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0. Introduction

In [1] Barbosa and do Carmo adopted a new approach to the stability of
minimal surfaces. In particular they discussed the stability of simply connect-
ed compact domains with boundary on minimal surfaces in space forms (cf.
[2], [8] and [10]). Their method was applied also to the stability of surfaces
with constant mean curvature in 3-dimensional space forms (see [5], [9] and
[14]). It is natural to ask if these arguments can be generalized for general
ambient spaces. In the case of minimal surfaces, a positive answer to this
question was given in our previous paper [11]. In this paper we give a positive
answer in the case of surfaces with constnat mean curvature. Namely we prove:

Theorem. Let f: M-+N be an immersion of a 2-dimensional orientable

manifold M into a Z-dimensional orientable Riemannian manifold N. Assume

that the mean curvature of the immersion f is constant. Let D be a simply connect-

ed compact domain on M with piecewise smooth boundary. We denote by A and

dM the second fundamental form and the area element of M induced by f, res-

pectively. Suppose that the sectional curvature of N and the norm of the covariant

derivative of the curvature tensor of N are bounded. Then there is a positive con-

stant cλ depending only on Nsuch that if\ (1+ \A\2l2)dM<cu then D is stable.
JD

REMARK, (i) The method in [11] is not available to the statility of sur-
faces with constant mean curvature.

(ii) If we omit the hypothesis that D is simply connected, it is not known
whether the theorem is ture or not (cf. [11, Theorem 0.3]).

The author wishes to thank Professor S. Tanno for his constant encoura-
gement and advice, and the referee for useful comments.

1. Preliminaries

Let /: M-*N be an immersion of an /w-dimensional orientable manifold



894 M. SAKAKI

M into an (w+l)-dimensional orientable Riemannian manifold N. Assume that
the mean curvature of the immersion/ is constant. Let D be a compact domain
on M with piecewise smooth boundary QD. We choose a unit normal vector
field v to /(M) We denote by F(D) the space of smooth functions ψ on ΰ

such that ψ = 0 on dD and I ψdM=0, where dM is the volume element of
JD

M with respect to the metric ds2 induced by/.
For ΛJT&F(D), we consider a smooth map F: [0, l]xD-»iVsuch that Ft:

D-+N for *e[0, 1] defined by Ft(p)=F(t,p) for ^ G ΰ is an immersion, F o =/,

^ / I D = / I D. (dldt)Ft\t=^ψv and (<f/&) ( F*dN=0, where rfΛΓ is the

volume element of N. The second variation I(ψ) of the volume functional of D

for the variational vector field ψv is defined by I(ψ)=(d2ldf)vόί(D9t)\gmtOf

where vol (D, t) is the volume of D with respect to the metric indeced by Ft.

Let V, A and Ric denote the Riemannian connection of (M, ds2), the second

fundamental form of / and the Ricci tensor of N9 respectively. Then by the

second variation formula of the volume for hypersurfaces with constant mean

curvature (see [3] and [4]),

The domain D is stable if I(ψ)>0 for any ψ^F(D) which is not identi-

cally zero, and D is unstable if /(-ψ )<0 for some ψ

2. A curvature estimate

The purpose of this section is to prove the following:

L e m m a . Let f: M-*N be an immersion of a 2-dimensional orientable mani-

fold M into a 3-dimensional orientable Reimannian manifold N. Assume that

the mean curvature of the immersion f is constant. We denote by A and ds2 the

second fundamental form and the metric of M indeced by f, respectively. Suppose

that the sectional curvature of N and the norm of the covariant derivative of the

curvature tensor of N are bounded. Then the Gaussian curvature K of M with

respect to the metric d&=(l+\A\2β)dέ satisfies K^cz for a positive constant c2

depending only on N.

Proof. By the hypothesis we may assume that the sectional curvature of
N is bounded from above by a and below by b> and the norm of the covariant
derivative of the curvature tensor of N is not greater than ξ.

Let K, V and Δ denote the Gaussian curvature, the Riemannian con-
nection and the Laplacian of (M, ds2), respectively. Then we have
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K

l+\A\2/2
, AA>

We shall make a pointwise argument at a point p on M. Let -fo, £2, e£ be
an orthonormal basis for the tangent space of N at f(p) such that ev e2 are tan-
gent to/(M). In what follows, we use the following convention on the ranges
of indices: l^f,;, *, — ^ 2 , l^B, C, D, ^ 3 . We denote by hφ hijk) R%DE

and RCDEF the components of 4̂, V 4̂, the curvature tensor of N and the
covariant derivative of the curvature tensor of N with respect to the basis,
respectively. We may choose {eu e2} so that A u =λ, h12=h21=Q and hn=μ for
some λ and μ. By the Gauss equation we have

( 3 ) K =

Using the equations (2.7), (2.9), (2.17) and (2.21) in [7], we find that

( 4 ) -<A, AA> = (R32

+(a-2b)(\*+μ2)+mzx {\ 2a-b \, | a-2b |} (λ«

where

= α—2& + max{|2α—ft|, | α —

Noting that the components hijk satisfy Ant +A22>

:=0, h12i=h2U and hijk—hikj=R3

ikj
by the Codazzi equation, we have

( 5 )
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+2(\2+μ2)(hnlRl21-hiaR
3n2)

sί 2\A\\hmm2l-hmRlu)

ίS 2i(hm)2+(hmY} + \ {(i?232i)2+(Λ?12)
2} IA \ *

<ί\VA\*+±-(a-bf\A\\

where for the last inequality we use the following (see [6]):

\Rln\ £y(α-i), \R3m\ S\(μ-b) .

By (2), (3), (4) and (5) we get

Vi;ξ\A\+c3\A\*+\A\*
2{l+\A\ηif

8(1+^/2)'/ 2

It is easy to see that 0<c 2<oo and c2 depends only on N. Thus the proof is

complete.

REMARK. For example, let us consider the case where N is the 3-dimen-
sional unit sphere. Then α = δ = l , c 3=0 and ξ=0. Hence we have

C2 =

which is worse than Proposition 1 of [5].

3. Proof of Theorem

Proof of Theorem. Let F(D), I( ), V and ds* be as in Section 1. By the
hypothesis we may assume that the sectional curvature of N is bounded from
above by a. Then by (1) we have

(6) I(Ψ)^[ ί\Vψ\2-(2a+\A\2)ψ2}dM
JD

for ψ(=F(D). Set d?={\+\A\2β)dsi. Let V and dUdenote the Riemannian
connection and the area element of (M, d&), respectively. Then we see that

( 7 )
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and

( 8 )

By (6), (7) and (8) we have

( 9 )

where η=mβxiaf 1}. We denote by 5 (̂2)) the first eigenvalue on D of the

Laplacian of (M, df?) with Dirichlet boundary condition. The inequality (9)

says that D is stable if λi(D)>2?7.

Let c2 be as in Section 2. Set

which is positive and depends only on N. We note that cz^η by the difini-

tions of c2 and η. Using Proposition 3.3 and 3.10 of [1] with Lemma, we can

see that %![D)>2η if ά(D)<clf where ά(D) denotes the area of D with respect

to the metric JS2. By (8) we have ά(D)=[ (\+\A\2β)dM. Thus the proof
JD

is complete.

REMARK. In fact we prove that D is strongly stable in the sense of [14] if

ί (l+\A\2l2)dM<Cl.

References

[1] J.L. Barbosa and M. do Carmo: Stability of minimal surfaces and eigenvalues of
the Laplacian, Math. Z. 173 (1980), 13-28.

[2] J.L. Barbosa and M. do Carmo: Stability of minimal surf aces in spaces of constant
curvature, Bol. Soc. Brasil Mat. 11 (1980), 1-10.

[3] J.L. Barbosa and M. do Carmo: Stability of hypersurfaces with constant mean
curvature, Math. Z. 185 (1984), 339-353.

[4] J.L. Barbosa, M. do Carmo and J. Eschenburg: Stability of hypersurfaces of
constant mean curvature in Riemannian manifolds, Math. Z. 197 (1988), 123-138.

[5] J.L. Barbosa and H. Mori: Stability of constant mean curvature sufaces in Rie-
mannian 3-space form, Yokohama Math. J. 30 (1982), 73-79.

[6] M. Berger: Sur quelques varietes Riemanniennes suffisamment pincees, Bull. Soc.
Math. France 88 (1960), 57-71.

[7] S.S. Chern, M. do Carmo and S. Kobayashi: Minimal submanifolds of a sphere



898 M. SAKAKI

with second fundamental form of constant length, Functional Analysis and Related

Fields, ed. by F.E. Browder, Springer-Varlag, Berlin-Heidelberg-New York,

1970,59-75.

[8] D. Hoffman and R. Osserman: The area of the generalized Gaussian image and

the stability of minimal surfaces in Sn and Rn, Math. Ann. 260 (1982), 437-452.

[9] H. Ruchert: Ein Eindeutigkeitssatz fur Flάchen konstanter mittlerer Krϋmmung,

Arch. Math. 33 (1979), 91-104.

[10] M. Sakaki: Remarks on the rigidity and stability of minimal submanifolds, Proc.

Amer. Math. Soc. 106 (1989), 793-795.

[11] M. Sakaki: Estimates on the stability of minimal surfaces and harmonic maps, J.

Math. Soc. Japan 41 (1989), 641-650.

[12] M. Sakaki: On the index of surf aces with constant mean curvature, preprint.

[13] M. Sakaki: Upper bounds for the index of minimal surfaces, Tohoku Math. J. 42

(1990), 339-349.

[14] A.M. da Silveira: Stability of complete noncompact surfaces with constant mean

curvature, Math. Ann. 277 (1987), 629-638.

Department of Mathematics

Faculty of Science

Hirosaki University

Hirosaki, Aomori-ken 036

Japan




