Ikawa. M.
Osaka J. Math.
29 (1992), 161-174

SINGULAR PERTURBATION OF SYMBOLIC FLOWS AND
POLES OF THE ZETA FUNCTIONS. ADDENDUM

Mitsuru IKAWA

(Received June 14, 1991)

1. Introduction

In the previous paper [3] we considered singular perturbations of symbolic
flows and showed the existence of poles of the zeta functions associated with
perturbed symbolic flows. The purpose of the present paper is to remove some
conditions required in the previous paper.

Our aim in studying poles of the zeta functions is to show the validity of the
modified Lax-Phillips conjecture for obstacles consisting of several small balls.
The modified Lax-Phillips conjecture is concerned with the distribution of poles
of scattering matrices. About this conjecture, see Lax-Phillips [8, Epilogue]
and Tkawa [5]. When we want to apply Theorem 1 of the previous paper to this
conjecture, we have to require some additional conditions on the configuration
of the centers of balls, that is, the conditions (A.2) and (A.3) of [3, Section 4].
As a consequence of the improvement of the theorem, we can show the validity
of the modified Lax-Phillips conjecture for all obstacles consisting of small balls
whose centers satisfy only (A.1) of [3].

Now we shall introduce notations for the statement of our main theorem.
Let L be an integer>2, and let A=[A(1, j)];,;-1,2,,. and B=[B(3, j)];,;=1,2,-,. be
zero-one L X I, matrices.

Fori,jE{1,2, -, L}, we denote i?j when there is a sequence 2,7, -+, 7,

such that B(i}, 1)=1, B(t;+y, 2,)=1 for ¢=1, 2, -+, p—1 and B(j, i,)=1.
We assume on B the following:
There is 1<K <L such that

(1.1) B(,j)=0  forallj ifi>K+1,
(1.2) igi forall 1<i<K,
(L.3) i3 implies j-gi if 74,j<K.

We assume also the following relation between 4 and B:

(1.2) B(i,j) = 1 implies A(5,j)=1.
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Let f,, k. be functions with parameter £>0 satisfying
Joh€Fy(Z})  forall 0<e<g,
where &, is a positive constant, and let kEF (S }) satisfy

{k(z:) =0 if B, E)=1

. k(E)>0  if B(£,£)=0.

We assume that

(1.4) W fe—Folllo, [lle—Pollle—0 as &€—0.
For 0<€<¢,, we define zeta function Z,(s) by

Zy(s) = exp (g% .r"zglg exp(S,re(&, s)))

where

7€, ) = —folE)+he(E)+-K(E) log €

and
Suto(E, ) = 14, ) re(0 4, )+ -+ +re(ahTE, 5) -
Our main theorem is the following
Theorem 1. Suppose that (1.1)~(1.4) are satisfied, and that
(1.5) f(E)>0  forall E€3},
(1.6) hy(&) is real for all EE3} such that B(E,, &) = 1.

Then there exist s, &R, D a neighborhood of s, in C and &>0 such that, for
every 0<E< &, Z,(s) is meromorphic in D and has a pole s, in D with

Se—>5g as &—0.

Compared with Theorem 1 of the previous paper, the present one requires
neither the condition (1.2) nor (1.4) nor (1.10) in [3]. The removement of the
additional conditions gives us the following result on the modified Lax-Phillips
conjecture:

Theorem 2. Let P,, j=1,2, -, L, be points in R’, and set for £>0
O = Ufi0,, O;.= {x; |x—P;| <&}.
Suppose that
(A.1) any triple of P’s does not lie on a straight line.
Then, the modified Lax-Phillips conjecture is valid for O, if 0<EX&,.
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The amelioration of the theorem is done with the aid of the results of
Adachi-Sunada [1] and of Pollicott [10], Haydn [2].

The main reason why we had to assume the additional conditions was to
guarantee the Property P of Parry [9] for L, ,. Indeed, this property was
essentially used in [9] for the proof of meromorphic extension of the zeta func-
tion. But Pollicott [10] and Hadyn [2] proved Theorems on the meromorphic
extension without using the Property P. If we use the argument of [10,2], it suf-
fices to consider the spectrum of the Perron-Frobenius operator L,,. To
get informations of the perturbed operator L, ,, first we have to consider the un-
perturbed operator £,. But we cannot apply the standard Perron-Frobenius
theorem to the unperturbed operator because we do not assume the unperturb-
ed system to be topological mixing. 'To overcome this difficulty, we decompose
the unperturbed dynamical system into a direct sum of irreducible subsystems,
and apply the generalized Perron-Frobenius theorem in [1] to each subsystem.
In order to extract informations of the spectrum of perturbed operator from
those of the unperturbed operator, we shall follow the argument done in [3].

2. Decomposition of L

Hereafter we shall use freely notations used in [3]. As in [3], we introduce

an operator L% in C(Z}) defined by

Saeny -1 €XP (Rl $)uln)  for EEX(1),

(2.1) L) = {0 for £€3(2),

where

(2.2) (&5 8) = —sf(E)+h(£) ,

and g, ¢,-1 indicates the summation taken over all EX} such that o =&
and B(y, &)=1.

In this section we shall consider the spectrum of L% in the space Fy¢(Z}).
To this end, as mentioned in the introduction, we consider the spectrum of the
operator -L, in the unperturbed dynamical system =&, and compare the spectrum
of L with that of L,

2.1. On the decomposition of {’,
Let us say that ¢ and j are equivalent when i 7 j. Then the conditions

(1.2) and (1.3) on B imply that this gives an equivalent relation in {1,2, ---, K}.
Therefore, by changing the numbering of the elements of {1,2,---, K}, we may
assume that the set {1,2, ---, K} is decomposed into equivalents classes

Mj = {ij; ij+11 "'aij+l—1} (] =12, l) .
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We shall denote by C; the (;4,—1;) X ({;41—1;) matrix [B(3, j)];, jen;» Note that
each C, is irreducible. We set

22,— ={E=(£,&, ); E;EM,- and B(§;, &) =1 for all 7}
and

St={= (£, &, ); 1<E;<Kand B(§;, £;4;) =1 foralli}.
Regarding 3¢, and =¢ as subsets of 27, we have a decomposition
(2.3) C(E8) = C(E8)DOEE) B BO(EE)

For u€C(Z}) we denote by [«] and [u]; the restrictions of u to =¢ and =g, re-
spectively. Conversely, for functions in =¢ or in Z¢; we shall often treat them
as functions defined in 3} by extending them by zero in the outside of ¢ or of
DI

Let L, be the operator in C(Z¢) defined by

Lo(E) = 33 exp(nin; ))on)  for 9EC(3E),
0‘0 =
and let .£ ;.o be the operators in C(Z¢,) defined by
L) =, 3 expln(ni oln)  for vECEE),
Gojﬂ=

where o and o, denote the restrictions of o, to 3¢ and =%, respectively.
Then £ has a decomposition

(24 Li=L,,®L B DL,
By using the notation introduced in the above, we have for all uE3}
-Es[u] = -El,s[”]l@jz,s[u]z@"'@-fl,s[u]l .

Note that the conditions (1.5) and (1.6) imply that 7, is real valued in Z¢&; for
SER. Thus, taking account of the indecomposability of C; we can apply Theo-
rem 3.8 and Lemma 3.11 of [1] to -£ ;,« and get the followong

Lemma 2.1. For s€R, L 1,¢ has a decomposition

~ kj

.fj,, == 2 xj,k,:Ej,k,s+gj,8 ’

k=1

with the following properties :

(1) ‘Ej,SEj,k,s = Xj,k,sEj,k,s .
(ii) X;1>0 and s g
S

(i) bl = Sy and Xpp EN . if RER
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(iv) By u(®) = v,0,0)0;.8),

where Vb, s€ NorsoF o (2 )* satisfying v, (P, 1.5)=1,
) Elc N _alck'E,les: E,ksS,s—S sE,ks—O
(vi) the spectral radius of S <M1

Hereafter, we shall denote often A, ;as A, ;. Note that we have for each j

ot

g > OO as §—> —oo,
s—0 as §— oo,

?JI

Thus, by changing the numbering of X, if necessary, we may suppose that
for some s,ER

(2'5) 1 = i'1,80 = iQ.to = = i"l,.ﬂ)>i’h+l,.§‘o2 v 211.30 .

Then, by using the perturbation theory we have immediately the following

Lemma 2.2. There are a neighborhood of s, in C and a constant §>>0 such
that for all s€ D we have a decomposition

-E ; g]x,‘,k,sE‘j,k.s—}_S‘s

with the following properties :

() B (8) = »;0.[8))2,..48) ,

(ii) E;ksE’k' 23 ’8kk’E~,ks

(iii) B,,.5.=58E,,,=0,

(iv) % —1]<5,

) Rpe—11>28, 1-8<|% <148  for k>2,
(vi) the spectral radius of S,<<1—28.

2.2. On eigenvalues of L

With the aid of the results of the previous subsection, we shall consider the
decomposition of L. First remark that for any positive integer m and for £€
3(1) we have an expression

(26) -Eému(f) =11 ,%m exp(Smro("?m) NMm-1y **"y Ty E; s))'“(’?mv Mm-1 "y Ny E) )

where the summation is takenover all 5;,7,, ***, ,, satisfying B(y,, &,)=1, B(52, 7,)
ty By tm-1)=1. If EE3E, all (9, -+, m, &) in the right hand side of
(2.6) belong to =¢. Thus we have

2.7) Limu(E) = Lru(E) forall E€3St.
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Lemma 2.3. For each pair j, k in Lemma 2.2, there is a function w; ; (&) €
Fo(Zh) satisfying

(28) |(i‘j,k,s)—mﬂ Eﬂ Iexp(Squ("?m "ty M2y l’ E))pj,l,s(ﬂq)"'l) 77(”)
o,

—w,;, (E)|SCyt  for m=1,2,..,
and
‘ngj,k,f . i‘j,k,s wj’k,s .
Here v, is a constant such that 0<v,<1.

Proof. Let §=Z(1) be an element such that §,€C),. Then all the »; in
the summation of the right hand side of (2.6) belong to C,. Thus the argument
in Section 2 of [3] can be applied and we see that (2.8) holds for all £ such that
£,<K. It follows from (2.8) that

Liw; y (E) = N, ;4 (E) for all EEZ] such that §, <K.

Define w; ; (&) for £€Z(1) such that £,>K4-1 by
(29) wj,k,s(‘f) == (.)"'j,k,s)_l " EEI[ eXP(’o(m, E))w,',k,s(ﬂh ‘E) .
BOn, =1

We have immediately
.fﬁwj,k,s(f) = i.j.k,,wj,k's(f) for 211 EEEI .

Concerning the converging estimate (2.8) for £,>K-1, we use the following
relation:

(i'iyk.s)_m . 2_’) ; exp(Ser("]ma Tty M2y l’ E)) Pj,k,s(")m, °tty l) 77(’))

msslg

=Xjn9" 2 exp(ro(l, E)) {(X;0,6) "

ek ; BU,Ep=1

° » 21’ exp(Sm—er("?my *%y M2 A E))Pj,k,s(ﬂm: N A 77(1))}'°

By using the fact that (2.8) holds for £ satisfying £, <K, we see immediately
from (2.9) that (2.8) holds for all £E€3(1).
Remark that we have from (2.7)

w; 1. (&) = 0;,5,48) forall ¢3¢,
from which it follows that
Vj,k,s([w,",k’,s]j) = 8j,j’8k,k’ .
Define E ; , by
(2.10) Ej (€)= v, 4 ([u];)w; 1,4E) -
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Then, we have

(2.11) G B e =8, S wEl s,
and
(212) —££E§,k,s = Xj,k,sE;,k,s .

Now use the following expression

‘Egmu(g) = n ’“2_,% exp(sqro("]q’ R/ E))'E;pu(ﬂq’ MR/ T E)
:71 ,;7), CXp(Sqro(nq, AR/t E)) {‘[‘Zpu(ﬂq’ *tt M 77(1))

F(LPu(ng, ++5 1y E)—-LPu(ng, *++, my 7P))}
=I+1II.

We get immediately
ITI| < C6° exp(gP(Re 15)) exp(pP(Re 7o)l [ulllg ,

where we set P(r;)=max P(r ;) and C is a positive constant independent of p
and q.
By using (2.7) and Lemma 2.2 we have

B ki
'E;pu("]lv "ty M 77“)) = ng fv—l‘:l ()\'j,k,s)p Vj.k,s([u]j)‘pj,k,s("?q’ AR /T 77(”)
+Sg[u] (’7«"“: 7 "7(1)) .

Applying the argument in Section 2 of [3] to the above expression we have

kj

-3

i=1k=1

A ks) Ef e, a(E)| <Clllullle {(1—28) exp(gP(Re r5)) 41}
Then, by exchanging D, by a smaller neighborhood of s, if necessary, we have

Lemma 2.4. There exist a neighborhood D, of s, in C and a positive con-
stant 8, such that we have for all s€ D,

(2'13) 1—82/2£|Xj,k,slsl+82/23

kj

h
(2.14) I-Limu—33

j=1k=1

(Rjors) "B (ENoe < Clllull]o(1—28;)".

2.3. On the decomposition of L.
By using the same argument as in [3], we have the following two estimates
concerinng L for any uEF(Z})
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|Legull < Cyllul]
1L ullle < C:0™llulllg+Csl el » -

Thus, by applying the theorem of Ionescu Turcia, Marinescu [6] to the pair of
the spaces C(Z}) and F,(=}), we have from the above inequalities the following
decomposition of L%, in Fy(2})

(2.15) L= e, E+S =E+S,

where
LiE;=c;E; and |c¢;|=1 forall j,
EiE;=38,E; forall j,
ES'= S'E;=0 forall j,
the speatral radius of S’'<1.

We shall show that there is no eigenvalue of E’ besides X;;,. Suppose
that ¢ such that |¢|=1 is an eigenvalue and wEF,(Z}) is its associated eigen-
function. Note that w=0 implies that @=[w]=Z=0. Indeed, suppose that w=0.
Note that (2.10) gives us E} , ,w=0 for all j, k. Then, the application of (2.14)
to w implies that for all EEX}

lw(E)| = |e"Li"w(E) | < Clllwlllo(1—28,)".

By letting 7 tend to the infinity, we have w(£)=0. This implies that w=0.
This contradicts w=0. Thus our assertion is proved.
It is evident that =0 satisfies

L = civ .

Lemma 2.2 shows that ¢ must be one of X, ; ,’s. Therefore, the eigenvalues of
E'are X ;,’s. Then we have

dim Range E' = gki =k.
The decomposition (2.15) shows that for all u€F,(Z}) and m
Ll = 3338 (o) Bl 8™,
and (2.14) implies that
NS ™ ulllo<Clllulllo(1—28,)".
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This shows that
the spectral radius of S'<1-—28,.

By means of perturbation theory, we see that there are a neighborhood D,
C D, of s, and a constant 0<<3;< 8, such that for all s€D,

dim Range B/ =k,

all the eigenvalues of E{€ {); 1——%833 A< 1+%33}
the spectral radius of S{<1—38;.

On thd the other hand, it is proved that X, ,, and w,, , are eigenpairs of _L%,
which satisfy 1——%833 (X0l < 1—{——;—83 and that w;,, are linearly indepen-

dent. This fact shows that

d1mRang Zj . Eirs=F.

I[Ma'

Therefore it follows that

27\. ksEJks

Denote by u}, I=1,2, -+, [, the distinct values of X, ,, k=1, 2, -+, kj,J_
1,2, -+-, h, and rename all the X; ks such that X, , . =u? as pq ., 1=1,2,-

Hereafter we denote by F{; ;). and w(,,s the corresponding Ef ; , and w4 ,.
We set

"M=

Fio= 3%, .
and
= '211 Ba,sF (i, -
Then, summing up the argument in this subsection we have the following

Proposition 2.5. There are ;€ R, a neighborhood D, of s, in C and a po-
sitive constant 8y such that, for all s€D,, L% has a decomposition

'
= S1F} 45!
=1

sarisfying the following :

(1) Fi{.S'=SiF: =0, for «ll I=0,1, -+, |,

(2) Fi.Fi=Fi Fi:=0 foralll,k=0,1, .-, [ such that I+k.

(3) For 0<ZI<l, the dimension of the range of F| =i, for all s€D, and the
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eigenvalues of F ; are uq ;. 1=1,2, -, 1;, which satisfy
1 ’
|/1‘(I,:'),s—,u'(1’| <?33 I,UJ?_,U:?” >3, (l*l ) .

ESPeCially, /.Lg=1, io=h and ll'(o,j),szxj,s: (]=1, 2, -, h) .
(4) the spectral radius of S:<<3—8;.

3. Spectrum of .[, ,
Let L, , be the operator in 2} defined by

Lesu(®) = 33 exp(ri(m 5))u(n) -

We shall show the existence of s such that [, , has 1 as an eigenvalue.

Even though the following is a well known fact on perturbations of linear
operators, we shall mention it in the form of lemma to make clear the argument
below.

Lemma 3.1. Let T be a bounded operator in Banach space B with norm
[l-1l. Suppose that {\; |N\—u|=a} (LEC, a>0) is contained in the resolvent
set of T, and that the projection

P (v—T)"'dxr

_ 1 f
T 22V —1J a-rica

is of finite rank h. Let {w,, w,, +++, w,} is a basis of the range of P.
Then there is a>>0 such that

IT"—T||<a
implies the following :
(1) s IN—u| =a} is also contained in the resolvent set of T'.
(ii) The projection

’

— _1_j( _ -t
P= 22N —1J n-pi=a (=T dx
is of rank h and

w) = P'w]. (j=1,2,+,h)
form a basis of the range of P'.

h h
iii) 1pY aw,— 3 @il | <||T"—T|
implies that

h
2 lai—a| <GIIT' =T,
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where C, is a constant depending on p. and a but independent of T".

Suppose that Lemma 2.4 and Proposition 2.5 hold for the open disk D,=
{s; |s—so|l <ot} (2,>0). Recall that X, ,,j=1,2, -+, h are analytic in D,, and
satisfies

Ao=1, _d5 >0.

’ Is
me ds ! $=80p

Thus, by exchanging a, by a smaller one if necessary, we may assume the follow-
ing:
| A, —1] <83 forall seD,,
(3.1) [Xs,;— 1] 261 s—5] forall s&{s; |s—s| <ao} (¢,>0).
By the same argument as in [3, Section 3] we have

[||-L8,s—-Le sllle—>0 uniformly in s€D, as E—0.

Therefore by applying Lemma 3.1 to the pair of operators T=_L%, T'=_(,,
we have

Lemma 3.2. There are positive constants & and O, such that for all
0<ELE, and s€ D, we have the following decomposition of L, ,:

(32) Lo = 3}k,
where
(3.3) Ew,e€w,es=EweCies=0 if I*k,
(34) EesSes=SeCures=0,
(3.5) the spectral radius of S, <1—28;,
dim Range &y ., =14 for all 0<E<E,,

(3.6) %g exp (Rer (&, 5)<C(1+8)"  forall n.

ohge

Moreover, denoting the eigenvalues of £y ¢ s by Ny ((€,5), i=0,1,-++,4;, I=1,2,---,h
we have for all 0<<€LE,

(3.7) Ikl,j(E,S)—u?l£%83 forall s€D, 1=0,1,-1,

(3.8) Mo, ;(6,8)—11>8,  forall s&{s;|s—s| = ao}.

By using the decomposition (3.2) with the properties (3.6) and (3.7), we
have the expression
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1 _ Loy
8(#),!,! - 27;'1. Iz—#g|=31 z(z .Ee,,’) dz
and
_ 1 j{ oy
Py, = 2 S estics, (r—-Ley)tdz.

Recall that wy; ;) ,, t=1,2,+++,7; form a basis of Range F/ .. From the continuity
of L,,on¢,

W(1,i),e,s = 9(1),:,&”(1.;),: ’ i=1,2,,14

are linearly independent for all 0<€<¢; and s€D, This fact implies that
{wq 6,53 t=1,2, -+, 4} is a basis of the range P, ,. It holds that

W(1,9),e,6 1S analytic in s€ D, ,

W(.0).e.5>Wa,,s uniformly in s€ D, as €é—0.

Therefore () ¢ W i)e.s is a linear combination of wy ;) ... =1, 2, +++, 4,, that is,

Ew e, W, es = "_2'1 aw, j1(E )Wt pe,s -
Applying Lemma 3.1 we have
a), x depends on s€ D, analytically ,
ayy, ;1(€, 8) = aqw), #(0, 5) uniformly in s€D, as € — 0.
Let A, (&, s) be the 7; X 4; matrix defined by
JU(E, 5) = [auy, ju]; k=1,2,i; -

It is evident from Lemma 3.1 that the eigenvalues of &, ., in the space Fo(=})
and those of 4,(§, s) in € coincide including the multiplicities. Set

3.9 filn, 53 &) = det W— (6§, 5))
= NN by (8, )N 172 by o€, 8) -+ +by 5 (&, 5) -
Then it follows from the properties of a), ; that
(3.10) by, (&, s) is analytic in s€ D,
(3.11) by, (&, s) is continuous in EE[0, &) uniformly for s€ D, .

Lemma 3.3. The eigenvalues of &, ,, are the roots of fi(n,s; €)=0,
which is the polynomial given by (3.9) whose coefficients satisfy (3.10) and (3.11).
Moreover, for each 0<ELE&, fi(1,s;E)=0 has exactly h zeros in {s; |s—s| <
oo}, which converge to s, when & tends to zero.

Proof. Note that ;=% and
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h o~
oA, 5;0) = ,31=-Il (A=A, -
Then (3.1) shows that
fo(1,5;0)==0 forall 0<<|s—s| <o,
s=5, is a zero point of k-th order of fi(1, s; 0) .

Thus, fy(1,s;0) has exactly % zeros in {s; |s—s,] <a}. On the other hand,
(3.11) and (3.8) imply that the number of zero points of fy(1,s;€) in {s; |s—s| <
o} is invariant for all 0<E<E,. Since the dependency on & of the zero points
of fo(1, s; €) is continuous, they converge to those of fy(1, s; 0)=0, which are equal
to s. 'Thus the assertion of the lemma is proved.

4. Proof of Theorems

In order to show Theorem 1, we apply Theorem 2 of [9, Section 4] or
Theorem 4 of [2, Section 4] to L, ,. By exchanging &, by a smaller one if neces-
sary we may assume that

0(1+38;)<1.
Then, the application of the theorems of [9,2] to -L, , assures that
Z4(s) is meromorphic in Re s>s5,+a

and is of the form

Z(9) = exp(de, ) T A1, 5367,

where ¢(+, €) is holomorphic in Re s>s,-+a,. From Lemma 3.3, we have Theo-
rem 1.

As to Theorem 2, follow the argument in [3, Section 4] by using Theorem
1 of the present paper instead of Theorem 1 of [3], and we have Theorem 2.
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