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1. Introduction

In this paper, we are concerned with the large deviation problem for two
typical current-valued processes among those that are induced by random
curves: one is induced by Brownian motion, the other is by geodesic flow. For
both processes, the law of large numbers, the central limit theoremes have been
studied and there are some studies discussed relations between asymptotic be-
haviours of Brownian motion and geodesic flow (see e.g., Ledrappier [4]). These
results suggest that the deviation funccions for two current-valued processes may
coincide or at least have some connections, but since at present this remains
unclear, we content ourselves to determine the deviation functions for those two
currect-valued processes. Let M be a compact Riemannian manifold. We
denote by A\M) and A1(M)r be the smooth 1-forms on M and the currents,
respectively. We denote by ( 3)ι)p the completion of Λ1(M)/Ker|| ||i> with
respect to the norm || \\p (see, e.g., [5])., The dual spece of (3)^)p is denoted by
(<Dtfp- For a A^My-valued process Y=(Yt)mτ> where Γ=[0, oo) or Λ, we
define the following quantities: Given a family of probability measures {mx}xGMy

(1.1a) *{Γ) = lim^sup — log sup mx [—Y(t)eΓ],

(1.1b) λ(Γ) = lixn inf -1 log inf mx [—Y(t)eΓ],

for any Borel set Γ in (£Dtfp and

(1.2) Λ[α] == lim -1 log sup Em* [e<™-*>].

We call a function k an upper [resp. a lower] deviation function if

(1.3a) λ(Γ)>-inf

(1.3b) [resp. λ ( Γ ) ^ - i n

In particular, we call simply k a deviation function if it is lower semi-continuous
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and is both an upper and a lower deviation function. The objective of this
paper is to determine the deviation function for the above-mentioned current-
valued processes.

First let X=(Xty Pχy x&M) be the Brownian motion on M> i.e., the diffu-
sion generated by i Δ . We consider the following stochastic line integral:

(1.1)

for smooth 1-form a on M. The random process {Yt} can be regarded as a
current-valued process (Ochi [5]). In this case, mx—PXJ x^M. Our result is
the following.

Theorem 1.1. There exists a deviation function I for which

(1.5) / [ ? ] = sup Kξ,a>-A[a]}

holds. The deviation function I can be written explίcίtely as

(1.6) /[5]=8up i n f i J - ^ ^ + l \\df\\2dvM]y
iwi^/eC 2 Lσ2(α,/) JM J

where we set

C = {f<=C\M);f>0, \fdvM = 1}

and

(1.7) σ\a,f) = inf ( \\β\\2f(x)dvM(x).

means that β—a is homologous to zero).

Avellaneda [1] treated the large deviation problem for the random process
), .-, Yt(ak))> where a\ - , ak(k= dim H\M)) is a basis of H\M). Our

result can be considered as a generalization of the result of [1]. Although, in
our formulation, the state space of the process {Yt} is infinite dimensional, the
method used in [1] is also applicable to our situation with some adaptations.

For the second one, we consider the process induced by geodesic flow G=
{G*} over a compact Riemannian manifold M. Let SM be the bundle of unit
tangent vectors. We denote the normalized measure on SM by dm=c.dM(x)
dσx(v), where dM denotes the Riemannian volume of M, dσx(v) is the uniform
measure on the unit sphere and c is the normalizing constant. This measure
is an invariant measure of the geodesic flow. We take mx=m, x^M. In this
case, the integral corresponding to (1.1) becomes an ordinary line integral:

(1.8) < y ( ί ) , α > = F , ( α ) = ( r a.
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The following theorem concerns with the case of geodesic flow.

Theorem 1.2. There exists a deviation function I for which (1.7) holds.
The deviation function I(ξ) is given by

where Φ is the mapping defined by (4.1). In the above, q is the deviation function
of geodesic flow and can be written explicitely as

q(μ) = hμ-X*{μ) ,

where X+(μ) is the positive Lyapunov exponent.

As is seen above, the large deviation of the first level for the current-valued
process induced by geodesic flow reduces to that of the second level for the
geodesic flow. The latter has been studied by Takahashi [8], [9] for much
wider class of dynamical systems.

2. Lemmas

First we introduce a notation. For a smooth vector field b on M, we set
Lb=^AM+b. We denote by {Qh

x}χξΞM the diffusion measure generated by the
operator ZΛ For any Borel set Γ in (^)i)py we set

(2.1) ff(f,Γ) = mfP,[-j- F(f)€ΞΓ|.

Lemma 2.1. There exist positive constants C and K such that for any p > 0
and s>0,

sup Q» [-L ι |y(ί)iiί>p]^4-β"Λ 1 / a C f

xelf t p S

Proof. It is sufficient to prove the case &=0. We may assume that δan=
0, n=l, 2, •••, since the drift term does not cause any difficulties. First note that

γnφ(=γt(cf)) is a martingale with — <Ytt>(t)->(an, an)y as f->oo. Using

the representation theorem for continuous martingales, there exists a 1-dimen-
sional Brownian motion B such that Yn(t)=B((Yny (t)). Thus we have

Px(\ YΛ(s)\>ψ) = Px(\B«YH>(s))\>^)
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Now choosing a sequence bn as bnl=-C'ιn \\an\\2

q with C = Σ " - i n | |α"| |ί(<oo) f

we have

By Lemma 2.1, we have

The first term can be estimated as follows.

[Qxω[

z

which proves the lemma.

Lemma 2.2 W^ ^ At?(ί,Γ)=Qί(— Y(t) GΓ). Γ^r^ βΛώίί α positive

constant A2 such that for any δ>0, Γ G S ( ( ^ ) 5 ) , f>2,

/*?(*, Γ ) < Λ μ?(ί, Γ δ )+Λ δ"2

 β -
δ = ffe^Oί 5 dist (f, Γ)<δ}.

Proof. In the proof, we omit the superscript b of
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<ίC3 Qy[—

which proves the lemma.

Next we show that the law of large numbers for the current-valued process
Y. Let <Xξ be the unique element of {3)^)p such lhat <f, a)={a^ a)j} for

any ae{Φ^. We introduce the vector field b[ξ] by b=b* -—-, # =£*' α u . We
write Q!=QJ c ί ]. Then we have dx%

Proposition 2.1. For «wy ξ^{3)ι)p, we have

Proof. We write « ξ = Σ ! θ{ a\ We set

y#(α) = Mt(a)+Nt(a), M#(α) - Γ ^(r.) rfβj, ΛΓ#(α) = Γ a(b[ξ\) (Xs) ds
Jo Jo

By the definition of b[ξ], we have a(b[ξ]) (x)=ζflc9 α^>. Thus,

sup | i - y,(α)-<?,α>|< sup |J-M,(α)|+ sup |±JV#(a)-<£,a>| .
11*1̂=1 ί 11*1̂=1 / 11*11̂=1 t

For the second term, we write a=a{ a\ ζξ> aiy=ξi. Then,

I i - Nt{ct)-<£, a} 12 = I Σ α?[-l j] <α', «£(*,)<&-£<] 12

< ( Σ β?) Σ l - ('<«'",«{> (X.) ds-ξ'\2 •
i * ϊ JO

We thus have

sup I -1 Nt(a)-<ξ, α> | 2 ^ Σ I - (' <«', «ί> W Λ - ξ'\a

Noting that

and

1
t J

we have
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sup |- l-ΛΓ l (α)-<f,α>|-0,ί-oo.

For the first term, note that M*(ί)=supnβn/)=1|M<(α)| is a submartingale and

M*(ί)2<Σ."..M((α")2. We have

E° [M*{tf] <: Γ EQ

t [ΣI α" 1TO]

Jo

By Doob's inequality, we have

p (£& 7
which implies

The following lemma plays an important role in the proof of our theorem.

Lemma 2.3. (i) For any ξ&(£Dtfp, and r>0, there exists a To =
T0(ξ> r)>0 such that for any t>T0.

Y(*)el? r(f)]>i-exp [-tr-t(2\\at\\qγ].

(ii) There exist positive constants K and C such that for any R>0y

sup P, [-11| Y(t)\\i>K\ <^-t exp [ - ^ ] .

Proof. Since the second part is a special case of Lemma 2.1, i.e., s=t and
p—R> we need only to show (i). Fix an orthonormal basis a1 of {3)ι)p and write
α $ =Σ7»i θi a i a n d ?=<£> αf>. Then we have ? y=ΣΓ-i ^(α8*, α 'V If we
choose p sufficiently large, we have Σ , ^ ; ?

; = ( ^ ^ ^e)^2 Recall that Ql is the
diffusion measure generated by the operator iΔM+^[?] By the Cameron-
Martin formula,

Noting that

F,(αt)I ζtr+t \\at\\ϊ* on the set {— Y(t)<=Btf)}
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and Lemma 2.2, we have

- 2 e -(jy(ί)eS r Λ(f))-4r

Now by virtue of Proposition 2.1, the proof of (i) is completed if we choose

T0=T0(ξ,r)>0 such that for any t> To> A, r"2

 e~
t2r2/4C <— and Qf(— ]

3 4 ί
Br(ξ))>—, which proves the lemma.

The following lemma is easily shown from the definitions of 3?.

Lemma 2.4. (i) For any ^ G ^ ) ^ r>0, we have

S>(t1+t2y Br(ξ))>&{tly B r(f)) 2>(t2y B,(ξ)).

(ii) For any ξly ζ2^{βtfρ> r i > 0 > r2>0, and λG(0, 1),

t1,Bri(ξι))2>((l-X)ΐyBr2

3. Proof of Theorem 1.1

First we show that the existence of the deviation function. Set

and

(3.3) I[ξ] = sup l(ξ, r) = lim /(£, r).
r>0 r->0

Since by virtue of Lemma 2.3 and Lemma 2.4, the function S(i)=

—log 3?{ty Br{ξ)) is subadditive and satisfies sup/>0 —U-< oo, we have

sup

that is,

lhni-log <?(*,£,(£)) = - / ( ? , r ) .

By Lemma 2.4, I[ξ] is then convex and lower semicontinuous. Now we

show that / is in fact the deviation function. We first show the lower bound

(1.3a). For any Borel set Γ and fef1, there exists a positive constant r0 such

that for any r <Ξ (0, r0), B,(?)c Γ. We then have
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lim -1 log inf Px [— Y(t) GΓ]

>liminf-j-logmf P , [ - | Y(t)<=B,0(ξ)] = -l(ξ,

To show the upper bound (1.3b), we divide two cases. Assume that Γ is com-
pact. Since I[ξ] is lower semicontinuous, for any £, and ξ&(£Di)p, there exists
a positive constant r=r(ξ) such that

(3.4) I[ξ]<l(ξ, r)+£.

By the compactness of Γ, we can choose ξly •••, ξN such that Γ C U f-i J5r(g.)^(ff ).
Using this and Lemma 2.2, we have

for some δ>0. Thus, we have

lim sup — log sup Px[— Y(ί)GΓ]

s u p - 1 g [ 2 ( ,

min /(£„ r, )

^ -inf / [ ? ] + £ .

Next let Γ be not compact. By Lemma 2.3 it holds

2C

Together with the fact that / is lower semicontinuous, it follows that

i n f / [ f ] = _ir

Thus we have

lim sup — log Px [— 7 ( ί ) e Γ ]

— Pt[±-

<max{- Jn

j e r



LARGE DEVIATION 97

where we used the result of case 1.

To prove (1.5), we use the result described in Stroock [7]. Let E=(^)iyp,

E*={βύp- F o r a<^E*, set

μ (t,A) = P,[<ή.Y(t),ά><=A

I"(A) = lim — log inf μ%t, A), A is convex, open in R1,

and

I«{β) = — inf (l*(A)\A is convex, open and

δ o

Then by Lemma 3.18 in Stroock [7], we have

I[ξ]= sup /*«£,#>

If we set

A*(θ) — lim — log sup

then we have

A*(θ) = A[θa]yθeR\<

By a result of Avellaneda [1], it holds that

/-(τ) = sup [Θτ-A*(θ)]9 r^R1.

We thus obtain

I [I] == sup /*«?, α » = sup sup; {<£, Θά>—A[θa]

= sup [<?, α>—Λ[α]],

which completes the proof of (1.5). For the proof of (1.6), we first quote here
the following Proposition due to Avellaneda [1, Lemma 3.5],

Lemma 3.1. For a^A\M)y set

Λ*(τ) = supi[τβ-A-(fl)].

Then it holds

Λ*(θ) - inf
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Now the proof of (1.6) proceeds as follows:

j = sup [<f, α>—A[c

= sup sup [θ <f, α>—Λ[0α]]
\\Λ\\p=l θ>0

= sup sup [θ ζξy ay—Aet(θ)].
Mallei 0>o

Since A"(θ)=A[θa]y we have AΛ(-θ)=A[-θa]=A'oύ(θ). Noting the fact
Λoί(0)=0, we thus have

sup supi [θ <ξ,a>—l

= sup A*«f, α »

2 σ2(α>/)

which completes the proof of (1.6).

4. Proof of Theorem 1.2

In this section, we consider the current-valued process induced by geo-
desic flow. Let G=(Gt} be the geodesic flow on SM. For αGΛ(M) and
ω θ M , the integral (1.8) is of the form:

Yt(a) = Yt(a, ω)=\ a = ('/[«] (G'co) ds.
JG(ίθ,tl,ω) JO

We fix the following notation. JM=3ί(SM) is the space of probability meas-
ures on SM. JM(G)=JH(SM, G) denotes the set of the elements of JM(SM)
which are invariant under G. Let us consider the following mapping.

Φ: 3i - Λ((M)

which is defined by

(4.1) <Φ[At], α> = \sJM (ω) rf/^H = <μ,f[<φ .

Proposition 4.1. Φ is a continuous mapping in the weak topology for <3ά
and the topology defined by the metric || ||£ for A[(M).

Proof. Assume that μn converges weakly to μ. Take an orthonormal base
{a*} in {S}x)p. Then we have
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For any £>0, there exists an m0 such that if m>m0 then ΣΓ-*0 llΛ*llί<£ We
thus have

lim sup | |Φ[^]-ΦWIi;<lim sup Σ (\f[am] dμn-\ f[am] dμf+lCS

which completes the proof.

Following Takahashi [8], [9], we define the quantities Q(G)> q(μ) as follows.

(4.2) Q(G) = linkup — log m(ω£ΞM; £,, ω eG), for

where Stt<ύ^<5H is defined by

(4.3)

and

(4.4) q(μ) = wfiQ(G);μ(=G,G: open in 31} .

Corresponding to these quantities, we define the following:

(4.2a) Q*(G*) = lim sup — log [mίωeSΛf | Φ [ ^ J e G * ) ] , G*

and

(4.4a) /(Y) = inf {Q*(G*); F G G * , G* open in M(M)} .

By the very definition of 8tω and Φ, we see

(4.5) i

To characterize the deviation function, we define. U: L\m)-^L1(m) by

( v(x) V u(x) m(dx) = ί ^(Gf
 JC) u(x) m(dx)

for u^L\m), υ^C(SM). Let 4̂ be an infinitesimal generator of {Lf} with
domain D(A). Next we define the relative entropy. Let a be a finite partition
of SM. We denote a.(i)=V?=o G-"α. We set

For μ is {G'} -invariant, we set

ht(μIrn a) = lim —H(μ\m; an(ή)
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and

h(μI m) = h(μImy SM, {G'}) = sup Γ1 ht(μ\m;a)

The following theorem is due to Takahashi and actually holds for more general
flows.

Theorem 4.1. (Takahashi [9, Theorem 2, Theorem 3])

(1)

q(μ) = -1 inf {( log ( ^ ) dμ; u(=C+(SM)}

C+(SM) ={u€ΞC (SM) M(Λ?) > 0, Vx e 5M}. Furthermore, q(μ) = — <*> if
μ is not {G*} -invariant.
(2) ί( M )=A(μ|«).
(3) q(μ)=<l(μ), where q(μ) is defined by

Q(G) = lim inf— log m{χ(=SM; St X(=G}
— t+» t

q(μ) = inf {Q(G); G open, μEί31} .

REMARK. The assertion (3) in the above theorem implies q(μ) is in fact the
deviation function (see Orey [6, Proposition 1.1. (vii)]).

Proof of Theorem 1.2. The first assertion is a consequence of contraction
principle. To show the second assertion, it is sufficient to show that h(μ\m)=
hμ—X+(μ) in view of the above theorem. Although it may be known this equa-
lity for the geodesic flow, we present the proof for the completeness. The
inequality q(μ)>hμ.—X+(μ) can be shown by a modification of the proof of
Takahashi [9]. We show q(μ)<hμ—X+(μ). Take the function φ for which

^φdμ=—X+(μ) (See e.g., Bowen-Ruelle [2]). By a result of E. Franco [3,

Prop. (2.11)],

m{B)<C2 exp [Snt φ(z)-P(φ) nt\

where P denotes the pressure and we set St φ(z) = \ φ(Gs x) ds. Note that the
Jo

pressure P(φ)=0. Taking the logarithm of both sides, multiplying μ(B) for

both sides and adding — \ Snt φ(y) dμ(y), we have
J B

μ(B) log m(B)-nt J φdμ
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Therefore

Sn, Φ(y) dμ{y)

<μ{B) log Ct+μ(B) Snt φ(z)- \ Snt φ(y) dμ{y)
J B

<μ(B) log C, + μ(B) Snt φ(z)- \ {K-S,t φ(z)} dμ(y)
J B

= μ(B) [log C,+K\.

Σ μ(E) log m(E)<nt ί φdμ+log Ct+K .

Thus we have

this implies

ht(μ\m; a)<thμ.+t j φdμ ,
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