ON FINITELY PSEUDO-FROBENIUS RINGS

Hiroshi YOSHIMURA

(Received April 19, 1990)

In this paper we are concerned with FPF rings and GFC rings. In section 2 we provide some results about these rings; we show that every right GFC ring is essentially bounded (Proposition 4) and give a characterization of right FPF rings (Theorem 11). Finally, we present examples to illustrate Theorem 11.

1. Preliminaries

Throughout this paper R will always denote an associative ring with identity and all R-modules will be unital.

If every finitely generated faithful right R-module is a generator of the category mod- R of right R-modules then R is said to be right finitely pseudoFrobenius (right FPF). Following [2], R is said to be generated by faithful cyclic (right GFC) if every faithful cyclic right R-module is a generator of mod- R. Right FPF rings are obviously right GFC and the class of right FPF rings includes right PF rings and Dedekind domains.

Let M be a right R-module, X (resp. S) a subset of M (resp. R), A a right ideal of R and n a positive integer. Then we denote by $r_{R}(X)$ (resp. $l_{R}(S)$) the right (resp. left) annihilator of M (resp. S) in R, by $\operatorname{Tr}_{R}(M)$ the trace ideal of M, i.e., $\operatorname{Tr}_{R}(M)=\Sigma\left\{\operatorname{Im}(f) \mid f \in \operatorname{Hom}_{R}(M, R)\right\}$ and by $Z_{r}(M)$ the singular submodule of M, i.e., $Z_{r}(M)=\left\{x \in M \mid r_{R}(x)\right.$ is essential in $\left.R_{R}\right\}$. Further we denote by $M^{(n)}$ the direct sum of n copies of M. By ideals we will mean two-sided ideals of R.

Let τ be a hereditary torsion theory for mod- R. Then we denote by $L(\tau)$ the Gabriel topology corresponding to τ and by $\tau(M)$ the τ-torsion submodule of M. Set $B / A=\tau(R / A)$. If A is an ideal of R then we see that B becomes an ideal; hence in particular, $\tau(R)$ is an ideal of R. A submodule N of M is τ-closed in M if M / N is τ-torsionfree. We let G denote the Goldie torsion theory for mod-R. We then note that M is G-torsionfree if and only if $Z_{r}(M)=$ 0 , i.e., M is right non-singular.

We refer to [8] for all the torsion-theoretic notions used in this paper.
The following easy result will be used repeatedly without reference throughout the sequel.

Lemma. For a right ideal A of $R, \operatorname{Tr}_{R}(R / A)=l_{R}(A) R$.

2. FPF (GFC) rings

A submodule N of a right R-module M is essentially closed in M if it has no proper essential extensions inside M, or equivalently there exists a submodule L of M such that N is maximal with respect to $N \cap L=0$. We note that every G-closed submodule of M is essentially closed in it. Further, it is easy to show that if $L \leqq N \leqq M$ are right R-modules such that L is essentially closed in M and N is essential in M then N / L is essential in M / L.

Now, the following result is easy.
Lemma 1. An ideal I of R is G-closed in R_{R} if and only if it is essentially closed in R_{R} and R / I is right non-singular over R / I.

Lemma 2. Let I be an ideal of R and A a right ideal of R such that $I+A$ is essential in R. If R / A is a generator of mod- R then I is essential in R_{R}.

Proof. Assume that R / A is a generator of $\bmod -R$, that is, $l_{R}(A) R=R$. Then there exists a finite number of elements $a_{i} \in l_{R}(A)$ and $b_{i} \in R(i=1, \cdots, n)$ such that $1=\sum_{i=1}^{n} a_{i} b_{i}$. Setting $B=\left\{x \in R \mid b_{i} x \in I+A\right.$ for all $\left.i=1, \cdots, n\right\}$, we see from the essentiality of $I+A$ that B is an essential right ideal of R. It then follows that I is essential in R_{R}, because $B \leqq I$.

The following result shows that if R is right GFC then $Z_{r}(R)$ contains all nilpotent one-sided ideals of R.

Proposition 3. Assume that R is right GFC, and let A be a nilpotent right ideal of R. Then $r_{R}(A)$ is essential in R_{R}.

Proof. Let n be the nilpotent index of A. The assertion is clear for $n=1$.
Now let $n>1$ and assume that the assertion is true for every nilpotent right ideal of R with nilpotent index $n^{\prime}<n$. Choose a right ideal B of R maximal with respect to $B \leqq r_{R}\left(A^{2}\right)$ and $B \cap r_{R}(A)=0$. Then $B \oplus r_{R}(A)$ is essential in $r_{R}\left(A^{2}\right)$. Since A^{2} has nilpotent index $\leqq n-1$, the induction hypothesis assures that $r_{R}\left(A^{2}\right)$ is essential in R_{R}. Thus $B \oplus r_{R}(A)$ is essential in R. On the other hand, we have $A r_{R}(R / B) \leqq B \cap r_{R}(A)=0$; hence $r_{R}(R / B) \leqq B \cap r_{R}(A)=0$. Since R is right GFC, R / B is a generator of mod-R. It now follows from Lemma 2 that $r_{R}(A)$ is essential in R_{R}.

If every essential right ideal of R contains an ideal essential in R as a right ideal then R is said to be right essentially bounded. By [3, Proposition 1.3B], every essential right ideal of a right FPF ring contains a non-zero ideal. On the other hand, by [4, Corollary 2.2.], a left Noetherian, right FPF and right order
in a $Q F$ ring is right essentially bounded. However, we see that every right GFC ring is right essentially bounded. To show this, let A be an essential right ideal of a right GFC ring R, and choose a right ideal B of R maximal with respect to $B \leqq A$ and $r_{R}(R / A) \cap B=0$. We then see that $r_{R}(R / A) \oplus B$ is essential in R, and further that R / B is faithful; hence it is a generator of mod-R. Now Lemma 2 shows that $r_{R}(R / A)$ is essential in R_{R}, as desired. Thus we have the following result.

Proposition 4. Every right GFC ring is right essentially bounded.

From the above two Propositions, we obtain the following result.
Corollary 5. Assume that R is right GFC. Then an ideal I of R is G closed in R_{R} if and only if it is a semiprime ideal which is essentially closed in R_{R}.

Proof. Assume that I is G-closed in R_{R}. To show that I is a semiprime ideal of R, let J be an ideal of R such that $I \leqq J$ and $J^{2} \leqq I$. Choose a right ideal A of R such that $A \leqq J$ and $A \cap I=0$. Since R / I is a non-singular right R module, so is A. On the other hand, $A^{2} \leqq A \cap J^{2} \leqq A \cap I=0$; hence Proposition 3 implies $A \leqq Z_{r}(R)$. Thus we have $A=0$, which shows that I is essential in J_{R}. Since I is essentially closed in R_{R} by Lemma 1, we must have $I=J$. Therefore, I is indeed a semiprime ideal of R.

Conversely, assume that I is a semiprime ideal which is essentially closed in R_{R}, and set $\bar{R}=R / I$. According to Lemma 1 , it suffices to show that $\bar{R}_{\bar{R}}$ is non-singular. Let $x+I \in Z_{r}(\bar{R})$, and set $A=\{a \in R \mid x a \in I\}$. Then A is an essential right ideal of R, and $r_{\bar{R}}(x+I)=A / I$. By Proposition 4, A contains an ideal H essential in R_{R}. Set $\bar{H}=(H+I) / I$. Since I is essentially closed in R_{R}, the essentiality of H implies that \bar{H} is essential in $\bar{R}_{\bar{R}}$. Now, $\left(l_{\bar{R}}(\bar{H}) \cap \bar{H}\right)^{2} \leqq$ $l_{\bar{R}}(\bar{H}) \bar{H}=0$; hence we see that $l_{\bar{R}}(\bar{H})=0$, because \bar{R} is a semiprime ring. Thus we have $x+I \in l_{\bar{R}}(\bar{H})=0$, from which we conclude that $\bar{R}_{\bar{R}}$ is non-singular.

Immediately, Corollary 5 implies the following result which is a generalization of [2, Proposition 2.5] and [3, Theorem 3.3].

Corollary 6. A right GFC ring is right non-singular if and only if it is a semiprime ring.

By [8, Proposition VI, 6.2], we have $G(R)=\left\{x \in R \mid x+Z_{r}(R) \in Z_{r}\left(R / Z_{r}(R)\right)\right\}$. Thus [3, Theorem 5.1] shows that if R is right FPF then $G(R)$ is a direct summand of R as a right ideal and $R / G(R)$ is a non-singular right FPF ring. More generally we have the following result.

Proposition 7. Assume that R is right FPF, and let I be an ideal which is G closed in R_{R}. Then
(1) I is a direct summand of R_{R}.
(2) R / I is a right and left non-singular right FPF ring.

Proof. (1) Choose a right ideal A of R maximal with respect to $A \cap I=0$. Then $R / A \oplus R / I$ is finitely generated faithful; hence by assumption, $R=\operatorname{Tr}_{R}$ $(R / A \oplus R / I)=\operatorname{Tr}_{R}(R / A)+\operatorname{Tr}_{R}(R / I)=l_{R}(A) R+l_{R}(I)$. Set $\bar{R}=R / I$ and $\bar{A}=(A \oplus$ $I) / I$. Then, observing that I is essentially closed in R_{R} by Lemma 1 and that $A \oplus I$ is essential in R, we see that \bar{A} is an essential right ideal of \bar{R}. Since $\bar{A} \leqq r_{\bar{R}}(x+I)$ for every $x \in l_{R}(A)$, it follows from the essentiality of \bar{A} and Lemma 1 that $l_{R}(A) \leqq I$. Thus we obtain $R=I+l_{R}(I)$. Writing $1=a+b$ where $a \in I$ and $b \in l_{R}(I)$, we see that a is an idempotent of R and $I=a R$. Consequently, I is a direct summand of R_{R}.
(2) Let M be a finitely generated faithful right \bar{R}-module and set $X=I \oplus$ M. Since $r_{R}(X)=r_{R}(I) \cap r_{R}(M)=r_{R}(I) \cap I$, we see from (1) that $r_{R}(X)=0$; hence X is a finitely generated faithful right R-module. Thus by assumption, in particular, X generates R / I, while (1) says $\operatorname{Hom}_{R}\left(I_{R},(R / I)_{R}\right)=0$. It then follows that M generates R / I as a right R-module and so does as a right (R / I)module. Therefore we conclude that R / I is a right FPF ring. Moreover, Lemma 1 and [3, Theorem 3.6] imply that R / I is a right and left non-singular ring.

As consequences of Proposition 7, we obtain the following results.
Corollary 8. If R is right FPF then every G-closed right ideal of R is a right annihilator ideal of R.

Proof. Given any G-closed right ideal A of R, choose a right ideal C of R maximal with respect to $C \leqq r_{R} l_{R}(A)$ and $A \cap C=0$. If $C=0$ then we see from the G-closedness of A that $A=r_{R} l_{R}(A)$, which completes the proof. Thus it is enough to show that $C=0$.

Choose a right ideal B of R maximal with respect to $A \leqq B$ and $B \cap C=0$. Since C is non-singular and R / B is an essential extension of C, we see that B is G-closed in R; hence $G(R) \leqq B$. On the other hand, observing that $B \oplus C$ is essential in R and that it is contained in $r_{R} l_{R}(B)$, we see that $r_{R} l_{R}(B)$ is essential in R; hence $l_{R}(B) \leqq G(R)$. Thus we have $l_{R}(B) \leqq r_{R}(R / B)$, which implies $\operatorname{Tr}_{R}(R / B) \leqq r_{R}(R / B)$. Since B is G-closed in R_{R} and hence so is $r_{R}(R / B)$, Proposition 7 shows that R is a direct sum of $r_{R}(R / B)$ and a right ideal of R generated by R / B; hence in particular, we have $R=r_{R}(R / B)+\operatorname{Tr}_{R}(R / B)$. It then follows $R=r_{R}(R / B)$, that is, $B=R$, from which C must be zero, as desired.

Corollary 9. Assume that R is right FPF. If M is a finitely generated non-singular right R-module with finite Goldie dimension then $\operatorname{End}_{R}(M)$ is a twosided order in a semisimple ring.

Proof. Since $r_{R}(M)$ is G-closed in R_{R} and M is non-singular as a right
$R / r_{R}(M)$-module, without loss of generality we may assume by Proposition 7 that M is faithful and R is non-singular. It then follows that R is isomorphic to a direct summand of a finite direct sum of copies of M; hence R_{R} has finite Goldie dimension, because M has finite Goldie dimension. Now, we see from Corollary 6 and [3, Corollary 3.16 C] that R is a semiprime right and left Goldie ring. Therefore, [6, Theorems 2.2.15 and 2.2.17] show that $E n d_{R}(M)$ is a two-sided order in a semisimple ring.

Let τ be a hereditary torsion theory for mod- R. Then τ is stable if the $\tau-$ torsion class is closed under injective envelopes, and $L(\tau)$ is bounded if it contains a cofinal subset consisting of ideals of R. We note from [8, Proposition VI, 7.3] that G is stable, and from [8, Chapter VI, Section 6.3] that if R is right non-singular then $L(G)$ consists of all the essential right ideals of R; hence R is right essentially bounded if and only if $L(G)$ is bounded.

To provide a characterization of right FPF rings, we need the following result.

Lemma 10. Let τ be a stable hereditary torsion theory for mod- R such that $L(\tau)$ is bounded. For a finitely generated right R-module M, the following conditions are equivalent:
(1) $\quad r_{R}(M) \leqq \tau(R)$.
(2) $\quad r_{R}(M / \tau(M))=\tau(R)$.

Proof. First we shall show $r_{R}(\tau(M)) \in L(\tau)$. To this end, choose a submodule N of M maximal with respect to $\tau(M) \cap N=0$. Observing that τ is stable and that M / N is an essential extension of $\tau(M)$, we see that M / N is τ torsion. Since M is finitely generated, $M / N=x_{1} R+\cdots+x_{n} R$ for a finite number of elements $x_{1}, \cdots, x_{n} \in M / N$. Further, since M / N is τ-torsion and $L(\tau)$ is bounded, there exist ideals $I_{i} \in L(\tau)(i=1, \cdots, n)$ such that $I_{i} \leqq r_{R}\left(x_{i}\right)$ for each i. We then see that $\bigcap_{i=1}^{n} I_{i} \in L(\tau)$ and $\bigcap_{i=1}^{n} I_{i} \leqq r_{R}(M / N) \leqq r_{R}(\tau(M))$, from which we conclude $r_{R}(\tau(M)) \in L(\tau)$.
(1) \Rightarrow (2). Since $L_{\tau}(R)=0$ for every τ-torsionfree right R-module L, we always have $\tau(R) \leqq r_{R}(M / \tau(M))$. Conversely, according to (1), we have r_{R} $(M / \tau(M)) r_{R}(\tau(M)) \leqq r_{R}(M) \leqq \tau(R)$. Now, noting that $R / \tau(R)$ is τ-torsionfree and that $r_{R}(\tau(M)) \in L(\tau)$ as is seen above, we see $r_{R}(M / \tau(M)) \leqq \tau(R)$. Thus we obtain $r_{R}(M / \tau(M))=\tau(R)$.
$(2) \Rightarrow(1)$ is clear.
In [7] Kobayashi has provided a characterization of non-singular right FPF rings. Now we state a characterization of right FPF rings, a part of which is an extension of [7, Theorem 1].

Theorem 11. The following conditions on R are equivalent:
(1) R is right FPF.
(2) (i) For every finitely generated non-singular right R-module M, R is a direct sum of $r_{R}(M)$ and a right ideal generated by M.
(ii) $L(G)$ is bounded.
(iii) Every finitely generated faithful right R-module generates $G(R)$.
(3) (i) For every finitely generated right ideal A of R such that $r_{R}(A)$ is G-closed in R_{R}, R is a direct sum of $r_{R}(A)$ and a right ideal generated by A.
(ii) $L(G)$ is bounded.
(iii) For every finitely generated faithful right R-module M such that $G(M)$ is a direct summand of $M, G(M)$ generates $G(R)$.
(iv) Every finitely generated non-singular right R-module can be embedded into a free right R-module.

Proof. (1) \Rightarrow (2). (2) (i) follows from Proposition 7, and (2) (iii) is clear.
To show (2) (ii), let $A \in L(G)$ and set $I=r_{R}(R / A), G(R / I)=J / I$ and $M=$ $(R / A) \oplus J$. Then J is an ideal which is G-closed in R_{R}. It follows from Proposition 7 that $J=e R$ for some idempotent e of R and $r_{R}(M)=I \cap r_{R}(J) \leqq e R \cap$ (1-e) $R=0$; hence M is finitely generated faithful. According to (1), M is a generator of mod- R, in particular, M generates $(1-e) R$. However, $\operatorname{Hom}_{R}(M$, $(1-e) R)=\operatorname{Hom}_{R}(R / A,(1-e) R) \oplus \operatorname{Hom}_{R}(J,(1-e) R)=0 \oplus 0=0$, from which we see $e=1$. Thus $G(R / I)=R / I$, that is, $r_{R}(R / A)=I \in L(G)$. Therefore, $L(G)$ is bounded.
$(2) \Rightarrow(3)$. First we shall assume (2) and show the following
Claim 1. For every ideal I which is G-closed in $R_{R}, R / I$ is a right FPF ring.
Set $\bar{R}=R / I$ and let \bar{G} denote the Goldie torsion theory for mod \bar{R}. Since \bar{R} is a right non-singular ring by Lemma $1, L(\bar{G})$ consists of all the essential right ideals of \bar{R}. First we show that $L(\bar{G})$ is bounded. Let $\bar{A}=A / I \in L(\bar{G})$. Then A is essential in R; hence $A \in L(G)$. According to (2) (ii), there exists an ideal J of R such that $J \leqq A$ and $J \in L(G)$. If $\bar{B}=B / I$ is a right ideal of \bar{R} such that $\bar{J} \cap \bar{B}=0$ where $\bar{J}=(J+I) / I$, then $\bar{B} \cdot \bar{J}=\bar{B} \cap \bar{J}=0$, that is, $B \cdot J \leqq I$, from which we have $B \leqq I$, because $(R / I)_{R}$ is non-singular. Thus \bar{J} is essential in $\bar{R}_{\bar{R}}$, which shows that $L(\bar{G})$ is bounded. Now, we turn to the proof of Claim 1. Let M be a finitely generated faithful right \bar{R}-module. We must show that M is a generator of mod- \bar{R}. Since $M / \bar{G}(M)$ is a faithful right \bar{R}-module by Lemma 10 and M obviously generates $M / \bar{G}(M)$, we may assume that $M_{\bar{R}}$ is non-singular; hence it is non-singular as an R-module, also. According to (2) (i), M generates $R / r_{R}(M)=\bar{R}_{\bar{R}}$, from which we conclude that \bar{R} is right FPF. This completes the proof of Claim 1.
(3) (i) is immediate from (2) (i) and Claim 1.

To show (3) (iii), let M be a finitely generated faithful right R-module. By (2) (iii), we obtain an exact sequence $M^{(n)} \rightarrow G(R) \rightarrow 0$, and further it splits, be-
cause $G(R)_{R}$ is projective by (2) (i). Thus we may assume that $M^{(n)}=G(R) \oplus N$ for some integer n and some submodule N of $M^{(n)}$. It now follows $G(M)^{(n)}=$ $G\left(M^{(n)}\right)=G(R) \oplus G(N)$, from which we see that $G(M)$ generates $G(R)$.

Finally, to show (3) (iv), let M be a finitely generated non-singular right R-module. Then M is finitely generated non-singular as a right $R / r_{R}(M)$ module, while (2) (i) implies $R=r_{R}(M) \oplus A$ for some right ideal A of R. It then follows from Claim 1, [3, Theorem 3.12] and [5, Theorem 5.17] that M is embedded into $\left(R / r_{R}(M)\right)^{(n)} \cong A^{(n)} \leqq R_{R}^{(n)}$ for some integer n.
$(3) \Rightarrow(1)$. First we shall assume (3) and show the following
Claim 2. (1) $\quad G(R)$ is a direct summand of R as a right ideal.
(2) For every finitely generated non-singular right R-module M such that $r_{R}(M)=G(R), M$ generates $R / G(R)$.

Let M be a finitely generated non-singular right R-module such that $r_{R}(M)$ $=G(R) . \quad$ By (3) (iv), we obtain an exact sequence $0 \rightarrow M \xrightarrow{f} R^{(n)}$ for some integer n. Let $p_{i}: R^{(n)} \rightarrow R$ be the i-th projection $(i=1, \cdots, n)$ and set $A=\sum_{i=1}^{n} p_{i} f(M)$. Then A is a finitely generated right ideal of R and $r_{R}(A)=G(R)$; hence (3) (i) says that R is a direct sum of $G(R)$ and a right ideal B generated by A. Since M obviously generates A, it also generates $B \cong R / G(R)$, which completes the proof of Claim 2.

To show that R is right FPF, let M be a finitely generated faithful right R-module, and choose a submodule N of M maximal with respect to $N \cap G(M)$ $=0$. Since M / N is an essential extension of $G(M)$, it is G-torsion; hence setting $X=M / G(M) \oplus M / N$, we see that $G(X)=M / N$ and that X is finitely generated faithful. It now follows from (3) (iii) that $G(X)=M / N$ generates $G(R)$. On the other hand, by (3) (ii) and Lemma 10, we have $r_{R}(X / G(X))=$ $G(R)$; hence Claim 2(2) shows that $X / G(X) \cong M / G(M)$ generates $R / G(R)$. Since M obviously generates both M / N and $M / G(M)$ and since $R \cong G(R) \oplus(R / G(R))$ by Claim 2(1), M generates R. This completes the proof of the theorem.

Assume that R is non-singular right FPF and let M be a finitely generated non-singular right R-module. It then follows from Theorem 11 that $R=r_{R}(M)$ $\oplus A$ where A is a right ideal of R generated by M. Since R is a semiprime ring by Corollary 6 , we see $\operatorname{Hom}_{R}\left(M, r_{R}(M)\right)=0$, which implies $A=\operatorname{Tr}_{R}(M)$. Thus $R=r_{R}(M) \oplus \operatorname{Tr}_{R}(M)$ as ideals. Therefore, as a consequence of Theorem 11, we obtain the following result, in which $(1) \Leftrightarrow(3)$ is due to [7, Theorem 1] (c.f. [5, Theorem 5.17]).

Corollary 12. For a right non-singular ring R, the following conditions are equivalent:
(1) R is right EPF.
(2) (i) For every finitely generated non-singular right R-module $M, R=$ $r_{R}(M) \oplus \operatorname{Tr}_{R}(M)$ as ideals.
(ii) R is right essentially bounded.
(3) (i) For every finitely generated right ideal A of $R, R=r_{R}(A) \oplus \operatorname{Tr}_{R}(A)$ as ideals.
(ii) R is right essentially bounded.
(iii) Every finitely generated non-singular right R-module can be embedded into a free right R-module.

We call a ring homomorphism $\psi: R \rightarrow S$ a flat epimorphism if it is an epimorphism in the category of rings (or equivalently, the natural homomorphism $S \otimes_{R} S \rightarrow S$ is an isomorphism by [8, Chapter XI, Section 1]) and S is flat as a right R-module. We note that if both $\psi: R \rightarrow S$ and $\zeta: S \rightarrow T$ are flat epimorphisms then so is $\zeta \psi: R \rightarrow T$. For the Goldie torsion theory G for $\bmod -R$, we denote by Q_{G} the ring of quotients of R with respect to G and by $\varphi: R \rightarrow Q_{G}$ the canonical ring homomorphism.

Now assume that R is right FPF, and set $Q=Q_{G}$. Since $\varphi(R) \cong R / G(R)$ is projective as a right R-module by Proposition 7, we see that $\varphi: R \rightarrow \varphi(R)$ is a flat epimorphism. We also note from [8, Chapter IX, Sections 1 and 2] that $\operatorname{Hom}_{R}\left((Q / \varphi(R))_{R}, Q_{R}\right)=0$ and Q_{R} is injective and non-singular, and from Theorem 11 that if $x \in Q$ then $\varphi(R)+x \varphi(R)$ can be embedded into $R^{(n)}$ (in fact, into $\left.\varphi(R)^{(n)}\right)$ for some integer n. Now, following the same argument as in the proof of $(a) \Rightarrow(b)$ of [5, Theorem 5.17], we see that if $x \in Q$ and $J=\{\varphi(r) \in \varphi(R) \mid \varphi(r) x$ $\in \varphi(R)\}$ then $Q J=Q$. It then follows from [5, Theorem 3.9] that the inclusion map $\varphi(R) \rightarrow Q$ is a flat epimorphism. Thus we have the following result.

Corollary 13. If R is right EPF then $\varphi: R \rightarrow Q_{G}$ is a flat epimorphism.
Finally, we present examples to illustrate Theorem 11.
Example 1. There exists a ring satisfying the conditions (2) (ii) and (iii) ((3) (ii), (iii) and (iv)) of Theorem 11, but not FPF.

Proof. Set $R=\{(x, y) \in Z \times Z \mid x \equiv y(\bmod 2)\}$ where Z is the ring of integers. Then R is a commutative semiprime Noetherian ring; hence it satisfies (2) (ii) and (iii) ((3) (ii), (iii) and (iv)) of Theorem 11.

Now, set $A=(2,0) R \oplus(0,2) R$. Then A is finitely generated faithful, but $\operatorname{Tr}_{R}(A)=A \neq R$; hence R is not FPF.

Example 2. There exists a ring satisfying the conditions (2) (i) and (iii) ((3) (i), (iii) and (iv)) of Theorem 11, but not FPF.

Proof. Let R be a simple principal ideal domain but not a skew field (c.f.
[6, Proposition 1.3.8]). Then R satisfies the conditions (2) (i) and (iii) ((3)(i), (iii) and (iv)) of Theorem 11, while $L(G)$ is not bounded; hence R is not FPF by Theorem 11.

Example 3. There exists a ring satisfying the conditions (2) (i) and (ii) ((3) (i), (ii) and (iv)) of Theorem 11, but not FPF.

Proof. Let F be a field and set $R=\left[\begin{array}{cc}F & F[x] /\left(x^{2}\right) \\ 0 & F[x] /\left(x^{2}\right)\end{array}\right]$. Then $Z_{r}(R)=$ $\left[\begin{array}{ll}0 & (x) /\left(x^{2}\right) \\ 0 & (x) /\left(x^{2}\right)\end{array}\right]$ and it is essential in R_{R}; hence R_{R} is G-torsion, from which it trivially satisfies the conditions (2) (i) and (ii) ((3) (i), (ii) and (iv)) of Theorem 11.

Now, set $A=\left[\begin{array}{cc}F & F[x] /\left(x^{2}\right) \\ 0 & 0\end{array}\right]$. Then A is a faithful right ideal generated by $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$, but $\operatorname{Tr}_{R}(A)=A \neq R$; hence R is not right FPF.

Example 4. There exists a ring satisfying the conditions (3) (i), (ii) and (iii) of Theorem 11, but not FPF.

Proof. Let F be a field, and set $F=F_{i}$ for $i=1,2, \cdots$, and $R=\left\{x=\left(x_{i}\right) \in\right.$ $\prod_{i=1}^{\infty} F_{i} \mid$ there exists an integer n such that $x_{n}=x_{i}$ for all but finitely many $\left.i\right\}$. Then R is a commutative von Neumann regular ring which is not self-injective, and it then satisfies the conditions (3) (i), (ii) and (iii) of Theorem 11. But, [5, Theorem 3.12] and Theorem 11 imply that R is not FPF.

Acknowledgement. The author would like to express his thanks to Professor Y. Kurata for his valuable advice in preparing this paper,

References

[1] F.W. Anderson and K.R. Fuller: Rings and Categories of Modules, SpringerVerlag, New York-Heidelberg-Berlin, 1973.
[2] G.F. Birkenmeier: A generalization of FPF rings, Comm. Algebra 17 (1989), 855884.
[3] C. Faith and S. Page: FPF Ring Theory, London Math. Soc. Lecture Note Series 88, Cambridge University Press, Cambridge, 1984.
[4] T.G. Faticoni: FPF rings I: The Noetherian case, Comm. Algebra 13 (1985), 2119-2136.
[5] K.R. Goodearl: Ring Theory, Marcel Dekker, New York-Basel, 1976.
[6] A.V. Jategaonkar: Localization in Noetherian Rings, London Math. Soc. Lecture Note Series 98, Cambridge University Press, Cambridge, 1986.
[7] S. Kobayashi: On non-singular FPF rings I, Osaka J. Math. 22 (1985), 787-795.
[8] B. Stenström: Rings of Quotients, Springer-Verlag, Berlin-Heidelberg-New York, 1975.

Department of Mathematics
Yamaguchi University
Yoshida, Yamaguchi 753, Japan

