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1. Introduction

We consider the following semilinear stochastic partial differential equation
(SPDE) of parabolic type:

(L1)  dS(x) = —AS(x)dt+ 3 BB/, S)hde+ 3 Cidwi),
xR t>0.

Here JZEI&ISZmawDﬁ’ QjZEImISn bj, aDd and Cjzzlalélcj,ul)w’ m= 1)”)120»
are differential operators with coefficients a,, b; ,, ¢; ,C7(R?), 1<j< J, and
{B,(x, S)}].. are certain functions of x and S={S(x); x&R?}. We denote D*
=D°— i)(i) and |a|=3Y_, a; for a=(ay-, a)eZi=1{0,1,2,
ox, 0x,
---}4, while C7(R?) stands for the class of all C~-functions on R? possessing
bounded derivatives of all orders. The system {w(x)} /., consists of J independ-
ent {&,}-cylindrical Brownian motions (c.B.m.’s) ([6], [7]) on the space L(R?)
which are defined on an appropriate probability space (Q, F, P) equipped with a
reference family {Z,}.

The general theory for the SPDE’s has been developed by several authors
based mainly on two different approaches, namely, the semigroup method (e.g.
Dawson [4]) and the variational one (e.g. Pardoux [14], Krylov and Rozovskii
[12]). It is actually possible to establish the existence and uniqueness of solu-
tions to (1.1) by employing these former results; see Remark 2.2 below. How-
ever, in order to continue further investigation of the behavior of solutions, the
meaning of solutions due to their theory happens not to be sufficiently strong.
In other words, as a rule, they sometimes require too large space for solutions.
The main purpose of this article is to fill this gap up by showing that the
solutions live on nice spaces. This will be accomplished by studying the regu-
larity properties, strong and weak differentiability, of solutions of (1.1).

Let us now introduce the state spaces for the solutions S, of (1.1). A posi-
tive function X C=(R?) satisfying X(x)=|x| for x; |x| >1 and X(—x)=X(x)
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will be fixed. We set L;=L}R’, e"#**)dx), reR, the Hilbert spaces having
norms defined by |S|,={fgS(x)% >*@dx}¥?, S€L? and Li=N,5L: a
countably Hilbertian space. Let B,, &R, be the space of all Borel measurable
functions S on R? satisfying |||S|||,=esssup,cgi|S(x)|e~™**<co. Set C,=
B,NC(R%) and C,=N,5C,, a countably normed space. We also introduce
Banach spaces é,, rER, consisting of all SEC, such that lim,,. |S(x)|e™™®=
0. The spaces with parameter >0 will play the role of the state spaces for the
SPDE (1.1).

Let L,(L?) be the class of all bounded and Lipschitz continuous functions
B(-, S) of L:— L, i.e.

|B(+, S)|,, y = sup |B(+, S)|,<oo
SeL,
and
|B(+, S)—B(-,S")|,<Lconst |S—S’|,, S,S'€L:.

The space L,(B,) of all bounded and Lipschitz continuous functions B(:, S)
of B,—B, and the norm |||B(-, S)|||, (.) are defined similarly. We mention
the assumptions imposed on the SPDE (1.1); 7>0 is arbitrary but fixed.

(A.1) 'The operator %+J is uniformly parabolic in the sense of Petrovskii,

ie.,
inf 3 (—1)" a(x)e*>0,

%, 0€RY; |o| =1 |a|=2m

where ¢*=¢{1:--¢5¢ for cER® and a = Z*4 .

(A2) 2m>204d .

(A3.1) B,eLy(Ly), 1<j<].
(A3.2) B,cLyB,), 1<j<].
(A4.1) 2m>n .

(A4.2) 2m>n+—g— .

The following three cases (I), (I)' and (IT) will be considered: The conditions
(A.1) and (A.2) are supposed in all cases; in addition, we assume (A.3.1) and
(A.4.1) in the case (I), (A.3.1) and (A.4.2) in the case (I) and (A.3.2) and (A.4.1)
in the case (IT).

The contents of this paper is now summarized briefly. The strong regular-
ity, i.e., the sample-path continuity as L? (or C;)-valued processes or the dif-
ferentiability and the Holder continuity of derivatives in x in a.s.-sense, for
solutions to the SPDE (1.1) is discussed in Sect. 2. The existence and unique-
ness of solutions are also shown. In Sect. 3 we introduce and investigate the
notion of the weak differentiability for the solutions to the SPDE (1.1). Sect. 4
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has a slightly different character: The martingale problem associated with this
equation is introduced and its well-posedness is established.

Important examples of the SPDE (1.1) are the time-dependent Ginzburg-
Landau equation (TDGL eq.) of non-conservative tpye (1.2) and of conserva-
tive type (1.3):

(12) dS(x) = —JzS,(x)dt—%V'(x, (%)) dt+duo,(x) ,
(1.3) dS,(x) — AJ!S,(x)dt—l—%A{V'(x, S,(%))} dt -+ div {dw,(x)} ,
xR, >0,

where 1 is a differential operator of order 2m with m>d/2 satisfying (A.1), A=
2
Y 5@—2 is the Laplacian on R?, V=V{(x, s) is a function on R®X R such that

V'(, S)———pa—I:(-, S(+))eLy(L2), 7>0, and w,(x) and w,(x)={wi(x)}4.. are

c.B.m.’s on L¥(R?) and L¥R*, R?), respectively. Note that both equations satis-
fy (A.1), (A.2), (A.3.1) and (A.4.2). This paper is originally organized as a pre-
paratory part of the exploration of the Ginzburg-Landau type equations (1.2)
and (1.3). The results are applied in the collaborative papers [8], [9] that in-
vestigate the class of stationary measures (equilibrium states) of these equations
and the hydrodynamic behavior of (1.3).

2. Strong differentiability of solutions
Under the assumption (A.1) the fundamental solution ¢(t, x, y), t>0, x, yE

R?, of the parabolic operator %—I—JI exists and the following estimate holds:

DiD2D3q(t, x, y)| St 1BE=ig(s, x, y),
¥q Y
9

0<t<T, x,yeR’, j€Z,, a,fEZ%; D, = o

(2.1)

where

. 2m
2l %,3) = 31lt, 1,9) = Kt exp{—Ky( 2= prawny.

The positive constants K; and K, depend on T, j, a and @ but they can be taken
uniformly in (j, &, 8) such that 0<j, ||, |8 <c for arbitrary c€Z, (see
Eidel’'man [5]).

Let S(L?) (or S(B,)), r>0, be the class of all {F,}-adapted stochastic pro-
cesses S;={S,(x; w); xR’} defined on the probability space (Q, F, P) such
that the mappings (¢, w)E[0, ) X Q—S,(+; w)E L} (or B,, resp.) are measura-
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ble. For given S,&L? (or C,), r>0, and S. €S(L?2) (or S(B,)), we set
Su) = Sl )= [ a(t, % 9)Si(5)dy

J .
S =2 [ ctoat—uw ) duit)ay,
j=1J0 JR
and

J (¢
Sus) = S S) =2 [ |, B gt %9)B,(5, ,) dudy

where B¥ and C¥ denote the formal adjoint of the differential operators B;
and C;, respectively, and the subscript y to these operators means that they
act on the variable y. We call S,e8(L?) (or S(B,)) a solution of the SPDE
(1.1) with initial data Sy L? (or é’,) if it satisfies the following equation which
is formally obtained by rewriting (1.1) into integral form:

(2.2) Si(x) = Sy 1(%5 So)+Sy, (%) +S,, 5(x5 S.), ae-(t %, 0).

The purpose of this section is to study the differentiability and the Holder
continuity of derivatives of the solutions S,(x) of (1.1) (in the a.s.-»’s sense).
The existence and uniqueness problem is also discussed.

Let us begin with the investigation of the first term S, (x). We set T,S(x)
— S o(t, % 9)S(NdY(=S, (¥; S)) and T,S(¥)— gsa(t, x, y)S(3)dy. Some pro-
perties of the operators {7}, and {T,},», are summarized in the next two
lemmas. The following estimate which is shown easily will be useful:

2.3) S Lt %, y)eP dy<Ke i, 0<i<T, xR,
R
for every r& R with some K=K(r, T)>0.

Lemma 2.1. (i) {T,} has the following properties for every rER and
T>0:

(24) T Li—> L7120, sup [IT/llezrz<eo
(2.5) T Li—>B.,t>0,  sup /™| T lliz,p,<o0
(26) Tt: Br - Bn tZO, OS<?£TI|T1”B,—>B,<OO

where ||T|| g, p denotes the operator norm of T: E—E’ for two normed spaces E
and E'.

(@) {T,} has the same properties (2.4)~(2.6) as {T,}. It satisfies the followings
for every reR as well

(2.7) T,: L*—C=(R%), >0,
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(2.8) T,S(x) C=((0, o)X R?) for SE L?
(2.9) T,: C,~C,,t>0

Proof. The property (2.4) is shown from (2.3) since Schwarz’s inequality
implies

ITS@1P<| 7t xS0y a2y,
while (2.5) is verified again by using Schwarz’s inequality and (2.3) as follows:

(TS <IS1A] L2t ey
R
<|S1,{K(—2r, T)é= sup g(t, x, y)}2, 0<t<T.
JER

The property (2.6) is an easy consequence of (2.3). Since | T,S(x)| <(T,|S|)(),
the same statements (2.4)-(2.6) hold also for {7}, The properties (2.7)
and (2.8) of {T,} are shown without difficulty by using (2.1). Finally for the
proof of (2.9), we notice that T: Cy(R*)—C,. Indeed, this follows from (2.6)
and (2.7) since Co(R?)C By for all #ER. Here Cy(R?) denotes the space of all
continuous functions on R? having compact supports. Then, (2.9) is verified

by using (2.6); note that Cy(R?) is dense in the Banach space C,. []

Lemma 2.2. A family of the operators {T} >, is a strongly continuous semi-
group on the spaces L. and C, for every reR.

Proof. Since the semigroup property (T, T=T,.,, t,s>0, and T,=iden-
tity) is automatic, the proof is completed only by showing the strong-continuity:

(2.10) lim | T,S—S|, =0, S€L? and lim |||T,S—S]||, = 0, S€C,.
tyo t30

Since Cy(R?) is dense in both L} and C,, it suffices to verify (2.10) only for S &
Cy(R?); use (2.4) and (2.6) . For such S, however, it is known that 7,S(x)—
S(x) as t |, 0 uniformly in x on each compact set of R? ({2, p241]). Hence (2.10)
is proved by noticing that (2.6) gives a uniform decay estimate: |7,S(x)| < const
1S|Il-, e *®), 0<t<1, S&CyR?), for arbitrary '>0. []

The next task is to establish the Holder property of the second term S, ,(x)
appearing in the RHS of (2.2).

Lemma 2.3. For every T>0, |a|<m—l—% and 0<S<2m—2l—d—
2|al,
(2.11) E[|D*S, ,(x)—D*S, ,(x")F]<const {|t—t"|Gm=2=d=2iaD/in

| x—a |ertma-2a-0A  0<t ' < T, x, x' R
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Proof. First we consider the case of t=¢'. In this case

LHS of 2.11) = [l 11yay,
j=1Jo R
where
I; = I(u, %, &', y) = C¥ ,{ D3 q(u, x, y)—D3q(u, x", y)} .

Since the estimate (2.1) verifies two kinds of bounds on I;:

151=1{. v.C5, Dratw, 5(8), 5)- (v —=) dg]
<const| x'—x|u-G*lel+D/m S: q(u, x(£),y)dE, x(E) = x+E(x'—x),
and
|1;| < const u=¢+ieDitm {g(y, x, y)+-g(u, %', y)},

we get

LHS of (2.11)<const |x'—x|° St y-(erer2eDzn o JT gy |
0
for arbitrary a [0, 2], where
II = Il(u, x, x"; a)

— ], 2w %0, ) dey g, » y)+a0n ', )y dy

However, it is easily shown from (2.1) that II <const %" 0<u<T, a<[0, 2]
and therefore we obtain the desired estimate (2.11) with z=¢’ by choosing a=
(2m—2l—d—2|a| —8)A2. Now assume x=x', 0<t<t'<T and set r=2¢"—¢.
Then

LHS of (2.11)=III+1V

J
= 2 S “ S d {D:C;!‘.yQ(tl—u’ X, y)}z dy
t R

j=1

J (¢
+ [ @l Dictaw—u ) -Dict qt—u 5y ay.

j=1Jo
The first term II1 in this equality has a bound which follows from (2.1):
III < const 7@m=2=d=2laD)/2m

The estimate (2.11) with x=x" is a consequence of this bound and the following
one on the second term IV:
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J [t u+T
=15 { al 7L et qo,m 0 dor ay)
t u-+T u+T
< const So du Snd dy {Su p=UHEDIm=25(5 % 3) dv} X {S“ 7(v, x, ) do}

u+T
,v-(21+d+2| ®|)/2m=2 dv

< const ’TXSt du S
0

2m=21—d -2 2
< const T( m—21 leo])/: m

where we have used (2.1) and then Schwarz’s inequality for deriving the second
line. [

Let CXR?), for non-integer A>0, be the class of all f&CM™(R?) having
locally Holder continuous derivatives {D*f; || =[\]} of order A—[\], where
[A] is an integral part of A.

Corollary 2.1. (i) The process S,,=C([0, =), C,) (a.s.) and consequently
S,.€C([0, 00), L?) (ass.).
(#5) For every t=0, S, ,E N 55,C" 1"4*"¥(R?) (a.s.).

Proof. Since {D*S,,(x); >0, xR is a Gaussian system, the 2p-th
moment E[|D*S, ,(x)—D*Sy ,(x")|*] is bounded by const{E[|D"*S, ,(x)—
D*S, (x")|]}?, p=1. Therefore, using Lemma 2.3, Kolmogorov-Totoki’s reg-
ularization theorem (see [15] for example) verifies the conclusion. [

Let us give estimates on the third term S;; We shall sometimes denote
S;3(x; S.) by S, 4(x; S., B) in order to elucidate its dependence on the function
B={Bj}]-1. Set |B|, =331 |B;l, = and |[|1Blll,, =371 IIBjlll,, ). Re-
call the three cases (1), (I') and (/I) introduced in Sect. 1 having differences in
the assumptions.

Lemma 2.4. For every T >0 and |a| <N,
(2.12) || D*S,;—D*Sy 4ll,<const ||B]|,|t—¢' | ¥-leDitm 0t t'< T,
where the triplet (||-|l,, 1|15, N) is given by (|« |7, |« |7, (), 2m—n) in the case (I),
(U1l 1«17, o 2m—n—2) i the case (1) and (-1l -l oy 2m—) i the
case (II).  This especially implies that S; ;& C([0, o0), E) with E=L? in the case
(I) and E=C} in the cases (I)" and (II), respectively.

Proof. Assume 0<t<t'<7T. Then, using (2.1), we have

|D5,4) DSy 44|
<const 3 S du(t' )10 (T 1B (-, S,) |} ()

j=1Jdt
’

+const é gt du S' w dv v‘(2m+n+lw])/2m{T”lBj(.’ Sa)l}(x) .
0

Jj=1 t—u
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The estimate (2.12) in each case (I), (I)" and (II) follows without difficulty from
(2.4), (2.5) and (2.6), respectively. []

Remark 2.1. (i) Let H;(R?),s, rER, be the Hilbert space consisting of all
generalized functions S on R? such that the products e*S belong to the Sobolev
space H(R?) of order s (see [13]). The norm of this space is naturally intro-
duced by || S]] Hi(Rd)'——”e_’xS Il H'(RA): This norm is equivalent to another one

defined by | S|, ;= {Dui<s| D*S |22 if s€ Z,,. In fact, it is easy to see IISHH;(R,,)

<const | S|, , and therefore the equivalence of two norms follows from the open
mapping principle.

(i) Assume "2m>n+-1". Then, the family of functions {S;s(-; B); |B|, )<
M}, M, r>0, is relatively compact in the space C([0, T'], L'f-) if 7>r. Indeed,
Lemma 2.4-case (I) (by replacing 7 with 7) verifies the equicontinuity of this
family in C([0, T], L) and therefore in C([0, T'], L;) On the other hand,
Lemma 2.4-case (I) with t'=0 and |a|=0,1 proves that sup {|S,(+; B)l,.;
0<t<T,|B|, <M} <co. Therefore the conclusion follows from Ascoli-
Arzeld’s theorem, since the imbedding map of H i(R")—>L§ is compact if s>0
and 7>r (use Rellich’s theorem [13, p99]). This remark has been useful in [8].

The Holder continuity of S, 5(x) (especially in the variable x) is given by the
following lemma in the cases (I)" and (II).

Lemma 2.5. Let T>0 and K be a compact set of R®. Then the following
estimate holds for every 0<t,t'<T, x,x'€K, |a|<N and 0<8<N—|a| :

| D*S,,5(x) =D*Sy,5(x") |
< const ||B||,{|t—t' | ¥-leDim || x—x' | N=lwl=B)Al |
where (|1l N) s given by (1|7, 2m—n—2) in the case (1)" and (Il
2m—n) in the case (II), respectively.
Proof. First assume t=¢'. Then we have
I o(t
| D°8,e)— D8, )| = | 1 dul,
where
Ii=Iu,t,xx")= ng B¥ ADY(t—u, x, y)—D3g(t—u, x', y)} B;(y, S,) dy .

This term is bounded similarly to I; appearing in the proof of Lemma 2.3 and
we obtain for arbitrary a<[0,1]:

|1 <const (t—uyrr1o0n s | 4 (T, | B+, S,)1) (a(8) e
ATl B S)1) @+ Tma | B, S 1
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However, by using (2.5) and (2.6), (T,-,|B;(-, S.)|)(#) is bounded by const x
| B; |7, (ye™®(t—u)~%*m in the case (I)’ and by const|||B,]||7,e™** in the case

(IT), respectively. Therefore, taking a=(2m—n—%— || —8)A1l in the case
(I) and a=(2m—n— |a| —8) A1 in the case (II), we obtain the conclusion when

t=t'. If x=«', the conclusion follows from Lemma 2.4-cases (I)’ and (II), re-
spectively. [

The Lipschitz condition (in the assumptions (A.3.1) or (A.3.2)) of the

functions {B;} /., is required only for the proof of the next lemma:

2m
2m—n

Lemma 2.6. We consider two cases (I) and (II). For every p> and

T>0,

— t —_
1S,5(+3 )= S,a(+5 Sl <const {15, ~S.I1* du,
0<t<T, S., 5.€C([0, <), E),

where (||+||, E) is taken to be (| + | 7, L?) in the case (I) and (|||-|||7, Cr) in the case
(II), respectively.

Proof. Under the assumption (A.3.1) (or (A.3.2)), by using (2.4) (or (2.6),

resp.), we obtain
1S,4(~ 3 S)—Sia(~ 3 S.)l| <const S: (t—u)=n/2m||S, —S,|| du, 0<t<T.
Therefore the concluding estimate follows by using Holder’s inequality. []
Let us summarize the result.

Theorem 2.1. The solution of the SPDE (1. 1) with initial data S,E E exists
umquely and satisfies S, C([0, o), E) a.s., where E=E=L% in the cases ), (@)’
or E=C;, E=C; in the cases (I)', (II). Moreover we have S,&C((0, o), C7)
a.s. for every ¥>7 even if Sy L? in the case (I)'. For >0, S,E N 55,C¥~3(RY)

a.s., Nz(m—l———‘zl—)/\N, where N=2m—n—% in the case (I)' and N=2m—n
in the case (II).

Proof. Lemmas 2.2, 2.4 and Corollary 2.1 show that every solution S, of
the SPDE (1.1), if exists, has the property S, C([0, o), E), or more precisely
saying, has such modification. Therefore the uniqueness of solutions may be
discussed in this class. However, this is an immediate consequence of Lemma
2.6. The usual method of successive approximation can be used for the construc-
tion of solutions. The other properties of S, follow from Lemmas 2.1, 2.2,

2.4, 2.5 and Corollary 2.1. []
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ReEMARK 2.2. Suppose the conditions (A.2), (A.3.1) and "m>n" in place
of (A.4.1). In addition, instead of (A.1), we assume that . satisfies the Gard-
ing type inequality

(2.13) v<S, AS>p>6,|S|5—0¢,l Slfy’ ¢, >0

Here (V, H, V¥)=(H¥R?), H7"(R%), H:*"(R")) is a Gelfand triple; recall the
definition of the spaces H$(R?) given in Remark 2.1-(i) and notice that V=L
Then, the result of Krylov and Rozovskii [12] based on this triple verifies that
the solution of (1.1) exists uniquely and satisfies S,& V(a.e.-({, 0)) and €
C([0, o), H) (a.s.-~w) if E[|Sy|%]<<oc. In fact, the conditions listed in [12, p1252],
especially the monotonicity and coercivity conditions, for the pair (A(S), B(S))
=(—AS+2/.1 B;{Bj(+, S)}, {C;} }-1) can be checked from (2.13) and the fol-
lowing two facts: (1) The imbedding map of H ~/(R*)—H=H7;"(R*) is Hilbert-

Schmidt (HS) operator if m>l—l—g since 7>0 (modify the proof in [1, p176])

and therefore (A.2) implies that C; is HS operator of L R*)—H. (2) The con-
ditions “m>n" and (A.3.1) show that

|V<S1_Sz» -@j{Bj(" Sl)_Bj(" Sz)}>v*l S"5| Sl_SZI %,—I—K ISn—Szn{

for arbitrary £>0 with some K=K,>0. The final remark is that A=P(—A)
satisfies (2.13) if P(AN)=2>1%-0 ¢;A* is a polynomial such that ¢,>0 and P(A)>0
for A >0, although the theory of [14], [12] is powerful in the case when 4 is
nonlinear.

3. Weak differentiability of solutions

We introduce the notion of weak differentiability for random fields (r.f.’s)
on R* and prove the solution {S,(x); x&R?} of the SPDE (1.1) is actually differ-
entiable in this sense for £>0. The result of this section has been applied in [8]
in order to characterize the class of reversible measures of the TDGL eq. More
precisely saying, it has become necessary in [8] to construct a new r.f. ¥ from
a given r.f. X in such a way that Y is distributed according to the Gibbs rule
inside a bounded region G and coincides with X outside G (or has the same
boundary data as X on 8G). The weak differentiability plays a role to de-
termine a sufficient number of boundary data of X.

Let €I be the class of all bounded open sets in B¢ having C~-boundaries.
For a real valued r.f. X={X(x), x€R?} and I'=0G with GV, we set

Fx(hy ) = Fx(h, ¥; T)
= [ @) X(e+hen(a) dota),
for every |h|<hy, 7y>0, and = LXT)=LAT, ds), where n(x)=np(x) is the
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inner normal unit vector at x&T' and do=dor is the volume element on T'.
The Sobolev spaces of order s&R on I" and G are denoted as usual by H*(T)
[13, p35] and H*(G) [13, p40, p70], respectively.

DrriniTION 3.1. (i) The r.f. X is called weakly C?, p=Z,, at T" if there
exists />0 such that Fy(-, yr; T') € C*((—hy, hy)) a.s. for every = L¥T).
(ify We say that the r.f. X satisfies the regularity condition (RC)§, s>0, on G
if

E[KX, yD&]<const |llz-sc), ¥ ELXG),

where <X, ¥rs—f o X(®) v(x) dx.
(i) We say that a family of p+1 generalized random fields (g.r.f.’s) Y=
{Y;(¥), Y€ LXT)} 2.0 on T satisfies the regularity condition (RC)$, s>0, on T if

E[Y;(y)]<const [|[yrl|f-s+i+1/2y, Yy ELAT), 0<i<p .

RemMark 3.1. We say that X is weakly C? at T from inside G (or outside
G) if Fx(+,4r; T)eCX([0, hy)) (or C?((—hy, 0]), resp.) a.s. for every {r& L¥T).

For GeCY and a C=-diffeomorphism f(x)={f;(x)}¢.. of R’—>R’, we set
G,={f(x)eR’; x€G}, T,=08G, and

8p(f)=§gg{lll—-7f(o_c)ll+ |x—f(x) |}

where I=(§;;);; is a unit matrix, Jf(x)z(af

") is a Jacobian matrix of f and
Ox;/ij

J
|l-]| denotes the norm of d X d matrices.

DEerINITION 3.2. A family of r.v.’s {Y({r; T'); = L¥T), I'=0G with G
CV} indexed by 4 and T is called mean-square continuous in I if it satisfies

iigl sup E[| Y(; D) =YW Ty =0,

for every I'=0G, GV, and 4= LXT"), where the supremum is taken over all
C~-diffeomorphisms f satisfying 8p(f)<8. The function €L T, doy,) is
defined by o, (x)=¥:{(f ")), x<T,.

In this section we consider two cases (I) and (IT). Let S, be the solution of
the SPDE (1.1) with initial distribution peP(LZ) (or EQ(é;)) satisfying
E*[|S|Z <o (or E*|[|S]||]<<ee) in the case (I) (or the case (II), resp.), where
P(E) stands for the family of all Borel probability measures on E. We shall
prove the following two theorems.

Theorem 3.1. (i) For every t>0 and G&CV, S, is weakly C?, p=
(m—I—1)A(2m—n—1), at T=0G and especially Y; (y)=Y; (¥;T)=
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;TiiFs‘(h’ Y3 T) | 4o 0<I< p, ewists a.s.

(@) Y,={Y; ()}2a0 satisfies (RC)} for every s: O<s<(m—l)/\(2m—n—{—%),

where k=0 in the case (I) and k=1 in the case (II).
(#5) Y; ({r; T) is mean-square continuous in T for every t>0 and 0<i < p.

Theorem 3.2. S, t>0, satisfies (RC) for every s: 0<s<(m—I) A\ (2m—n).

As the first step to the proof of Theorem 3.1 we briefly mention how the
SPDE (1.1) changes its form under the coordinate transform in the variable x.
Let x'=g(x) be an orientation-preserving C~-diffeomorphism of R*—R* satisfy-
ing g(x)==x for |x| >M with some M >0; the class of such g’s will be denoted
by Diff,. We set J(x) and J'(x") the Jacobians of the map’s g and g%, respec-
tively, so that dx'= J(x)dx, dx=]'(x")dx" and J(x)- J'(x")=1 if x'=g(x). We say
p~g’ for p=p(x) and @p'=¢'(x")ECF(R’) if ¢'(x)=]'(x")p(g7'(x")), ' ER?,
or equivalently if @(x)=J(x)p'(g(x)), * & R®. Suppose the operators A, {B;}].,,
{C;}}-1 and the functions B={B(x, S)}/., satisfying the assumptions in Sect. 1
are given. We define new operators A', {B/}/.., {C’}}-1 and functions B'=
{Bj(x', SV} 1 by A'u(w")=A{u(g®)} -g-17r Biu(x") = B {u(8®))} =15
Ciu(xY=C; A TEW(EEN}Hoeg-re, for u—u(x)C5(RY) and By’ §')=
B;(g7'(x), S'(g(+))), respectively. Let {w/’}/.; be a family of processes taking
values in the space of generalized functions on R? defined from the system
of independent {F}-c.B.m.’s {wi}/., on LYR?) by the relation <w}’, p'>=
wi, | J>, p~p'. Then it is not difficult to prove the following assertions
(1)-(5):

(1) Similarly to A, {B;} /.1 and {C;} ].,, the operators A’, {B’} /., and {C}}].,
are differential operators of order 2m, n and /, respectively, with coefficients
belonging to the class C7(R?).

(2) The operator A’ satisfies the assumption (A.1).

(3) If the functions B={B(x, S)} /., satisfy (A.3.1) (or (A.3.2)), then B'=
{B’(x’', ")} .1 also satisfy the same assumption (A.3.1) (or (A.3.2), resp.).

(4) {wi’}].. is a system of independent {F}-c.B.m.’s on L¥(R?).

(5) Assume S,(x) is a solution of the SPDE (1.1) and define S} by Si(x')=
Si(g7'(x")), x’€R’. Then S} is a solution of the SPDE (1.1) with J,
{B;} o1, {C;} -1, B={B,(x, S)}}.1 and {wi}/., replaced by A, {B} .,
{Ci} 1.1, B'={B/(«x', 8")} J.1 and {w}’} /.., respectively.

Now we turn to the proof of Theorem 3.1. For given G&CY/, we can find
a covering {0;€V}1., of T'=08G and {g;=Diff;} ., in such a way that
gl(olnr) = {xl = (EI) xé)ERd, [&ll <1) x:; == 0}’
8i(%) = (8i(x), h) if x = x+-h-n(x), x€O;NT, |k| <hy,
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for each ¢ with some %,>0. Furthermore there exists a partition of unity
{a;}Y-1 on T such that a;€C=(T"), supp a;CO;NT and 3%, ;=1 on T.
Therefore it may be sufficient to verify the conclusion by assuming =0 a.e. on
T'\O; for some i. For such +r, however, by changing the variable in the integral
according as the map g;, we obtain

FoflywsT) = |, wler@) S, m)j'e)dx', 1l <hy

with j'(x")= ji(x")=(do)ogi*/dx’' €C~(0R%); i.e., j'(x') dx’ is the image meas-
ure of do(x) by the map g;. Here S} is the process defined by Si(x")=
S,(g7Y(x")), xR, and satisfies an SPDE of the form (1.1) again as we have
already noticed. This means that for completing the proof of Theorem 3.1 we
can assume from the beginning

G - Rﬁ_ - '{x == (E, xd)ERd, xd>0}

T =0R% = {x=R?, x, = 0} =R*!
and
(3.1) €L oR%,dx) and +r(x)=0 ae.on {x€doR%;|x|>1}.

We prepare a fundamental lemma which gives bounds on certain integral
operators. Let H(T"), s,y R, be the Hilbert space defined similarly to H;(R?);
see Remark 2.1—(i), in which we replace X with its restriction on I'. We denote
L!=L*(R*, e ""*® dx), rER, p>1, the Banach space having the norm ||S|| 2=
{frt| S(x)|? e7#%® dx} ¥t Let £=3),1<; €, D* be a differential operator of
order k with coefficients e, C5(R?). We associate with &€ a linear operator T'=
T, mwicZ, ,te(0,T], |h|<<hy acting on the class of functions +r satisfying
3.1):

(32) T () = | v DI, a2, dx, ek,
where D,’;:ddTi, and x*=(x, h)eT X R.
zl

Lemma 3.1. For ieZ,t=(0,T], |k|<hys=>0 and r,r'ER such that
r>r', we have

(3.3) T 0l scoys gz < cOnst g @s+2k2+D m

(3.4) “Ti,t,h”ﬁ,‘,‘(r)-»L}SCOHSt LA
where const can be taken independently of t and s |0, s,] for every s,>0.

Proof. First we note (see [1, p50]) that, if s€ Z,,

[WAllz-scy = inf { 33 [WrallZzeos}
@] <s
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for Jr€ H~%(T"), where the infimum is taken over all representations of » such as
¥ =23 (—=1)'* Ds $oy Pu ELAT) .
@|<s -
For yr=re™* = H;*(T") with Jr& H=%(T") of this form, we have

. 2
1Tl = e &y 53 | 5ulw) Detero DL 6, ate, %, )} ds |

|®|<s

< const t=(++h/m 5 S € dy {S [Wa() 13(2, &, y) %2 da}?
R r

[@]<s

<const t=e+iviin 5y (o ay ([ (w7 a0, 2, 3) 49 dad
R r

lel<s

xA|_att, 2, dzy

< const t—(2s+2i+2k+l)/2ml .,E ”‘F‘u”sz(I‘) ,
S

and this proves that the domain of T, , can be extended to the space H;*(T")
and (3.3) holds when s&Z,. In this calculation the first inequality is derived
from the estimate (2.1) and the third by using (2.3) and

S g(t, ", y) dx<const t7V» y=R? 0<t<T.
r

The estimate (3.3) for general s>0 can be derived by using the interpolation
technique. Indeed, apply the result of Calderdn [3, Paragraph 4] to the operator
T;,; » by noting that H=5(T") is a space of linear interpolation [13, p36 (or p32)
and p92] between H~%T') and H~*"}T') when n<s<n+1, n€Z,. The es-
timate (3.4) is shown similarly. [

We set F®(h, )=FP(h, ; T)=Fs, (b, T), k=1, 2, 3, for fixed :>0.
The advantage to introduce the notion of weak differentiability consists in

treating the stochastic term S,, so that we expose calculations mainly on this
term in the following.

Lemma 3.2, (i) FP(, %) & Mgz CP V23 ((—hy, b)) (a.8.).  Therefore

S, is weakly Coi~t at T=0R4 and ¥VAW)= Y £33 T) =0 PP, ) 1o
0<i<m—I1—1, exists a.s. d
(@) YP={Y &)} 7= ! satisfies (RC);. for every s: 0<s<<m—I.

Proof. Denoting the operator T;,, with E=C¥ by T 4, 1<j< ], we
set

J t . .
Y@l =3 | T8 v i) dy, 15l <hy 0<i<m—I-1.

Note that the RHS is well-defined since (3.3) with s=»=0 implies
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E[{Y &(h, ¥)}?] <o if 0<i<m—I—1. Moreover, for —hy<<h<<h'<hy, we have

(35) EHY O, )~ YO = 3 [ T s 9 T lEcaty s
However, the estimate (3.3) with s=r=0 implies the following two bounds:
(3:6) (1T s Ao T2 rllizcuty S const (h/—h)e = GLzeriom |2

for a=0 and 1. We have used that the LHS of (3.6)=||/} T\ ; .1 dh||32
far deriving (3.6) when a=1. It is then easy to see that (3.6) holds for every
ac[0,1]. Especially when i=m—I—1, by choosing 0<<a<1/2, (3.5) and (3.6)
prove Y@, 1 (+, V) E N sso CY23((—hy, hy)) a.s.; use Kolmogorov’s regulariza-
tion theorem by noting that {Y',_; ,(+, )} forms a Gaussian system. The

assertion (i) is therefore verified, since ;1%17 FP(h,)=Y?(h, ). On the other

hand, the assertion (ii) is an immediate consequence of (3.3) with r=0. In fact,
we have

ELLY £ = 3 [ 175w llces do
<const {S =D Qg |l - i/ 2y
[}

and the integral in the RHS converges for s: 0<<s<m—I[. []

ReEMARK 3.2. We explain an intuitive meaning of the regularity condition:
If Y& is non-random, then (RC);, s<m—I, implies that Y &(:)E N s<mmi
H‘"i"/z(l‘)c Nsso H?3T)CLYT) for 0<i<m—I—1. This means that
{Y®}7=/~" can be treated as if L?-functions on T, at least in the stochastic sense.
Compare this with the result of Corollary 2.1-(ii).

Lemma 3.3. For every t>0 and 0<i<m—I—1, {Y&r;T); ¥, T} is
mean-square continuous in T".

Proof. Let {O;} and {g;} be the same as before. We assume supp J»CO;
and denote simply g=g;. Then, for a C*-diffeomorphism f: R*—R?, we have

(3.7) FP(h,ps; Typ) = SaR, W(g™Hx")) St.(z,(x', B) ji(x) dz’

where 87 2(x')=5y,(g7(x")); 2;(x', B)=g (x+h-np (x)) ER?, x=f(g7X(x) €T,
for ' €0R%, heR and jj(x")=(dor,)o(gof")"/dx’. As we have seen already,
S ; has a similar form to S, , so that we write simply S, , instead of S} ; in the
following. From (3.7) we have

Y&y Ty) = Dy F(0, 45 T))
(D= S..) (3, 0) ¥ (') d’

by -
aczi; |a|=i ayl-a,! Jord
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where W (x")=+r(g7(x")) {D) 24(x', 0)}* j}(x"); recall the definition of o* for
oc€R’and a€ Z: given in (A.1). Itis easily seen that D, z(x', 0)=V g(x)-np ()
R, x=f (g'l(g’)). Therefore we obtain

Yy D)= Y T) | <const 35 {,+1L}

with
o= [ 0 50 @) 12 ) v |
1= 0" S.0) (3, 0)—(D* 5, (&)} ¥ ) |
where ¥ (x’ )zxp(g“(_ag )) {n(x")}* j'(x"), n(x")=(0, -+, 0, 1)ER* is the inner nor-
mal unit vector at ' €9R% and j'(*')=(dor)og!/dx’. However,
e =3[ af ay[{ , Dect, at—u x5 12,6) v v |
gconstnxy,—wzz(a,ﬁ , g: w2 Gy

In fact, the inequality in this formula can be shown similarly to (3.3) (replace Dj
by D® and take s=7=0). Now the integral in the RHS converges if i <m—I—1
and ||¥,—¥||;2—0 as 8p(f)—0; note that n(x")=Vg(x)-np(x), x=g~(x")ET.
On the other hand,

g =3[l ay [ 0rct, gm0, 0)9)

2
—DECY, gt~ ¥, )} x') d |

< const sup 30", 0)—a |*I1W l32c0mt || umCovat+aee0tom iy
% €0R% N {supp Yog~1} 0

for every ac<[0,1]. This estimate is shown similarly to (3.6). Notice that

8r(f)—0 implies |z/(x’, 0)—x'|—0 (uniformly on bounded sets) and also the

integral in the RHS converges if i<m—I—1 and 0<<a<1/2. The proof is

completed. [

Now we conclude the proof of Theorem 3.1: It is only remained to in-
vestigate the terms S,; and S,;. However, since the calculations are similar to
those for the term S, ,, we mention briefly here. Assuming again that T=0R%
and yr& LXT") satisfies (3.1), we have

(0,9 =3 [ du | B3, S) T9.meav(o) dy

where the operator T'{%) ; , is defined by the formula (3.2) with & replaced by
B¥. In the case (I), using the estimate (3.3) with r=—7, it is proved that
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FP(+,9) € Ngsg Cm=72=%((—hy, y)) and Y$3’={Y43’(\p)——— FP(0, )} 125"
satisfies (RC); for 0<s<2m—n. In the case (II), we see from (3.4) with
r=—F that F® (¢, )€ N5 C*%((—hy, hy)) and Y satisfies (RC):. for
0<s< 2m——n+% (although Lemma 2.5 has already proved this Holder property

for F®(-,4)). On the other hand, it is easy to show that S, ,, t>0, is weakly
C? for arbitrary pEZ, (actually S,,(-)=C=(R?), see Lemma 2.1) and Y{’=
{Y‘”(«]p)— F“)(h ) | p=o} 20 satisfies (RC)3 for arbitrary s>0 if the initial
dlstr1but10n i satlsﬁes E*[|Sy|?]<<oo with some r>0; we use (3.3) by taking
=identity. The mean-square continuity of Y ¥ («r; T'), k=1, 3, in T is shown
similarly to Y (y; T).
The proof of Theorem 3.2 is similar to that of Theorem 3.1-(ii) and rather
simpler. Actually it is a consequence of the following lemma.

Lemma 3.4. For each t>0, S, ,, k=1, 2, 3, satisfy the regularity condition
(RC)g for s such that s>0 if k=1, 0<s<m—I if k=2 and 0<s<2m—n if k=3.

Proof. For t&(0, T] and = L*G), we set

(338) T(y) = | & at, %) v dn yer?,

where & is a differential operator of order & as before. Then the following
estimate can be shown:

(3.9) Tl -5 »r2 < const t=¢+bV2m >0, S¢integer+}2~, rER.

Indeed this is derived in a similar manner to the verification of (3.3) by using
the estimate (2.1) first for s&€ Z, and then by the interpolation technique for

general s>0 (see [13, p71] especially for the condition .s=i=1nteger+—) Now
the conclusion for S, , follows by noting an equality

J t
RS, 905 = 2 | 11T 8 Wlliecns du

where T'¢) is the operator T, defined by (3.8) with £=C¥. We use (3.9) by
taking »=0. The case of k=3 can be discussed similarly, since we have

Supwde=3 [ u{ B3, 8) TPavr(v)dy,

where T'¢%, is an operator defined by (3.8) with £=3F. The case of k=1 is
also similar and easy. [
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4. Formulation as the martingale problem

Here we consider only the case (I). The case (II) can be treated similarly.
Let 9 be the class of all tame functions on L2, namely ¥ &9 iff it has the
form:

(+.1) Y(S) = ¥(<S, @, =+, <8, @), SEL,

with k=1,2, -, Yr=(ety, -, &) EC}(R*) and ¢,, -, p,€C5(R?), where
(S, p>=/pis S(x) p(x) dx. With the operators A, {B;}/.1, {C;}{-1 and the
functions B= {B/(x, S)} /-1 we associate an operator L defined on 9: For ¥ €9
having the form (4.1),

LU(S) = 3157 (S, 90, (S, 90)

*+2) X{—<S A*p>+ é<B-(- S), B¥ o}
+— Zkll a;g’ (&S, @5+, <S, @) LCopss pir>, SELE,

where C=33/., C; C¥. This operator may be written as

LU(S) = {—AS+ 3 B, {B,(+, S)}, D¥(-, S)>
43 , 7
(%) +% > (Tr CFRCH DW) (8),

where

DY(x, )= 33 7% (<8, 9, <5, 90) 2il)

D(s, 3, 8) = 33 2L (<5, 90, €5, 9) 91(x) £1(9)

(Tr CHRCH DW) (S) = |, C1CF, D?¥(x. 3, ) omy d

In the first term of the RHS of (4.3), <-, > should be understood in the sense
of generalized functions. We sometimes denote the operator L by L, in
order to indicate its dependence on the function B.

In this section we take Q=C([0, o), L?) equipped with the uniform to-
pology and denote the coordinate process by Sy(w)=w, for 0€Q. Set F,=
o {S,; 0<u<t} and F=V 5, F, as usual. We call a probability measure P on
(Q, &) a solution of L-m.p. (martingale problem for _[) starting from S&L? if
P(Sy=S)=1 and ¥(S,)— [t -L¥(S,) du, t>0, is (P, {Z} )-martingale for every
ve9.

Proposition 4.1. The distribution of the solution S, Q (a.s.) of the SPDE
(1.1) is a solution of the L-m.p.
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This proposition is a consequence of the following lemma. Indeed we
may only calculate the stochastic differential d'¥(S,) by using the (finite-dimen-
sional) Ito’s formula.

Lemma 4.1. The solution S,(x) of the SPDE (1.1) satisfies the same equa-
tion in the sense of generalized functions, i.e., for every p = C3(R?), we have

(S0 @> = (S >+, 1S —A*@>+ 3B (-, 8., BY D} du
+ é‘{ <wi, CY o>

Proof. First we note that similarly to the operator —./ its adjoint — A*
also generates a strongly continuous semigroup {T}} 5, on the space L? for every
rER and it is actually given by TF o(y)=/rq(t, %, ¥) p(x) dx, p€ L. 'This is

because the operator %—!—Jl* is uniformly parabolic in the sense of Petrovskii as

well and its fundamental solution ¢* is given by the formula ¢*(z, x, y)=¢(¢, y, x)
(see [5]). Therefore we have from (2.2)

J
(Su 9> =Sy Ttp>+ 1| CFTH. g, dul>

J
+ 5B, 8., BF THL g du

The conclusion now follows easily by taking the stochastic differential of the
both sides of this equality. []

The assertion of the converse direction of Proposition 4.1 is partially given
by the next lemma.

Lemma 4.2. Let P be the solution of L-m.p. Define a process m, taking

values in the space of generalized functions on R? by
Tt
(44) my = S,— Syt AS, du— 3 || B,4B,(-, S} du.
0 i=

Then, for every @<= CF(R?), m(p)={m,, p)> and m(p)*—it{Cop, p> are {F}-
martingales on (Q, F, P). Especially the quadratic variation of m,(p,) and m,(p,),
P1, 2 € CT(R?), is given by {my(@,), m(@,)>=t{LCopy, -

Proof. By introducing a sequence of functions W, (S)=1ry({S, D)=,
M [ oo, with r,, € C3(R) such that Jry(@)=a if |a| <M, we can prove m,(p)
and m,(p)?—t{Cep, @) are {F}-local martingales. However, this implies the
conclusion (use the martingale characterization of Brownian motions). [

The next subject is to establish the well-posedness of the L-m.p., i.e., the
existence and uniqueness of solutions of _L-m.p. starting from every S&LZ.
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If the converse assertion of Lemma 4.1 (i.e., the solution of (1.1) in the sense
of generalized functions is also the solution of the stochastic integral equation
(2.2), cf. [11]) is established, then the argument of the type of Yamada and
Watanabe might work since the pathwise uniqueness of solutions to the SPDE
(1.1) has been proved (Theorem 2.1). However, in our situation, a quite simple
proof of the uniqueness for L-m.p. is possible based on the fact that the diffu-
sion coefficients {C;} are non-random. Let us begin with the case of B=0 for
which the well-posedness was shown essentially by Holley and Stroock [10]:

Lemma 4.3. Let P be a solution of Ly-m.p. (i.e., B;=0 for 1<j<]).
Then we have

4.5) EF[eKse | F,] = expi/—1<S,, ¢T_,>—% S:" Copu po> du}

for 0<t<T, = C5(R?), where p,=T¥F@. Especially, Ly-m.p. is well-posed.

Proof. The existence of solutions for £y-m.p. is already verified (Proposi-
tion 4.1). The uniqueness follows from (4.5) and this equality is shown by
observing that

. t
Y, = exp v/ —1<S,, ¢T-,>+% [, <Cpros @r-u> iy, 01T,

is a martingale with respect to P; use Lemma 4.2 and It6’s formula. [

For treating general B, we introduce a map © on the space ) defined by
(88.);=S,—8,4(+;S.),t=>0,S.€Q and denote by Qs, S L?, the family of all
S.eQ satisfying S,=S. The space Qs is equipped with the natural topology
induced from Q.

Lemma 4.4. The map ©: Qs—>Q; s bijective and continuous. Moreover
its tnverse is measurable.

Proof. The continuity and one-to-one property of ® follow immediately
from Lemma 2.6. For verifying the onto property of ®, we have only to solve
the equation S,=S,+S, 4(+; S.) for given S.€Qs. To this end, we can use the
usual method of successive approximation. The map which gives the each step
of this approximation is clearly continuous, so that the limit giving the map @~
is measurable. [ ’

ReMARK 4.1.  Denote by LZ , the space L? equipped with the weak topolo-
gy. Let Q, and Qs , be the spaces defined similarly to Q and Q, respectively,
but with L? replaced by LZ,. Then we can also prove that ©: Qg ,—>Qs,, is
bijective and bi-measurable for each SeLZ.

Theorem 4.1. The Ly-m.p. is well-posed.
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Proof. The image measure Po®~' of an arbitrary solution P of _Lp-m.p.
solves the L;-m.p. In fact, noting Lemma 4.4, we have only to check that
Y((©S.),)—ft Lo ¥((®S.),) du is a martingale with respect to (P, {F,}) for
every W9, and this is shown by using Lemma 4.2 and It6’s formula. There-
fore Lemma 4.3 proves the uniqueness of solutions of .Lz-m.p. starting from
each S & LZ, while Proposition 4.1 shows the existence of solutions. []

ReMARK 4.2. The -Lz-m.p. considered on the space £, is also well-posed.
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