , k in Lemma 2.2, there is a function wJikιS(

ΣJ) satisfying

(2.8) I (kjΛΛ)- Σ tMSMv*., -, V2,1, ξ))PμΛvt,-
ι> V(l))

Ύlm>" ,Ύl2>1

for m = 1 , 2 , . . . ,

2 w a constant such that !

Proof. Let £<=Σ(1) be an element such that ^ G C A . Then all the Vj in
the summation of the right hand side of (2.6) belong to Ch. Thus the argument
in Section 2 of [3] can be applied and we see that (2.8) holds for all ξ such that
ξλ<K. It follows from (2.8) that

hj for all ξ^τi such that ξλ<K.

Define wjXs(ξ) for f GΣ(1) such that ζx>K+\ by

(2.9) wjtktS(ξ) = (λyΛf)-i Σ e x p W ^ I ) ) ^ , ^ ^ ) .

5 ^ , ^ = 1

We have immediately

Λ ; AS(£) = K*.*°i.».J(S) f o r a 1 1 ?^2J.

Concerning the converging estimate (2.8) for ξx>K-{-\, we use the following
relation:

jχs)-m Σ expί^^o^, .-, % , /, ξ))pjtktS(Vm, - , /,

;,, —,%,/, ξ))pj,k,s(Vm, —>h

By using the fact that (2.8) holds for ξ satisfying ξ^K, we see immediately
from (2.9) that (2.8) holds for all ξGΣ(1).

Remark that we have from (2.7)

from which it follows that

Define Έ'UKs by

(2.10)
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Then, we have

(2-11) ^./.^ί'.»'.. = «y.A*'^.*...

and

(2-12) X'sE'iiKs^%hKsE'i>htS.

Now use the following expression

-C's
mu(ξ) = Σ ezpiSMvv - . Vi, ξ))-C'Mv,, -, Vi, ξ)

, -, Vι, ξ)) i-CMv,, •". Vi, V(l))

Vi, Z)--

= I + Π .

We get immediately

|II |<Cθ

where we set P(ro)=max^(r y) and C is a positive constant independent of p
and q.

By using (2.7) and Lemma 2.2 we have

„ - , vi, vU)) = Σ Σ (kj,*.,)" VJJ>A"\J)'PJ.UVV - . TI, vw)

Applying the argument in Section 2 of [3] to the above expression we have

1 1 - Σ Σ (\,M)> E'jχsu(ξ) I <C\\\u\\\β{(l-28y exp(^(Re ro))+γΓ}

Then, by exchanging Dλ by a smaller neighborhood of s0 if necessary, we have

Lemma 2.4. There exist a neighborhood Dx of s0 in C and a positive con-
stant δ2 such that we have for

(2.13) l - δ 2 / 2 < | λ . Λ s | < l + δ 2 / 2 ,

(2.14) l l l Σ Σ

2.3. On the decomposition of X[.
By using the same argument as in [3], we have the following two estimates

concerinng X's for
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\\\-£'sy\\\e<02θ
m\\\u\\\β+C3\\u\\~

Thus, by applying the theorem of Ionescu Turcia, Marinescu [6] to the pair of
the spaces C(ΣJ) and £Fβ(Σ]!i), we have from the above inequalities the following
decomposition of X's<ί in S ^ Σ i )

(2.15) X\ = Σ C E'j+S' = E'+S',

where

-C'SoE'j = CjE'j and | ^ | = 1 for all /,

E'fiΊ = h μE'j for all;,/,

EJS' = SΈJ = 0 for allj,

the speatral radius of *S"<1.

We shall show that there is no eigenvalue of E' besides %y,*,,0. Suppose
that c such that | c | = 1 is an eigenvalue and Z0 6Ξ£F6(Σ1) is its associated eigen-
function. Note that zo^O implies that ίΰ=[w]^0. Indeed, suppose that ώ) = 0.
Note that (2.10) gives us EjtktSow=0 for ally, k. Then, the application of (2.14)
to w implies that for all

\w{ξ)\ = \c-mX/

s

mw(ξ)\<C\\\w\\\θ(l-2δ2)
m.

By letting m tend to the infinity, we have w(ξ)=0. This implies that w = 0.
This contradicts «;$0. Thus our assertion is proved.

It is evident that ίΰ^O satisfies

Xfiό — cw .

Lemma 2.2 shows that c must be one of XjJιSQ

ys. Therefore, the eigenvalues of
Ef are λyiΛ|,0's. Then we have

dim Range E' = Σ

The decomposition (2.15) shows that for all we£Fβ(2J[) and m

-Cu'ζ = Έ Έ (λ,,M o)XM

and (2.14) implies that
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This shows that

the spectral radius of S '<1—2δ 2 .

By means of perturbation theory, we see that there are a neighborhood D2

dD1 of s0 and a constant 0 < δ 3 < δ 2 such that for all ί G ΰ 2

-Cf

s = E's-\-Sf

s,

dim Range E's = k ,

all the eigenvalues of E'S<EΞ {λ; l - ^ - δ 3 < | λ | < l+-^-δ3}

the spectral radius of ££<1—3δ 3 .

On thd the other hand, it is proved that %jtk,s a n d Wj,k,s a r e eigenpairs of X'sy

which satisfy 1 δ 3 < \Xjtk>5\ < l-\ δ3 and that wjtkfS are linearly indepen-

dent. This fact shows that

dim Range Σ Σ λ,, sE'j k s = k .

Therefore it follows that

ί = Σ l Σ 5v., ,ft,5 î,*,s

Denote by μ°k, 1=1, 2, •••, /0 the distinct values of λ,-,*,̂ , Λ = l , 2, •••, kpj=

1, 2, •••, A, and rename all the %jtktt such that XjkfSo—μ} as μuti)tSi i = l , 2, ••?, ί7.

Hereafter we denote by F[ιti)tS and W(iti)tS the corresponding 2?/,^ and 2#yf*ίS.

We set

and

F'ι,s = Σ μ>u.i),*F{ι.i).s

Then, summing up the argument in this subsection we have the following

Proposition 2.5. There are so^R, a neighborhood D2 of s0 in C and a po-

sitive constant δ3 such that, for all s^D2, Xf

s has a decomposition

satisfying the following:

(1) Fί.,S'=S',F'.,,=0, for all 1=0,1, - . , /0.

(2) F'ltSFίtS=F'ktSFίfS=Ofor all I, k=0,1, ~, l0 such that

(3) For 0<l<l0, the dimension of the range of FfιtS=iι for all s^D2 and the
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eigenvalues of F'tS are μati)t8 i = l , 2, •••, //, which satisfy

I tHι.O.-μϊ I < y δ 3 I μϊ-μϊ I >S 3

Especially, μ°0=l, io=h and / % , y ) , s = 5Ly,f, (/= 1, 2, • , h).

(4) ίλe spectral radius of S{<3-δ3.

3. Spectrum of-Γ g s

Let Xz s be the operator in ΣJ defined by

We shall show the existence of s such that Xz s has 1 as an eigenvalue.
Even though the following is a well known fact on perturbations of linear

operators, we shall mention it in the form of lemma to make clear the argument
below.

Lemma 3.1. Let T be a bounded operator in Banach space B with norm
|| ||. Suppose that {λ; |λ—μ\ =a} (μ^C, α>0) is contained in the resolvent
set of T, and that the projection

p= 2-^rτλ-.,.« λ-Γ )"Λ

is of finite rank h. Let {wlf w2, •••, wh} is a basis of the range of P.
Then there is a>0 such that

\\Tf-T\\<a

implies the following:

(i) {λ;|λ—μ\ =a} is also contained in the resolvent set of T'.

(ϋ) The projection

2πV— 1 J iλ-#*ι=β»

is of rank h and

w'i = P'wj(j=\,2,-,h)
form a basis of the range of P'.

implies that

Σ
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where C1 is a constant depending on μ and a but independent of T.

Suppose that Lemma 2.4 and Proposition 2.5 hold for the open disk D2=
{s; \s—so\<ao} (αo>O). Recall that %jsyj=ly2y -~yh are analytic in D2y and
satisfies

^ 1 d s:

Thus, by exchanging OQ by a smaller one if necessary, we may assume the follow-
ing:

| λ ί > Γ - l | < S 3 / 3 for all l e β , ,

(3.1) |λs , y - l |>^ik-^ol forall ί G { ί ; \s-so\ <a0} (cλ>0).
By the same argument as in [3, Section 3] we have

--£JII<r^O uniformly in stED2 as £->0 .

Therefore by applying Lemma 3.1 to the pair of operators T=X'S, T'=XZ s

we have

Lemma 3.2. There are positive constants £0 and δ4 such that for all
0 < £ < £ 0 and s^D2 we have the following decomposition of Xz s:

where

(3.5) the spectral radius of <SM< 1—2δ3,

dim Range 6^)tttS = it for all 0<6<S0,

(3.6) Σ exP(Rer 8(f,*))<C(l+δ 3)Λ forall n.

Moreover, denoting the eigenvalues o/<?(/) s s by λ/fί(ε,ί), i=0> 1, — ,i/, l=l,2,~ ,h
we have for all 0<8<SQ

(3.7) | λ l i y ( M - μ ? | £ y δ 3 / ^ β / / ί e A , / = 0 , l , . . Λ ,

(3.8) | λ o , / £ , ί ) - l | > δ 4 forall s^{s; \s-so\ =or 0}.

By using the decomposition (3.2) with the properties (3.6) and (3.7), we

have the expression
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and

Recall that WQti)^ i=ίy2, •••,*/ form a basis of Range FltS. From the continuity

of Xzs on 6,

are linearly independent for all 0 < £ < £ 1 and s^D2. This fact implies that

{wu,i),n,s'> *'=1> 2, •••, i7} is a basis of the range 3*^ 2S. It holds that

wu,i),2,sιs analytic in
wa,i),2,s~*wu,i),s uniformly in s^D2 as £->0 .

Therefore Gu),*,swϋ,i),2tS is
 a linear combination of w(/,,),*,s> '̂=1> 2 , •••, ih that is,

Applying Lemma 3.1 we have

aω,jk depends o n ί E ΰ 2 analytically,
aω.jk(£> ή -> «(/>.y*(0, ί) uniformly in s<ED2 as 6 -> 0 .

Let < ?̂/(θ, ί) be the // X ij matrix defined by

^(8, S) = [«(/)iyJyi*-li2,..v /

It is evident from Lemma 3.1 that the eigenvalues of <?(*),ε,s in the space

and those of cJf/(£, s) in C{ι coincide including the multiplicities. Set

(3.9) /,(λ, s; S) = det ( λ / - ^ ( £ , s))

Then it follows from the properties of a^)jk that

(3.10) bι,j(€y s)ίs analytic in

(3.11) /̂,y(£> *) is continuous in £^[0 , £0] uniformly for

L e m m a 3.3. 7%£ eigenvalues of S(Dtiti are the roots of ft[\, s; £)=0,

which is the polynomial given by (3.9) whose coefficients satisfy (3.10) and (3.11).

Moreover, for each 0<S<£0, fo(lys;S)=O has exactly h zeros in {s; \s—so\<

a0}, which converge to s0 when 6 tends to zero.

Proof. Note that io=h and
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; ) Π ( ; , s )

Then (3.1) shows that

/oil, ί; 0)4=0 for all 0 < | ί - *

s=s0 is a zero point of A-th order of /0(l, s 0).

Thus, /o(l,$;O) has exactly h zeros in {s; \s—so\<ao}. On the other hand,
(3.11) and (3.8) imply that the number of zero points of fo(l,s;G) in {s; | ̂ — 0̂1 <
a0} is invariant for all 0 < £ < £ 0 . Since the dependency on £ of the zero points
of/0(l, s £) is continuous, they converge to those of /0(l, s 0)=0, which are equal
to s0. Thus the assertion of the lemma is proved.

4. Proof of Theorems

In order to show Theorem 1, we apply Theorem 2 of [9, Section 4] or
Theorem 4 of [2, Section 4] to -Cis. By exchanging £0 by a smaller one if neces-
sary we may assume that

Then, the application of the theorems of [9,2] to Xzs assures that

Ze(s) is meromorphic in

and is of the form

where φ( , £) is holomorphic in Re ί>ί0+θf0. From Lemma 3.3, we have Theo-
rem 1.

As to Theorem 2, follow the argument in [3, Section 4] by using Theorem
1 of the present paper instead of Theorem 1 of [3], and we have Theorem 2.
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