Shiomi, T.
Osaka J. Math.
28 (1991) 649-661

ON IMBEDDING 3-MANIFOLDS INTO 4-MANIFOLDS

Tatsuyukr SHIOMI

(Received June 26, 1990)
(Revised November 15, 1990)

Introduction

We discuss an imbedding problem of a closed, connected, oriented 3-mani-
fold into a given compact connected 4-manifold, which arises from certain sig-
nature invariants of 3-manifold associated with its cyclic coverings. Our main
result is the following:

Theorem. For any compact, connected (orientable or nom-orientable) 4-
manifold W (with or without boundary), there exist infinitely many closed, connect-
ed, orientable 3-manifolds M which cannot be imbedded in W.

For a closed orientable 4-manifold W, this is a direct consequence of [8,
Theorem 3.2] and, for an orientable 4-manifold W with boundary, we can prove
it by using the doubling technique for W. 'Thus the main concern in this paper
is for a non-orientable 4-manifold .

The proof of Theorem is given in §3. In §2, a classification of the types
of imbeddings of M into a closed 4-manifold W is given. Section 1 is devoted
to the calculation of the signatures of the finite cyclic covers of a homology
handle M. We can express these signatures in terms of the local signatures of
M under a certain condition on the Alexander polynomial of M, where the Ale-
xander polynomial of a homology handle is defined in the same way as in the
case of knots (¢f. [3, Definition 1.3]). Let o,(M) be the local signature of M
at ae[—1, 1], which is an analogue of the Milnor signature of a knot (cf. [9]).
Let o™ (M) be the signature of n-fold cyclic cover of M (whose definition is given
in Section 1 where o™®(M) is denoted by o""”(Mjy)). Then the following
will be shown.

Proposition 1.3. If the Alexander polynomial of M has no 2n-th root of
unity, then

dM) =S (=1 = o M),
j=0 aj+1<a<aj
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where a;=cos (jm[n), j=0, 1, -++, n.

This result reveals a connection between the signatures of finite cyclic covers
of a homology handle and the local signatures of its infinite cyclic cover. When
n=2 the assumption of the above proposition is always satisfied. So we have
the following formula, which will be used in §3 to prove Theorem for a non-
orientable 4-manifold W.

Corollary 1.4, ®(M)=3]_,<,< sign(a) o ,(M).

Throughout this paper, all manifolds and all maps between manifolds will
be assumed to be smooth.

I would like to thank my advisor Professor Akio Kawauchi for suggesting
the problem to me and for his advice and encouragement.

1. Signatures of Finite Cyclic Covers of a Homology Handle

In this section, we consider the signature of the n-fold cyclic cover of a
homology handle.

Throughout this paper, we use Kawauchi’s notations for signatures and local
signatures of a 3-manifold; for a closed oriented 3-manifold M equipped with
an element y&HYM; Z), o’ (M) denotes the signature of (M, ) and aﬁ(M),
ac[—1, 1], denotes the local signature of (M, ) at a. For the definitions of
these invariants, see [6] and also [4], [5], [7]. (Local singatures were first con-
sidered in [9, Section 5] for the exterior of a knot in S®) In this section, Z<t)>
(resp. R<t)) denotes the group ring over the infinite cyclic group <{¢) generated
by ¢ with coefficient ring the ring Z of integers (resp. the field R of real num-
bers).

Now let M be an oriented homology handle, that is, a compact oriented 3-
manifold having the homology isomorphic to that of S?XS? (¢f. [3]), and ¢ be
a fixed generator of HYM; Z)=[M, S*]. Using the transversality of a map
M — 8! representing vy, we can find a closed, connected, oriented surface ¥ in
M representing the Poincaré dual of v. V is called a leaf of & (cf. [6]).

We choose an orientation of M X[—1, 1] so that M X1 with the induced
orientation is identified with M. Let N(V) be a bicollar neighborhood of V'
in M. Let W.=Mx[—1,1]—int (N(V)x[—1/2, 1/2]) (¢f. [7]). There is a
natural diffeomorphism N(V)x[—1/2, 1/2]=V xD*. Let V be a handlebody
such that @7 is diffeomorphic to V. By identifying (V' x.S?) with V"X S'=
AN (V)x[—1/2,1/2])c W,, we get a compact 4-manifold W,=W,U ¥ x S* with
boundary diffeomorphic to M U —M. By the Pontrjagin/Thom construction,
we have an element ¥, H(W,; Z) such that ¥,| M x 1=%, 7,| M x (—1)=0 and
7.1V xS is represented by the natural projection ¥ x S*—S*. Taking a com-
pact, oriented 4-manifold W, bounded by M, we can cap the component
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M x(—1) of 3W, and finally get a 4-manifold W=W,U W, with boundary M.
Define an element yeH(W;Z) by v|W,=%, and ¢|W,=0. Note that
(W, v)=(M, ) and « has a leaf Uy=(Vx[1/2,1])U(V X x,), where x,&S! is
the point such that (V' x )=V % (1/2) CoW..

For each positive integer n, let p,: Myu)—M (resp. P,: Wyy,y—>W) be the
n-fold cyclic covering of M (resp. W) associated with the mod 7 reduction (n)
(resp. y(n)) of 7y (resp. ¥). If f3: M—S* (resp. fy: W—S?) is a map represent-
ing « (resp. 7v), then the covering p,: My,y—>M (resp. P,: Wyy,y—W) is defined
to be the fibered product of fj (resp. fy) with the natural n-fold covering g,:
S1— 81, g1 2", where &S is considered as a complex number with unit norm.
The lift fa(,"): M;y—S* (resp. f§7: Wyy—S?) of f; (resp. fy) by ¢, is determined
by « (resp. ¥) up to homotopy. The homotopy calss of f§;‘) (resp. f$”) is denot-
ed by YWE[Mj), S1=H(Miw; Z) (tesp. YW E[Wyw), S 1=H"(Wyy; Z)).
Note that 8(Wye, ¥®)=(M;jey, v™) and that ¢ (resp. ¥®) has as its leaf a
component of the pre-image of V (resp. Uy) by the projection p,: My,,—M
(resp. Pu: W‘Y(ﬂ)_)M'

Since Wy, is the 2-fold cyclic cover of Wy, associated with the mod 2
reduction of y™, we have, by [7, Lemma 4.3],

1"'

(Misy) = sign Wyimy—2 sign Wy, .

To calculate sign Wy, note that Wy,=W™ UV xS'U (CJ W,), where
W™ denotes the m-fold cyclic cover of W, associated with the mod m reduction
of %,|W,. Since sign V' x S'=0, the Novikov additivity implies sign Wym=
sign W™ +-m sign W,. 'Therefore

(Miy(y) = sign W& —2 sign WP .

Thus the calculation is reduced to that of sign W . For the calculation,
we use, instead of W™, the m-fold cyclic branched cover Wm=wmyVxD?
of Mx[—1,1]=W,U V x D? branched along "' x0. Note that, by the Novikov
additivity and sign V' x D*=0, sign W™ =sign W™,

Let L: H(V; R)X H(V; R)— R be the linking form defined by L(x, y)=
Link(c,, ¢y) for x=[c,], y=[c,])€H,(V; R), where c; denotes the translation of
the cycle ¢, in the positive normal direction and Linky(c,, ¢y) is the linking
number of ¢, with ¢}(cf. [6, p. 53 and p.77]). A matrix representing L for some
basis of H,(V; R) is called a linking matrix on Hy(V; R). Let T: W™—>W™
be the natural extension of the generator T: W{™—W ™ of the group of cover-
ing transformations of the covering P, | W™ : W —W, which is specified by
7| W,. Let Intpom: HZ(W("‘) R)x H, WE’"), R)—R be the intersection form
on W, Take a basis {e, e, -, ¢,} for Hy(V;R). By a standard argument
due to [11] or [2] and used in [7, Lemma 3.3], we have the following.
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Lemma 1.1. There exist elements e, -+, &,, €41, ***, & N HZ(W?’”; R)
such that &,y «++, ¢, Ty, ++, Tx e, +, T% 28, -, T%2¢, €4, **, €, form a basis

for Hz(Wﬁ"”; R) and such that, for i, j<r and p, q=0, 1, ---,m—2,

0 1f IP_QI>1 ’
- - —L(e;, ¢5) f p=gq+tl,
Intye(Th &, T €;) = —L(e; e,~) f ¢=p+1

L(ei, e)+Lies, &) if p=4q,
and, for i=1,2, -+, s, j>r and k=0, 1, ---, m—2, Intpm(T% &, &;)=0.

Let & be the subspace of Hy(W™; R) generated by T} &, i=1, ++, 1, j=
0,1, -, m—2. It is easily seen that the form (Intym|E, Ty |€) is isomorphic to
the symmetric Z,-form of L defined in [11] (although the coefficient in [11] is
rational). Recall that the symmetric Z,-form of L is the pair (L™, r,) of sym-
metric bilinear form L™ : H"~' x H"~'— R and isometry 7,,: H*™'—H""! of L™
of order m, defined by

L3, y) = 3 (L), w3+ Limi(9), 7))
— 3} (Llmiaa(®), 79+ Limina(9), 72())

and
() = 23 th12 78)— 33 by Tes(¥)

for x,ye H™', where H™' denotes the (m—1)th Cartesian product of the real
vector space H=H,(V; R), and #;: H"'—H and ¢;: H->H""'(i=1, 2, ---, m—1)
are the i-th coordinate projection and imbedding respectively.

Thus we have proved the following.
Proposition 1.2. ""(M3,,))=sign L —2sign L™,

By using Proposition 1.2, we can express o“;(”)(M;(,,)) in terms of local signa-
tures (M) of (M, ).

Proposition 1.3. If the Alexander polynomial Ay(t)<E Z<t> of the homology
handle (M, ) has no 2n-th root of unity, then

H(Mi) = (1Y, 3 o),

7+15°<%;

where a;=cos (jr[n), j=0, 1, -+, n.

Since |A43(1)|=1 for any homology handle (M, ¥) (¢f. [3, Theorem 1.4]),
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Ay(t) always has no 4-th root of unity. Thus the following simple formula is
given.

Corollary 1.4. For any homology handle (M, ),
(M) = 3] _sign(a) o{(M) .

To prove Proposition 1.3, we need some lemmas. Let Hg '=H""'Q
C(m>2) and L¢: HZ"*X HZ"*-C be the Hermitian form of L™ in the usual
sense (cf. [11, 3.6. Note]). The isometry 7,,: H" '—>H""! of L™ extends to the
isometry (also denoted by 7,) H" 'QC—H"'QC of L¥ naturally. Let E,(5)
be the eigenspace of Hg™! corresponding to the eigenvalue { €C of 7, H¢ 1
HE™.

Lemma 1.5. If m=pq, p,¢>0, and {, is a primitive p-th root of unity,
then

1«-

wr BE) = Eally), ma) = 2 g‘w, 2P(2)

is an isometry between LY |z, and LE| g, ¢, where nP: HE'—>H, and P
H.—HE? are the j-th coordinate projection and imbedding respectively on HE™.

Proof. First we show that
a-1 p-1
B E L) = HE?, mR)=232 ¢ 1P (2)

=0 j=1

is an injection and the image of % is E,({,). In fact, by solving the equation
Ty =8, 2(k=p, m) directly, we can check that

B = {(s 38, 5 B v Hr; e H, = HRC|

and E,(8,)=m(E,(£,)), from which the injectivity of z is obvious.
Since spaces E,(§,) and E,(f,) are such ones as described above, we can
easily calculate L (m(x), m(y)) for x, yEE,({,) and have

LE(m(x), () = L& (%, ),

which means that u=(1/\/"¢)+7 is an isometry between L& | g,(¢,) and LE” | g,z -
This completes the proof.

For w€C, |w|=1, 0=*1, define a Hermitian form L,y: (HQC)X (HQC)—
C by

Liy(x®a, y®B) = aB((1—v) L(x, y)+(1—w) L(y, %))
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for x,yeH and a, BEC. The following lemma is well-known (cf. [11, 4.7]).

Lemma 1.6. Let p(>2) be an integer. If §, is a primitive p-th root of
unity, then the form L,y is isomorphic to the restriction to E,(£,) of the form L.

Let w,=x++/1—a?i€C, x&[—1,1]. For any real square matrix A4, de-
fine a t-Hermitian R{t>-matrix

A(t) = @—(t+7) (1—1) A+(1—17) 47).

Kawauchi [6, §5] considered the “local signatures” o;(4), ac[—1,1], of 4
which are defined by o7 (4)=Ilim,.,— sign 4™ (w,)—1lim,,,4¢ sign 47 (w,) for a€
(—1,1) and o7 (4)=lim,,,, sign A~ (w,), o=,(4)=sign (A+AT)—lim,, . sign
A (w,)-

Lemma 1.7. For w, (1) satisfying ranke(A—w, AT)=rankyy(A—tAT),
sign (1—=,) 4+(1—w,) 4T) = <ESI oz (4).

Proof. Note that A~ (t)=(1—)*(1—t) (A—t1AT). Let x,<t,<---<x,
be the all points in the interval (a, 1) satisfying rank¢(4—w,,, A7) <rankgy(4A—
171 AT). By assumption, rankg(4—w, AT)=rankgy(A—t"1 AT) on xEJa, 1)—
{x1, %5, *>*, x,}. Then by [6, Corollary 5.2],

sign A~ (w,) = limosign A (w,),
> -

lim sign 47(w,) = lim_osign A (), t=1,,r—1

z—):‘_+0
and
lim sign 4~(w,) = lim sign A~(»,) = o7(4) .
z-)x'+0 z>1-0
Thus

sign (1—a,) 4+(1—w,) AT) = sign 4~ (w,) = sign 47(e,) = <E}Slo-;(./l) .
This completes the proof.

1.8. Proof of Proposition 1.3. For simplicity, we use the following nota-
tions:

<k>m = Em(ebtik/m) ’ k = 0, 1’ *ty m—l ’
0’<k>,,. = SigH(Ls:"') '<k>m) ’ k= 0) 1, °t0y m—1 ’
5= 3 olM), j=0,1,,n—1.

aj+1<a<aj

Note that <0>,= {0} for all m. We have to show o*(Mj,y)=SViz5(—1)/ s;.
First we consider the case when n is odd. In this case, H¥™! and H%!
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split into the orthogonal sums

HE = (L (B L) L<Dsn
and
I (OIS

with respect to LE" and LY respectively. By Proposition 1.2 and the fact
(1) o<2kDy = a<kDy = a{g>p, where 0<g<p,(p,q)=1 and glp=k/n,
which is derived from Lemma 1.5, we have
™ (Mijny) = sign LE” —2sign LY
= (5 2Bt amda) 275 20,

(n-1)/2

=2 33 (X2Zk— 10— 2kDp) + o<t -

Note that o<k>,=o{—k), by () and Lemma 1.7. If the Alexander poly-
nomial A43(¢)=det(4—tAT)=R{t> has no 2n-th root of unity, then, by (1) and
Lemmas 1.6 and 1.7, we have

a<kDy, = sign L(ewit/n)
= Sign ((1_e—¢;k/n) A+(1— -zik/,,) AT)

k-1
= Jg{)s}- ,
for all k=1, 2, .-+, n, where A4 is a linking matrix on H=H,(V; R). So we have

o 2k—1>,,—{2kDs=—5p1, k=1, 2, +--, (n—1)/2. Furthermore, by [6, Main
Theorem], a-<n>2,,:a<1>2=o";'(M )=2>3720sj. Therefore

s on (n-1)/2 n-1 n-1 .
M) = 25 ()t o= (— 1V s

Next we consider the case when #z is even. In this case, Ha'~! and H%™?
split into the orthogonal sums

HY = (L (B LC—Bo)) L<nDsn

and

n-2>/2

At = (L (0 LC—H00) L,
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respectively. By the same argument as in the odd case, we have
o-:’(")(M:,(,)) = sign L¢"” —2sign LY

= (520t o) =2 (S 20k, +o<n[25,)

(n-2/2

=2( 3 (02— D0 —0<2kpp) +-oln—105)—oCl);

(n-2)/2

n-2 n—1
=2(-"8 et o B

=2 Spp— ) S;
£=0 j=0
n—1 1 .
= —_— 7 s
S =17,

This completes the proof.

ExampLE 1.9. Let & be a knot in S* and M=M(k) denote S°® surgered
along k with framing zero. Then M is a homology handle. Let M be the
infinite cyclic cover of M associated with any generator ¢ of H(M; Z). The
quadratic form of M on HY(M; R) (see [4, p. 186] for the definition) in the present
case is non-singular (cf. [5, p. 99]).

If % is a trefoil knot, then HY(M; R)=R<{t>|(2—t+1). Thus o-:{,Z(M)zj:Z
and o‘?,;(M )=0 for a==1/2 (cf. [9, Assertion 11] or [5, Lemma 1.4]). By Corollary

1.4, we have 67 (Mjyp)=cT,(M)=42. This result can be obtained from a
direct calculation of the quadratic form by using a mapping torus structure of
M)y (cf. [10, p. 333]). Furthermore, if & is the g-fold connected sum of
trefoil knot, then the quadratic form of M is the orthogonal sum of g copies of

the form of trefoil knot. Thus o¥,,(M(k))=-2g and o(M(k))=0 for a=1/2.

By Corollary 1.4, o™ (M(k);)=o",(M(k))=4-2g, which of course coincides
with the result obtained from the calculation using the mapping torus structure
of M(k)i»-

2. Types of Imbeddings

Throughout this section, M is a closed, connected, oriented 3-manifold and
W a closed, connected 4-manifold. We consider imbeddings f: M—W.

First note that f has at least two types according to whether W—fM is
connected or not. We say that f is of #ype I (resp. type 1I) if W—fM is con-
nected (resp. disconnected). We can characterize the type I or II imbedding
by examining the homomorphism fy: Hy(M; Z,)—~Hy(W; Z,). If fx=0 then f
is of type I, and if fu:=0 then f is of type IT and W—fM has exactly two com-
ponents. This is stated in [8] in the case when W is orientable, and Kawauchi’s
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proof is valid for non-orientable 4-manifold /. Note that the coefficient of the
(co-)homology in [8, p. 171] is Z,.

For the rest of this section we assume that W is non-orientable, and classify
the types of f: M— W more in detail. Let p: W—W be the orientation double
covering of W.

Type I imbedding. A type I imbedding f is called two-sided or one-sided
according as the normal bundle of f is trivial or not.

If f is of type I and one-sided (called #ype I,), we have two cases according
as W—fM is orientable or not. These two cases may be characterized by the
types of the imbedding M=p~(fM)CW. That is, W—fM is non-orientable
(resp. orientable) if and only if MCW is of type I (resp. type II). Thus we
say that f is of type I,-1 (resp. type I,-2) if W—fM is non-orientable (resp.
orientable).

If f is of type I and two-sided (called type 1,), then f can be lifted to two
imbeddings f: M—W, each of which is of type I. [To see that f is of type I,
note that there is a loop a in W which intersects fM transversely in a single
point. If a preserves orientation, then one of the lifts of & to W intersects
FM transversely in a single point. Thus fy=+0: Hy(M; Z,)—Hy,W; Z,), which
means f is of type I. If a reverses orientation, then, by using the loop p~! a,
we can do the same argument as above and have the same conclusion.]

Type 11 imbedding. Assume f is of type II. Let W,, W, be the components
of W—fM. Since W is non-orientable and M is connected, we have the fol-
lowing two cases:

a) both W, and W, are non-orientable,

b) one of W, and W, is orientable and the other is non-orientable.

The type II imbedding f can be lifted to two imbeddings f: M—W. Take any
one of them. Then it is easily seen that a) (resp. b)) is equal to the condition
that f is of type I (resp. f is of type II). From this, in case a) (resp. b)) we say
that f is of type II-1 (resp. type II-2).

3. Proof of Theorem

Throughout this section, for a manifold X with boundary, DX denotes the
double of X. For a closed oriented 3-manifold M equipped with an element
yeHYM; Z), we define 7i(M)=3,c(,.11 o Y(M) for all ac[—1, 1] (cf. [8]). We
denote by Ic'f(M ) the rank of the kernel of the homomorphism t—1: H,(M; Z)—>
H(M; Z), where M is the infinite cyclic cover of M associated with ¥ and ¢:
H,(M; Z)—H,(M; Z) is the automorphism induced from the generator specified
by  of the group of covering transformations on M (cf. [8]).

For the rest of this section, M denotes a closed, connected, oriented 3-
manifold and W denotes a compact, connected 4-manifold. Let M° denote the
once punctured M. Recall that an element y€HY(DM®; Z) is called Z,-asym-
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metric if the mod 2 reduction ¥(2)& H(DM®; Z,) of « satisfies p(¥(2))*+¥(2)
for the standard reflection p of DM° ([8, p. 179]). Theorem 3.1 of [8] can be
extended to the case of orientable 4-manifold W with boundary.

Lemma 3.1. Assume that W is orientable and OW +=¢. If M° is imbedded
in W, then B\(M; Z)<SByW; Z,) or there is a Zy-asymmetric indivisible element
yeHYDM®; Z) such that for all ac[—1, 1]

| 7H(DM®) | —H(DM) <28, W; Z).

Proof. Applying [8, Theorem 3.1] to the imbedding M°C W c DW, we have
the above conclusion. Note that GB,(DW; Z)=2B,(W; Z), B,(DW; Z,)=2p4,
(W; Z,) and sign DW=0.

We then think of non-orientable case.

Lemma 3.2. Assume W is non-orientable and closed. Let f: M —W be an
imbedding.

(1) If fis of type I, or II-1, then B\(M; Z)<ByW; Z,) or there is a Z,-
asymmetric indivisible element y= H(DM®; Z) such that for all ac[—1, 1]

[7Y(DM°) | —c{(DM) S BW; Z)+BW; Z,) .

(2) If fis of type 1I-2, then 2B\(M; Z)SByW 5 Z)+B(W; Z,) or there is
an indivisible element vy H (M ; Z) such that for all ac[—1, 1]

|H(M) | — i I(M) < BAW; Z)+BW; Zy) .

Proof. Let W be the orientation double cover of W. As seen in section
2, each imbedding of above types has a lift f: M—W. Applying [8, Theorems
2.1, 3.1] to f and noting the following lemma and the fact that sign W=0
[because W admits an orientation-reversing involution], we have the result.

Lemma 3.3. Let X be a compact manifold and X be any double cover of
X. Then By(X; Z)<Bu(X; Z)<B(X; 2)+Biu(X; Z,) and Bu(X; Z)<2Bs
(X, Z,) for all k.

Proof. By the transfer argument, we have B,(X; Z)<B4(X; Z). The
inequality By(X; Z)<Bu(X; Z)+By(X; Z,) is the case d=2 of [1, Proposition
1.3]. The inequality B4(X; Z,)<2B4(X; Z,) is readily obtained from the exact
sequence of Smith homology groups used in the proof of [1, Proposition 1.3].

In the case of type I, imbedding, we cannot use [8, Theorem 2.1, 3.1] as
in the proof of Lemma 3.2. But for certain M an estimation like Lemma 3.2
can be obtained by using the consequence of Section 1. For each positive
integer 7, consider the class SH(r) of 3-manifolds consisting of the connected
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sums of r homology handles:
() = {M = % M;; M; is a 3-manifold with Hy(M;; Z)=Hy(S?x S*; Z), Vi} .

Especially we have a subclass (H'(r) of <H(r) consisting of all M=4%_; M; such
that each M; is S® surgered along a knot with framing zero (¢f. Example 1.9).
Note that, for any M € H(r) and any ¥ € H(M; Z), 71.,(M)=c"(M) and «I(M)
=0 (cf. [3]). For an (oriented) homology handle M, we denote by o(M) (resp.
a,(M)) the signature o¥(M) (resp. the local signature a'i(M )) associated with any
generator ¢ of H(M; Z). [Note that ¢¥(M)=c"7(M) and ¢¥(M)=0;7(M).]

Lemma 3.4. Let W be as in Lemma 3.2. Let M= #7%_, M; be the con-
nected sum of homology handles M;, i=1, 2, -+, r. If M is type I, imbedded in W,
then r < B (W Z,) or there are numbers (1<) 1y, 13, ==+, Ly, Lyyy, *+*, L(7) such that

) |33 3 e sign (@) oM+ 33 & o(M,)| SBW: Z)+BAW; Zy),

where &;=1, or —1,j=1,2, -+, q.

Proof. Assume that M is type I, imbedded in W. We think M is a sub-
manifold of W. If p: W—W is the orientation double covering of W, then
M®=p=* M cW is a double cover of M.

Since the mod 2 reduction HYM; Z)=®}., Z—-H \M; Z,)=D}., Z, is
onto, any double cover of M is associated with the mod 2 reduction {»(2) e H!
(M; Z,) of some v HY(M; Z). For eachi=1,2, -, r, the restriction yr(2)|M;
is the §; multiple of the generator of HY(M;; Z,)=<Z,, where §;=0 or 1. Thus
we denote r(2) by [8y, **+, §,]. m

——,

We may assume M@ is the double cover corresponding to yr[1, «++, 1, 0, +-+, 0]

by permuting the indices if necessary. Then M® is diffeomorphic to

Gk M) # (£ M)+ (F M)+ (F s,

where M{® denotes the unique (up to equivalence) double cover of M;.

Put M=(", M{P)% (4 oms1 M;). Since M° is imbedded in M® nat-
urally, M° can be imbedded into W. Applying Theorem 3.1 of [8] and using
Lemma 3.3, we have r<B,(W; Z,) or there is a Z,-asymmetric indivisible ele-
ment € HY(DM®; Z) such that |o"(DM°)| <B,(W; Z)+B,(W; Z,). (Note that
71 (DM =5"(DM").)

Since DMO=[3 1 (M P 4 — MP)|3 [# Fumsr(M; 3 — M;)], we have

DM = 3 oHMP 4 —MP)+ 3 (Mt M),
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where 7; is the restriction of 7 to the i-th summand, /=1,2,..-,7. Let
{ij; 1<j<p} (resp. {i;; p+1<j<g}) be the set of all integers ¢ between 1 and
m (resp. m-+1 and 7) such that the restriction y; of % is still Z,-asymmetric.
Then by [8, Lemma 1.3] we have

o (DM®) = 2 & o¥;

M)+ E &jo(My)),

for some &;€ {1, —1},j=1, 2, -+, ¢, where ¥ € H(M'? ; Z)=Z is the element
defined, as in section 1, by a generator ;; of HY(M;;; Z) j=1,2,+,p. Com-
pare the proof of [8, Theorem 3.2]. Since O (MP)=31_coc sign (a) o,(M;)
by Corollary 1.4, this implies the inequality (*). 'This completes the proof.

We now prove Theorem.

3.5. Proof of Theorem for orientable 4-manifold W. Assume that W is
compact, connected and orientable. If W is closed, then Theorem is an im-
mediate consequence of [8, Theorem 3.2] showing that, for sufficiently large 7,
and for all >r,, certain elements of .9 '(r) cannot be imbedded in W. If W
is bounded, then Lemma 3.1 implies Theorem by the same argument as the
proof of [8, Theorem 3.2].

3.6. Proof of Theorem for non-orientable 4-manifold . Assume first
that W is closed, connected and non-orientable. Let M[g] be S® surgered
along the g-fold connected sum of trefoil knot with framing zero. Recall that,
for any generator y&H(M[g); Z)=Z, o"(M[g))=c""(M[glic)==+2¢ (cf.
Example 1.9).

From now on, assume M=4:i_, M[g;]. We show that if M is imbedded
in W, then one of the following conditions holds:

(1) r<B(W; Z,).

(2) For some numbers (1<) 7, 4,, -+, ¢, (<r) and for some choice of &;&
{1, —1},j=1, 2, -++, 5, the inequality

216, 8,188t +E 8| <BAW; Z)+BAW; Zy)
holds.

In fact, if M is type I, imbedded in W, then, by Lemma 3.4, we obtain the
desired result. If M is type I, or II-1 imbedded in W, then, by Lemma 3.2-
(1), we have the above result. Compare the proof of Lemma 3.4. If M is
type II-2 imbedded in W, then by Lemma 3.2-(2) we have r<[B,(W; Z)+
BAW; Z,)]/2 or the above condition (2) holds. Note that for an indivisible ele-
ment y € H(M; Z), if M[g;,],j=1,2, -+, 5, 1<4, <5<+ <i,<r are the all sum-
mands of M such that | M[g;,] is an odd multiple of a generator of HY(M|[g; ];
Z)==Z, we have
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(M) = oI(M) = 2(6, g, + &, 81,4 +E,8:)

for some &< {1, —1} (¢f. [8, Lemma 1.3]).

Thus, if we take 7,=8,(W; Z,), then for all r>7, and for {g;} /., such that

§=B(W; Z) and g2B(W; Z)+ Sigyi =237,

M=47_, M[g;] cannot be imbedded in W. This implies Theorem for closed
non-orientable 4-manifold W.

To have Theorem for non-orientable 4-manifold W with boundary, we

have only to use the doubling technique as in the orientable case. The proof
of Theorem is completed.

(1]
(2
(3]

(4]
[5]

(6]

[7]

(8]
[9
[10]

(11]

References

P.M. Gilmer: Configurations of surfaces in 4-manifolds, Trans. Amer, Math.
Soc. 264 (1981), 353-380.

L.H. Kauffman: Branched coverings, open books and knot periodicity, Topology
13 (1974), 143-160.

A. Kawauchi: Three dimensional homology handles and circles, Osaka J. Math.
12 (1975), 565-581.

On quadratic forms of 3-manifolds, Invent. Math. 43 (1977), 177-198.
————: On a 4-manifold homology equivalent to a bouquet of surfaces, Trans.
Amer. Math. Soc. 262 (1980), 95-112.

The signature invariants of infinite cyclic coverings of closed odd dimen-
sional manifolds, ‘‘Algebraic and Topological Theories-to the memory of Dr.
MIYATA,” Kinokuniya Co. Ltd., 1985, 52-85.

: On the signature invariants of infinite cyclic coverings of even dimensional
manifolds, “‘Homotopy Theory and Related Topics,” Adavanced Studies in Pure
Math., 1986, 177-188.

The imbedding problem of 3-manifolds into 4-manifolds, Osaka J. Math.
25 (1988), 171-183.

J.W. Milnor: Infinite cyclic coverings, ‘“Conference on the Topology of Mani-
folds,” Prindle, Weber & Schmidt, Boston, Mass., 1968, 115-133.

D. Rolfsen: “Knots and Links,” Math. Lecture Series §7, Publish or Perish
Inc., Berkeley, 1976.

O.Ja. Viro: Branched coverings of manifolds with boundary and link invariants.
I, Math. USSR Izv. 7 (1973), 1239-1256.

Department of Mathematics
Osaka City University
Sugimoto, Sumiyoshi-ku
Osaka 558, Japan








