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ON FINITELY PSEUDO-FROBENIUS RINGS
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In this paper we are concerned with FPF rings and GFC rings. In sec-
tion 2 we provide some results about these rings; we show that every right GFC
ring is essentially bounded (Proposition 4) and give a characterization of right
FPF rings (Theorem 11). Finally, we present examples to illustrate Theorem 11.

1. Preliminaries

Throughout this paper R will always denote an associative ring with iden-
tity and all i?-modules will be unital.

If every finitely generated faithful right i?-module is a generator of the
category mod-i? of right jR-modules then R is said to be right finitely pseudo-
Frobenius {right FPF). Following [2], R is said to be generated by faithful cyclic
{right GFC) if every faithful cyclic right i?-module is a generator of mod-/?.
Right FPF rings are obviously right GFC and the class of right FPF rings inclu-
des right PF rings and Dedekind domains.

Let M be a right i?-module, .XT (resp. S) a subset of M (resp. R)> A a right
ideal of R and n a positive integer. Then we denote by rR{X) (resp. lR{S)) the
right (resp. left) annihilator of M (resp. S) in /?, by TrR{M) the trace ideal of
M, i.e., TrR{M)=^iIm{f)\f^HomR{M,R)} and by Zr{M) the singular sub-
module of My i.e., Zr{M)= {Λ;GM|rR{x) is essential in RR}. Further we denote
by M(n) the direct sum of n copies of M. By ideals we will mean two-sided
ideals of R.

Let T be a hereditary torsion theory for mod-i?. Then we denote by L{τ)
the Gabriel topology corresponding to T and by τ{M) the τ-torsion submodule
of M. Set BIA=τ{R/A). If A is an ideal of R then we see that B becomes
an ideal; hence in particular, τ{R) is an ideal of R. A submodule N of M is
r-closed in M if MjN is τ-torsionfree. We let G denote the Goldie torsion
theory for mod-i?. We then note that M is G-torsionfree if and only if Zr{M)=
0, i.e., M is right non-singular.

We refer to [8] for all the torsion-theoretic notions used in this paper.
The following easy result will be used repeatedly without reference through-

out the sequel.
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Lemma. For a right ideal A of R, TrR{RjA)==lR(A)R.

2. FPF (GFC) rings

A submodule N of a right i?-module M is essentially closed in M if it has no
proper essential extensions inside M, or equivalently there exists a submodule
L of M such that N is maximal with respect to NΓ\L=Q. We note that every
G-closed submodule of M is essentially closed in it. Further, it is easy to show
that if L^N^M are right i?-modules such that L is essentially closed in M
and JV is essential in M then NjL is essential in M\L.

Now, the following result is easy.

Lemma 1. An ideal I of R is G-closed in RR if and only if it is essentially
closed in RR and R/I is right non-singular over Rjl.

Lemma 2. Let I be an ideal of R and A a right ideal of R such that I+A
is essential in R. If RjA is a generator of mod-R then I is essential in RR.

Proof. Assume that RjA is a generator of mod-i?, that is, lR(A) R=R.
Then there exists a finite number of elements a^l^A) and bi&R(i=l, • ••, n)

such that 1= Σ a{ b{. Setting B={x<ΞR\bt,XGI+A for all i = l , ~ yn}, we
ί = l

see from the essentiality of I+A that B is an essential right ideal of R. It
then follows that / is essential in RR) because B^I.

The following result shows that if R is right GFC then Zr(R) contains all
nilpotent one-sided ideals of R.

Proposition 3 Assume that R is right GFC, and let A be a nilpotent right
ideal of R. Then rR(A) is essential in RR.

Proof. Let n be the nilpotent index of A. The assertion is clear for n = l .
Now let n>l and assume that the assertion is true for every nilpotent right

ideal of R with nilpotent index n'<n. Choose a right ideal B of R maximal
with respect to B^rR(A2) and Bf]rR(A)=0. Then B®rR{A) is essential in
rR(A2). Since A2 has nilpotent index ^n— 1, the induction hypothesis assures
that rR(A2) is essential in RR. Thus B@rR{A) is essential in R. On the other
hand, we have ArR(R/B)^BΓ[rR(A)=O; hence rR(RIB)^BΠrR(A)=O. Since
R is right GFC, R/B is a generator of mod-i?. It now follows from Lemma 2
that rR(A) is essential in RR.

If every essential right ideal of R contains an ideal essential in R as a right
ideal then R is said to be right essentially bounded. By [3, Proposition 1.3B],
every essential right ideal of a right FPF ring contains a non-zero ideal. On the
other hand, by [4, Corollary 2.2.], a left Noetherian, right FPF and right order
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in a QF ring is right essentially bounded. However, we see that every right
GFC ring is right essentially bounded. To show this, let A be an essential right
ideal of a right GFC ring R, and choose a right ideal B of R maximal with respect
t o B ^ A and rR(R/A)nB=0. We then see that rR{RjA)®B is essential in JR,
and further that RjB is faithful; hence it is a generator of mod-J?. Now Lemma
2 shows that rR(RjA) is essential in RR, as desired. Thus we have the following
result.

Proposition 4. Every right GFC ring is right essentially bounded.

From the above two Propositions, we obtain the following result.

Corollary 5. Assume that R is right GFC. Then an ideal I of R is G-
closed in RR if and only if it is a semiprime ideal which is essentially closed in RR.

Proof. Assume that / is G-closed in RR. To show that / is a semiprime
ideal of R, let / be an ideal of R such that I^J and J2^I. Choose a right ideal
A of R such that A^J and AΓ\I=0. Since Rjl is a non-singular right R-
module, so is A. On the other hand, A2^A Π β^A Π / = 0 ; hence Proposition
3 implies A^Zr(R). Thus we have A=0, which shows that / is essential in
JR. Since I is essentially closed in RR by Lemma 1, we must have I=J. There-
fore, / is indeed a semiprime ideal of R.

Conversely, assume that / is a semiprime ideal which is essentially closed
in RRy and set R=RjL According to Lemma 1, it suffices to show that RR is
non-singular. Let x-\-lGZr(R), and set A~{a^R\xa^I}. Then A is an
essential right ideal of R, and rR(x+I)=AIL By Proposition 4, A contains an
ideal H essential in RR. Set R=(H-{-I)II. Since I is essentially closed in RR,
the essentiality of H implies that R is essential in RR. Now, (l R(H)C[R)2^
lR(R) i ? = 0 ; hence we see that lR(R)=09 because R is a semiprime ring. Thus
we have x+I^lR(R)=0, from which we conclude that RR is non-singular.

Immediately, Corollary 5 implies the following result which is a generali-
zation of [2, Proposition 2.5] and [3, Theorem 3.3].

Corollary 6. A right GFC ring is right non-singular if and only if it is a
semiprime ring.

By [8, Proposition VI, 6.2], we have G(R)= {XSΞR\x+Zr{R)<ΞZr{RjZr{R))}.
Thus [3, Theorem 5.1] shows that if R is right FPF then G(R) is a direct sum-
mand of R as a right ideal and RIG(R) is a non-singular right FPF ring. More
generally we have the following result.

Proposition 7. Assume that R is right FPF, and let I be an ideal which is G-
closed in RR. Then

(1) / is a direct summand of RR.
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(2) Rfl is a right and left non-singular right FPF ring.

Proof. (1) Choose a right ideal A of R maximal with respect to A Π 7=0.
Then RjAφR/1 is finitely generated faithful; hence by assumption, R=TrR

(RIA®RII)=TrR(RIA)+ TrR{R/I)=:lR(A) R+lR(I). Set R=R/I and A=(A®
I)jl. Then, observing that I is essentially closed in RR by Lemma 1 and that
A®I is essential in R, we see that A is an essential right ideal of R. Since
A^rR(x-{-I) for every x^lR(A), it follows from the essentiality of A and Lemma
1 that lR{A)<^I. Thus we obtain R=I+lR(I). Writing l=a+b where α e 7
and b^lR(I), we see that a is an idempotent of 22 and I=aR. Consequently, I
is a direct summand of RR.

(2) Let M be a finitely generated faithful right ^-module and set X=Iφ
M. Since rR(X)=rR(I)ΠrR(M)=rR(I)nl, we see from (1) that rR(X)=0;
hence X is a finitely generated faithful right /2-module. Thus by assumption,
in particular, X generates i?/7, while (1) says HomΛ(7Λ, (R/I)R)=0. It then
follows that M generates Rjl as a right 22-module and so does as a right (R/7)-
module. Therefore we conclude that Rjl is a right FPF ring. Moreover,
Lemma 1 and [3, Theorem 3.6] imply that R/I is a right and left non-singular
ring.

As consequences of Proposition 7, we obtain the following results.

Corollary 8. If R is right FPF then every G-closed right ideal of R is a
right annihilator ideal of R.

Proof. Given any G-closed right ideal A of Ry choose a right ideal C of R
maximal with respect to C^rR lR(A) and A Π C=0. If C = 0 then we see from
the G-closedness of A that A=rR lR(A)y which completes the proof. Thus it is
enough to show that C=0.

Choose a right ideal B of R maximal with respect to A^B and BΓΊ C=0.
Since C is non-singular and RjB is an essential extension of C, we see that B is
G-closed ini?; hence G(R)^B. On the other hand, observing that 5 0 C is
essential in R and that it is contained in rR lR(B), we see that rR lR(B) is essential
in R; hence lR(B)^G(R). Thus we have lR(B)^rR(RIB), which implies
TrR(R/B)^rR(RIB). Since B is G-closed in RR and hence so is rΛ(i?/5), Pro-
position 7 shows that R is a direct sum of rR(RjB) and a right ideal of R gener-
ated by R/B; hence in particular, we have R=rR{RIE)+TrR(RjB). It then
follows R=rR(RjB), that is, B=R, from which C must be zero, as desired.

Corollary 9. Assume that R is right FPF. If M is a finitely generated
non-singular right R-module with finite Goldίe dimension then EndR(M) is a two-
sided order in a semisimple ring.

Proof. Since rR(M) is G-closed in RR and M is non-singular as a right
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jR/rΛ(M)-module, without loss of generality we may assume by Proposition 7
that M is faithful and R is non-singular. It then follows that R is isomorphic
to a direct summand of a finite direct sum of copies of M; hence RR has finite
Goldie dimension, because M has finite Goldie dimension. Now, we see from
Corollary 6 and [3, Corollary 3.16C] that R is a semiprime right and left
Goldie ring. Therefore, [6, Theorems 2.2.15 and 2.2.17] show that EndR{M)
is a two-sided order in a semisimple ring.

Let T be a hereditary torsion theory for mod-i?. Then T is stable if the T-
torsion class is closed under injective envelopes, and L(τ) is bounded if it
contains a cofinal subset consisting of ideals of R. We note from [8, Proposition
VI, 7.3] that G is stable, and from [8, Chapter VI, Section 6.3] that if R is right
non-singular then L(G) consists of all the essential right ideals of R; hence R is
right essentially bounded if and only if L(G) is bounded.

To provide a characterization of right FPF rings, we need the following
result.

Lemma 10. Let r be a stable hereditary torsion theory for mod-R such
that L(τ) is bounded. For a finitely generated right R-module M, the following
conditions are equivalent:

(1)
(2)

Proof. First we shall show rR(τ(M))EzL(τ). To this end, choose a sub-
module N of M maximal with respect to τ(M)f]N=0. Observing that T is
stable and that MjN is an essential extension of τ(M)y we see that MjN is T-
torsion. Since M is finitely generated, MjN=x1 R-] \-xn R for a finite num-
ber of elements xly •••, xn^MjN. Further, since MjN is τ-torsion and L(τ) is
bounded, there exist ideals Ii^L(τ) ( ί = l , •••, n) such that Ii^rR(Xi) for each ί.

We then see that n J,eL(τ) and hli'^rR{MjN)'^rR{τ{M)\ from which we
ί = l »' = 1

conclude rR(τ(M))^L(τ).
(1)=^(2). Since Lτ(R)=0 for every τ-torsionfree right i?-module L, we

always have τ(R)^rR(M/τ(M)). Conversely, according to (1), we have rR

(Mlτ(M))rR(τ(M))^rR{M)^τ(R). Now, noting that R/τ{R) is τ-torsionfree
and that rR(τ(M))^L(τ) as is seen above, we see rR{Mjr{M))^r{R). Thus we
obtain rR(Mlτ(M))=τ(R).

(2) =^(1) is clear.

In [7] Kobayashi has provided a characterization of non-singular right
FPF rings. Now we state a characterization of right FPF rings, a part of which
is an extension of [7, Theorem 1].

Theorem 11. The following conditions on R are equivalent:
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(1) Ris right FPF.
(2) (i) For every finitely generated non-singular right R-module M, R is a

direct sum ofrR(M) and a right ideal generated by M.
(ii) L(G) is bounded.
(iii) Every finitely generated faithful right R-module generates G(R).

(3) (i) For every finitely generated right ideal A of R such that rR(A) is
G-closed in RR> R is a direct sum of rR(A) and a right ideal generated by A.

(ii) L(G) is bounded.
(iii) For every finitely generated faithful right R-module M such that

G(M) is a direct summand of M, G(M) generates G(R).
(iv) Every finitely generated non-singular right R-module can be embedd-

ed into a free right R-module.

Proof. (1) =#> (2). (2) (i) follows from Proposition 7, and (2) (iii) is clear.
To show (2) (ii), let A^L(G) and set I=rR(RIA)y G(R/I)=JII and M=

(RjA)®J. Then / is an ideal which is G-closed in RR. It follows from Pro-
position 7 that J==eR for some idempotent e of R and rR(M)=I Γ\rR(J)^eR Π
(1—e) jR=O; hence M is finitely generated faithful. According to (1), M is a
generator of mod-i?, in particular, M generates (1— e) R. However, Hom^M,
(1-e) R)=HomR(RIA, (ί-e) R)®HomR(Jy (ί-e) i?)=OΘO=O, from which we
see e=l. Thus G(i?//)=i?/7, that is, rR{RIA)=I(=L(G). Therefore, L(G) is
bounded.

(2) =#> (3). First we shall assume (2) and show the following

Claim 1. For every ideal I which is G-closed in RRy R/I is a right FPF ring.

Set R=R/I and let G denote the Goldie torsion theory for mod-1?. Since
R is a right non-singular ring by Lemma 1, L(G) consists of all the essential right
ideals of R. First we show that L(G) is bounded. Let A=A/I^L(G). Then
A is essential in R; hence A^L(G). According to (2) (ii), there exists an ideal
J oϊR such that J^A and / e L ( G ) . If B=B/I is a right ideal of R such that
JΓ)B=0 where/=(/+/)//, then B-J=BΓiJ=0, that is, 5 / ^ 7 , from which
we have B^I, because (RjI)R is non-singular. Thus / is essential in RR, which
shows that L(G) is bounded. Now, we turn to the proof of Claim 1. Let M
be a finitely generated faithful right i?-module. We must show that M is a
generator of mod-1?. Since MjG(M) is a faithful right ^-module by Lemma 10
and M obviously generates M\G(M)y we may assume that Ms is non-singular;
hence it is non-singular as an i?-module, also. According to (2) (i), M generates
RlrR(M)=RRy from which we conclude that R is right FPF. This completes
the proof of Claim 1.

(3) (i) is immediate from (2) (i) and Claim 1.
To show (3) (iii), let M be a finitely generated faithful right i?-module. By

(2) (iii), we obtain an exact sequence M(n)->G(i2)-»0, and further it splits, be-
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cause G(R)R is projective by (2) (i). Thus we may assume that M(n)=G(R)(BN
for some integer n and some submodule N of M(n\ It now follows G(M) ( n )=
G(M<n))=G(R)®G(N), from which we see that G(M) generates G(R).

Finally, to show (3) (iv), let M be a finitely generated non-singular right
i?-module. Then M is finitely generated non-singular as a right RjrR{M)-
module, while (2) (i) implies R~rR(M)φA for some right ideal A of R. It
then follows from Claim 1, [3, Theorem 3.12] and [5, Theorem 5.17] that M is
embedded into {RjrR{M)Yn)^A{n)^RR

n) for some integer n.
(3) «Φ (1). First we shall assume (3) and show the following

Claim 2. (1) G(R) is a direct summand of R as a right ideal.

(2) For every finitely generated non-singular right R-module M such that

rR(M)=G(R), M generates R/G(R).

Let M be a finitely generated non-singular right i?-module such that rR(M)

=G(R). By (3) (iv), we obtain an exact sequence 0->M-+Rin) for some integer

n. Let pii R(n)->R be the i-tii projection ( i = l , —, n) and set A= Σpif(M).

Then A is a finitely generated right ideal of R and rR(A)=G(R); hence (3) (i)
says that R is a direct sum of G(R) and a right ideal B generated by A. Since
M obviously generates A, it also generates B^RIG(R)y which completes the
proof of Claim 2.

To show that R is right FPF, let M be a finitely generated faithful right
jR-module, and choose a submodule N of M maximal with respect to N Π G(M)
= 0 . Since M/N is an essential extension of G(M)y it is G-torsion; hence
setting X=MlG{M)@MjN, we see that G{X)=MfN and that X is finitely
generated faithful. It now follows from (3) (iii) that G(X)=M/N generates
G(R). On the other hand, by (3) (ii) and Lemma 10, we have rR(X/G(X))=:
G{R) hence Claim 2(2) shows that XIG(X)^MjG{M) generates RfG(R). Since
M obviously generates both M/N and MIG(M) and since R^G(R)®(RIG(R))
by Claim 2(1), M generates i?. This completes the proof of the theorem.

Assume that R is non-singular right FPF and let M be a finitely generated
non-singular right i?-module. It then follows from Theorem 11 that R—rR(M)
@A where A is a right ideal of R generated by M. Since R is a semiprime
ring by Corollary 6, we see HomR(M, rR(M))=0, which implies A=TrR(M).
Thus R=rR(M)ξBTrR(M) as ideals. Therefore, as a consequence of Theorem
11, we obtain the following result, in which (1)<=>(3) is due to [7, Theorem 1]
(c.f. [5, Theorem 5.17]).

Corollary 12. For a right non-singular ring R, the following conditions are

equivalent:
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(1) R is right EPF.
(2) (i) For every finitely generated non-singular right R-tnodule M, R=

rR(M)®TrR(M) as ideals.
(ii) R is right essentially bounded.

(3) (i) For every finitely generated right ideal A of R, R=rR(A)®TrR(A)
as ideals.

(ii) R is right essentially bounded.
(iii) Every finitely generated non-singular right R-module can be embedded

into a free right R-tnodule.

We call a ring homomorphism ψ: R-+S a flat epimorphism if it is an
epimorphism in the category of rings (or equivalently, the natural homomorphism
S®RS-*S is an isomorphism by [8, Chapter XI, Section 1]) and S is flat as a
right jR-module. We note that if both ψ: R-+S and ζ: S-+T are flat epimor-
phisms then so is ζψ: R-+T. For the Goldie torsion theory G for mod-i?, we
denote by QG the ring of quotients of R with respect to G and by φ: R->QG the
canonical ring homomorphism.

Now assume that R is right FPF, and set Q=QG. Since <p(R)^RIG(R) is
projective as a right i?-module by Proposition 7, we see that φ\ R-*φ(R) is a
flat epimorphism. We also note from [8, Chapter IX, Sections 1 and 2] that
HomR((QI<p(R))R, QR)=0 and QR is injective and non-singular, and from Theo-
rem 11 that if x^Q then φ(R)-\-xφ(R) can be embedded into R(n) (in fact, into
<p(R)(n)) for some integer n. Now, following the same argument as in the proof
of (#)==>(b) of [5, Theorem 5.17], we see that if # e Q a n d / = {φ(r)^φ(R)\φ{r)x
<=<p(R)} then QJ=Q. It then follows from [5, Theorem 3.9] that the in-
clusion map φ{R)->Q is a flat epimorphism. Thus we have the following result.

Corollary 13. If R is right EPF then φ: R->QG is a flat epimorphism.

Finally, we present examples to illustrate Theorem 11.

EXAMPLE 1. There exists a ring satisfying the conditions (2) (ii) and (Hi)
((3) (ii), (iii) and (iv)) of Theorem 11, but not FPF.

Proof. Set R={(x>y)G:ZχZ\x=y (mod 2)} where Z is the ring of inte-
gers. Then R is a commutative semiprime Noetherian ring; hence it satisfies
(2) (ii) and (iii) ((3) (ii), (iii) and (iv)) of Theorem 11.

Now, set A=(2, 0)i?θ(0,2)i?. Then A is finitely generated faithful, but
TrR(A)=A^FR; hence R is not FPF.

EXAMPLE 2. There exists a ring satisfying the conditions (2) (i) and (iii)
((3) (i)y (iii) and (iv)) of Theorem 11, but not FPF.

Proof. Let R be a simple principal ideal domain but not a skew field (c.f.
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[6, Proposition 1.3.8]). Then R satisfies the conditions (2) (i) and (iii) ((3)(i),

(iii) and (iv)) of Theorem 11, while L(G) is not bounded; hence R is not FPF by

Theorem 11.

EXAMPLE 3. There exists a ring satisfying the conditions (2) (i) and (it) ((3)

(£), (ii) and (iv)) of Theorem 11, but not FPF.

Proof. Let F be a field and set R=ΪF F M / ( * p Ί Then Zr(R)=

t r\ / \ ι/ 2\~\ L J / \ /

\x)l\x ) a n ( j it is essential in RR; hence RR is G-torsion, from which it triv-
0 (x)l(x2)Λ

ially satisfies the conditions (2) (i) and (ii) ((3) (i), (ii) and (iv)) of Theorem 11.

Now, set A=\F FM/(*2)~I. Then A is a faithful right ideal generated by

Γ1 °Ί, but TrR(A)=AΦR; hence R is not right FPF.

EXAMPLE 4. There exists a ring satisfying the conditions (3) (i), (ii) and (iii) of

Theorem 11, but not FPF.

Proof. Let F be a field, and set F=Ft for ί = l , 2, •••, and R= {x=(x{)^
CO

Π.F,! there exists an integer n such that xn=xi for all but finitely many i}.

Then i? is a commutative von Neumann regular ring which is not self-injective,

and it then satisfies the conditions (3) (i), (ii) and (iii) of Theorem 11. But, [5,

Theorem 3.12] and Theorem 11 imply that R is not FPF.
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