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0. Introduction

In [1] Barbosa and do Carmo adopted a new approach to the stability of
minimal surfaces. In particular they discussed the stability of simply connect-
ed compact domains with boundary on minimal surfaces in space forms (cf.
[2], [8] and [10]). Their method was applied also to the stability of surfaces
with constant mean curvature in 3-dimensional space forms (see [5], [9] and
[14]). It is natural to ask if these arguments can be generalized for general
ambient spaces. In the case of minimal surfaces, a positive answer to this
question was given in our previous paper [11]. In this paper we give a positive
answer in the case of surfaces with constnat mean curvature. Namely we prove:

Theorem. Let f: M—N be an immersion of a 2-dimensional orientable
manifold M into a 3-dimensional orientable Riemannian manifold N. Assume
that the mean curvature of the immersion f is constant. Let D be a simply connect-
ed compact domain on M with piecewise smooth boundary. We denote by A and
dM the second fundamental form and the area element of M induced by f, res-
pectively. Suppose that the sectional curvature of N and the norm of the covariant
derivative of the curvature tensor of N are bounded. Then there is a positive con-

stant ¢, depending only on N such that if SD (14| 4|%/2)dM <c,, then D is stable.

Remark. (i) The method in [11] is not available to the statility of sur-
faces with constant mean curvature.

(ii) If we omit the hypothesis that D is simply connected. it is not known
whether the theorem is ture or not (cf. [11, Theorem 0.3]).

The author wishes to thank Professor S. Tanno for his constant encoura-
gement and advice, and the referee for useful comments.

1. Preliminaries

Let f: M— N be an immersion of an m-dimensional orientable manifold
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M into an (m+1)-dimensional orientable Riemannian manifold N. Assume that
the mean curvature of the immersion f is constant. Let D be a compact domain
on M with piecewise smooth boundary 8D. We choose a unit normal vector
field v to f(M) We denote by F(D) the space of smooth functions +» on D

such that 4»=0 on 8D and s YdM=0, where dM is the volume element of
D

M with respect to the metric ds? induced by f.

For »€ F(D), we consider a smooth map F: [0, 1]XD— N such that F,:
D— N for t[0, 1] defined by F(p)=F(¢, p) for pe D is an immersion, Fy=f,
F,lop=flop, (d/dt)F,|,p=+rv and (d/dt) S F*dN=0, where dN is the

XD

[o, ]
volume element of V. The second variation I(+r) of the volume functional of D

for the variational vector field yw is defined by I(yr)=(d?/d?*)vol(D, t)|,_,
where vol(D, t) is the volume of D with respect to the metric indeced by F,.
Let V, 4 and Ric denote the Riemannian connection of (M, ds?), the second
fundamental form of f and the Ricci tensor of N, respectively. Then by the
second variation formula of the volume for hypersurfaces with constant mean
curvature (see [3] and [4]),

(1) 160) = | {199 P~ (Ric(s, »)+ [ 4112 M.

The domain D is stable if I(4)>0 for any yr&F(D) which is not identi-
cally zero, and D is unstable if I(4r)<<0 for some € F(D).

2. A curvature estimate

The purpose of this section is to prove the following:

Lemma. Let f: M— N be an immersion of a 2-dimensional orientable mani-
fold M into a 3-dimensional orientable Reimannian manifold N. Assume that
the mean curvature of the immersion f is constant. We denote by A and ds* the
second fundamental form and the metric of M indeced by f, respectively. Suppose
that the sectional curvature of N and the norm of the covariant derivative of the
curvature tensor of N are bounded. Then the Gaussian curvature K of M with
respect to the metric d¥=(14|A|%2)ds* satisfies K<c, for a positive constant c,
depending only on N.

Proof. By the hypothesis we may assume that the sectional curvature of
N is bounded from above by a and below by &, and the norm of the covariant
derivative of the curvature tensor of NV is not greater than £.

Let K, V and A denote the Gaussian curvature, the Riemannian con-
nection and the Laplacian of (M, ds?), respectively. Then we have
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= K 1 1,,
1414132 2(1+]A4|%2)
S U T R | .
+2(1+|A|2/2)3{ |vA] 2 |A4]*|vA4|*+ 5 v(14]?) }

We shall make a pointwise argument at a point p on M. Let {e, ¢, 5} be
an orthonormal basis for the tangent space of IV at f(p) such that e,, e, are tan-
gent to f(M). In what follows, we use the following convention on the ranges
of indices: 1=4,, k, -+ =2, 1<B, C, D, --- 3. We denote by hijs hijsy RepE
and RZpzr the components of A4, VA, the curvature tensor of N and the
covariant derivative of the curvature tensor of N with respect to the basis,
respectively. We may choose {e,, e} so that k=X, h,=h, =0 and hy,= for
some A and . By the Gauss equation we have

(3) K= Rén+m§a+%(x’+;f) = a+%|A|’.

Using the equations (2.7), (2.9), (2.17) and (2.21) in [7], we find that

(4) —<4, A4) = (Rhia+R)AM+H(Rize+Rizn) p+(Ris—2R312)A2
+(R313—2R315) p*+ 2(2R§12_%R§13 ——;—Rgza)xﬂ—lu(h—p)z
SV 2 {(R3i21) - (Ri122)*+ (Ri212)2+ (R3211) 3 VA (N2 p2) V2
+(a—2B)(+ i)+ max {1 2=l |a—2B]} (V)
=SV2E|4l+el 4P+ 1414,
where
¢; = a—2b+max {|2a—b|, |a—2b|} .
Noting that the components A, j, satisfy hy ;5 =0, hyp;=hyy; and b;;—hy ;=R
by the Codazzi equation, we have

2

(5) —~;—1A12|VA|2+|%V(|A|’)

= 5 O 3 3 (s

= - (7\'z'|' ﬂ‘z) {(hyy )z+ (h121)2+ (hae)*+(h 122)2}
+(Ahy+ I‘l‘h221)2+ (Al + .l'lezz)2

= —(\4p®) {(Tn)*+ (Prg+ Ri12)*+ (Big)*+(— Ay + R321)%
+(A— I‘)2 {(hm)z‘l‘ (hm)z}
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O P+ — O+ ) (R (RS
+2(A%+ p)(hyyy R3z1— yyoRi12)
< 2| A|*(hyy R32v—hyp Ri12)

< 24+ (o)} -+ AR+ (RO} 1 41
< VA - (a—bFlAl,
where for the last inequality we use the following (see [6]):
|Rin| S 2(a—b), |Rtul S7-(a—b).

By (2), (3), (4) and (5) we get

<a+|41%2 vV 2El4l+eld*+]4]* | (a—b)|A4]*

Rzt 2ariamy s IARy
{a+t’/2+ \/7Et—|—cat2—l—t‘+ (a—b)%t }=c

1+2)2 2(1+-2/2) )

Ssup
120

It is easy to see that 0<<¢c,<<oo and ¢, depends only on N. Thus the proof is
complete.

RemArk. For example, let us consider the case where N is the 3-dimen-
sional unit sphere. Then a=b=1, ¢;=0 and £=0. Hence we have

t }
= 1 ——r = 3 ’
“= % { iy
which is worse than Proposition 1 of [5].

3. Proof of Theorem

Proof of Theorem. Let F(D), I( ), V and ds® be as in Section 1. By the
hypothesis we may assume that the sectional curvature of N is bounded from
above by a. Then by (1) we have

(6) I0) 2| {1991~ @a+141W%aM

for & F(D). Setd®=(1+|A4|%/2)ds*. Let ¥ and dM denote the Riemannian
connection and the area element of (M, d§?), respectively. Then we see that

7 2 _|VYl®
(7) 1941t = VT
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and

N 1, 41
(8) dM=(l—[—«2—|A| Ya .
By (6), (7) and (8) we have

(9) 12| {1991 g ait

z( 19y l*—2ny2ait,

where y=max{a, 1}. We denote by A,(D) the first eigenvalue on D of the
Laplacian of (M, d3*) with Dirichlet boundary condition. The inequality (9)
says that D is stable if X,(D)>27.

Let ¢, be as in Section 2. Set

cl = ’
&tn

which is positive and depends only on N. We note that ¢,=% by the difini-
tions of ¢, and . Using Proposition 3.3 and 3.10 of [1] with Lemma, we can
see that A (D)>2y if @(D)<c,, where &(D) denotes the area of D with respect

to the metric d3®. By (8) we have Zi(D)=SD(1+ | 41%/2)dM. Thus the proof
is complete.

RemMARK. In fact we prove that D is strongly stable in the sense of [14] if
SD(1+ |412/2)dM <c,.
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