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1. Introduction

The notion of cross-sections is one of useful methods to investigate the
behaviors of flows. H.B. Keynes and M. Sears [6] constructed a family of
cross-sections and a first return map for a non-singular flow. In this paper we
shall construct singular foliations on cross-sections invariant under the first
return maps of flows furnishing expansiveness on three dimensional closed
manifolds.

Recently K. Hiraide [5] showed the existence of invariant singular folia-
tions for expansive homeomorphisms of closed surfaces. We shall construct
singular foliations on cross-sections by using the method mentioned in [5].
However the first return maps are not continuous and we shall prepare sup-
plementary tools to get our conclusion.

Let X be a closed topological manifold with metric d. By (X, R) we denote
a real continuous flow (abbrev. flow) without fixed points and the action of
teR on x& X is written xf. (X, R) is called an expansive flow if for any £€>0
there exists >0 with the property that if d(xt, yh(t))<8 (¢ R) for a pair of
points ¥, y= X and for an increasing homeomorphism %: R—R such that 2(0)=
0 and A(R)=R, then y=uxt for some |t|<<€. Every non-trivial expansive flow
has no fixed points (see [1]). Hereafter the natural numbers, the integers and
the real number will be denoted by N, Z and R respectively.

Let SI={xt; xS and t I} for an interval  and SCX. A subset SCX
is called a local cross-section of time §>0 for a flow (X, R) if S is closed and
SNx[—&,&]={x} for all xS. If Sis a local cross-section of time &, the
action maps S X [—¢, §] homeomorphically onto S[—¢,¢]. By the interior S*
of S we mean SNint (S[—¢&,&]). Note that S*(—¢, €) is open in X for any
£>0. Put &=inf {t>0; xt=x for some x&X}. Under the above assumptions
and notations we have the following

Fact 1.1 ([6], Lemma 2.4). There is 0<{<<&/2 satisfying that for each
0<a<(¢/3 we can find a finite family S={S,, S,, --*, S;} of pairwise disjoint
local cross-sections of time & and diameter at most a and a family of local corss-
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sections 9= {T}, T, ---, T} with T;C.S¥ (i=1, 2, --- k) such that
X =T%0,a] = T*[—a, 0] = S*[0, a] = S*[—a, 0]
where T+=L3T,- and S+=LkJS,-.
i=1 i=1

Take £>0as in Fact 1.1 and fix 0<a<<¢/3. & and J are families of local
cross-sections of time { as in Fact 1.1. Put B=sup {6>0; x(0, )N S*=¢ for
#€S8*}. Obviously 0<gB<a. Take and fix p with 0<p<a.

For x& T+ let t& R be the smallest positive time such that xtT*. Then
obviously B<t=ca and a map @(x)=xt is defined. It is easily checked that ¢:
T+—T* is bijective.

For S;&8 set D;=S,[—p, p] and define a projective map P}: Di—S; by
Pj(x)=xt, where xt€S; and |#|<p. Then P} is continuous and surjective.
We write Dj=D, and P;=P, if there is no confusion. From continuity of
(X, R) we have

Fact 1.2. There exists §,>0 such that if d(x, y)<§, (x, y€S*) and mt T;
(1t] <3e) for some T;€ 9, then yte Dj.

We can set up a shadowing orbit of yeS* relative to a g-orbit of x&T*
as follows. If d(x,y)<8,, then y;=P,(yt) for the time ¢ with @(x)=ux¢ by Fact
1.2. Whenever @'(x) and yi are defined such that d(@i(x), yi)<<8,, we write
yit!=P,(yi t) where p(@'(¥))=¢'(x)t. Thus we obtain a time delayed y shad-
owing orbit along a piece of the orbit of x. Also the negative powers of ¢ is

constructed as above and so we obtain {yi; i€Z}. For simplicity write

¥ =0%y), p(¥)=@:x(y) and y;=@iy) (€Z)

and to avoid complication @k(@%(y)) instead of @bk, (@X()).
For x& T* the y-stable (y-unstable) set

Wix) = {yeS*; d(@'®), pi(3))<y  forall i>0}
(Wi(x) = {yeS*; d(@i(x), pi(y))<7q  forall i<0})

is defined. Remark that Wy(x)CS* for x€T* (o=s, u).
The complex numbers will be denoted by C. For pEN, let z,: C—C be
the map which sends 2 to 2. We define the domains 9,(p=1, 2, ---) of C by

9D, = {z€C: |Re 2| <], |Im 2| <1},

D=, (D,) and D,==;(D,). Itis easily checked that z,: D,—9), is a p-fold
branched cover for every p&N. Denote by 4, and €{/, the horizontal and
vertical foliations on 9, respectively. We define the decomposition 4, (resp. €V/;)
of 9), as the projection of J(, (resp. V) by n,: D,—9),, and define the decom-
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position A, (resp. <V,) of 9, as the lifting of J, (resp. V) by z,: 9,— D).

Let U, (x&T™) be a neighborhood of x in S*. A decomposidion &y, of U,
is called a C° local singular foliation if every LS, is arcwise connected and
if there are p(x)EN and a C° chart 4,: U,—C around x such that

(1) hy(x)=0,

(2) hs( Uz) = Qp(z))

(3) b, sends each L& Iy, onto some element of A ,(x).

The number p(x) is called the number of separatrices at x. We asy that x is a
regulra point if p(x)=2, and x is a singular point with p(x)-singularities (or p(x)-
prong singularity) if p(x)=+=2. A neighborhood U, of x equipped with a C° local
singular foliation is called a C° singular foliated neighborhood.

Let &y, and &, be local singular foliations on U,. We say that Fj_ is
transverse to Fy, if Fy; and Ff, have the same number p(x) at x and if .here is
a C° chart &,: U,—C such that

(1) fa(x) =0,

(2) h(U,) = Dyays

(3) bk, sends each LSy, onto some element of H (),

(4) h, sends each L'}, onto element of CV/,,,,.

If there are C° transversal singular foliations on U,, then U, is called a C° trans-
versal singular foliated neighborhood. Our aim is to prove the following

Theorem. Let (X, R) be an expansive flow on a closed 3-manifold X. Then
there is a sufficiently small 5 such that for every x&T* there is a C° transversal
singular foliated neighborhood U, such that if LEZ, (Fy,) contains y& T, then
L=W;(y) N U(W3(y) N U,).

For the proof we need that W73(x) (o=s, u) is arcwise connected. However
it is difficult to directly verify the connectendness of W;(x). In §4 we shall
prove the following proposition, which plays an important role through the
paper. We denote by Cy(x) the connected component of x in W;3(x) (o=s, u).
Let Si(x) be a circle in S* with the radius § and the center x.

Proposition A. For any €>0 there exists >0 such that for all x& T+
Cox)NS§(x) £ ¢ (o =s,u).

Hereafter int W;(x) denotes the interior of Wg(x) in S*. Proposition 4
is obtained by the following

Proposition B. There exists ¢,>>0 such that if 0<E<c,[4, then
int Wi(x) =¢ €Tt o=s,u).

In §2 we shall prepare some notations and establish several proper:ies for
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the first return map @. In §3 and §4 Proposition B and A will be proved.
To find constants ¢,>>0 and >0 in Propositions A and B we need to treat
the first return map @ like an expansive homeomorphism. However @ is not
continuous as mentioned above. So we shall introduce a new first return map
4 defined on an extended domain V'* containing 7*. It will be shown that
Cqi(x) (c=s,u,xT*) is locally connected for sufficiently small €£>0. In §6
the proof of our Theorem will be given.

2. Preliminaries

As before let X be a colsed topological manifold with metric d and (X, R)
be an expanisive flow on it. This section contains some lemmas that need sub-
sequently. Under the notations in § 1, we have the following.

Lemma 2.1 ([1], Theorem 3). (X, R) is expansive if and only if for any
>0 there exists >0 with the following property: if t=(t,)7--. and u=(u;)7—.
are doubly infinite sequences of real numbers with ty=u,=0, 0<t;,,—t;<a,
|t —u;| <@, t;—>00 and t_;——oco asi—o0, and if x, yE X satisfy d(xt;, yu;) <«
for any i€ Z, then y=xt for some |t| <€.

Let £>0 be as in Fact 1.1 and ;>0 be as in Lemma 2.1 for £/3. For
0<a<min{a,/2, §/3} we construct as in Fact 1.1 families S={S,, :-+, S;} and
g={T,, -+, T;} of local cross-sections of time {. To simplify we set the fol-
lowing notations.

ConvenTION For Qc X, xeX and §>0

By(Q) = {*€X; d(x, 0)<8},

Uy(Q) = {x€X; d(x, 0)<8},

Sy(x) = {yeX; d(x,y) = o},
and for QC.S*

Bi(Q) = B{(Q)NS*,
UKQ) = Uy(Q)NS*.

Here By(x) and Ug(x) mean By({x}) and Uy({x}) respectively. Let p>0
be as in §1 and put Di{=S;[—E&, £] (0<E<p) and P{: D{—S; denote the pro-
jection along the orbits. Sometimes we write Di{=D; and P{=P;. Put §=
min{d(S;, S;); S;, S;ES, i j} and take 0<8,<§, such that Bi(T;)CS¥ for
i=1, ---, k, where S¥ is the interior of S;. Then we have

Lemma 2.2 ([6], Theorem 2.7). There exists 0<<c<<oa such that Wi(x)N
W¥(x)={x} for any x=T*.

To prove that Proposition B is true though ¢ is not continuous, we prepare
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the following Lemmas 2.3~2.9.

Lemma 2.3 Let {x,} CT* converge to x&T* as n—>oo and fix icZ. If
a; is an accumulation point of {@'(x,)}, then there exists k;& Z such that a;=g*(x),
where k;>1 if 1>0 and k; <1 if i<0.

This follows from the fact that each T;& 4 is closed.

Lemma 2.4 ([6], Lemma 2.9) Suppose that x,—x (%, T+), y,—~>y(y,ES*)
as n—oco and each @} (y,) is defined for 0<i<k(R<i<O0). If @*(x,)—>p'(x) as
n—>co for some integer b, then @5 (y.)—>@i+(y) as n—>oo.

Let ¢ be as in Lemma 2.2. We find 0<<8;<(3,, 0<p,<<p and 0<<¢,<min
{c, 85} such that
(A if d(x, y)<8; (v, yEX), then d(xt, ys)<c for |f| <3« and
It—S | S2['-’1 ’
(By) itd(x,y)<c¢(x,yeS™)and xt&T;(|t| <3a) for some
T;=94, then yteDj .
The following is a lemma given for expansive homeomorphisms of a com-
pact metric space by Mané [7].

Lemma 2.5. For any 0<€<c,[2, there exists 0<<8<& such that if d(x, y)<
S (xeT*, yeS*) and

E<max {d(@'(x), pi(y)); 0<i<n} <¢/2,
then d(@"(x), @%(y))=8.

Proof. If this is false, there exists 0<<&,<¢,/2 such that for nEN with
1/n<§, there are m,eN, x,&T* and y,&S* such that

(M d(%s yu)<1/n,

(2) &< max {d(g'(x,), @z,(¥n); 0<i<m,}<¢/2,
©) d(@™(x,), PEr(ya))<l/m.

By (2) we have

(4) &<d(@"(x,), xz(ya) <:/2

for some 0</,<m,. Obviously /,—>cc and m,—I,—>co (n—>o0). Since T and
S* are compact, @'(x,)—>x&T* and @x(y,)—>yES*t as n—>oco (take subse-
quences if necessary). By (4),

Q) &<d(%y)<af2.

Since {p'(x,)} converges to x, there are a subsequence {p(p"(x,,))} and k>0
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such that @(@'(x,,))—@"(x) as i—oco (by Lemma 2.3). Lemma 2.4 ensures that
Px(P(ya))=>@i(y) as i—co. While p*(x) can be written as @*(x)=xt, for

Xng

some ¢, with 8<t,<a. Using (5), (A,) and (B,), we have
d(@/@), piy)<c  for 0<j<h,.

Obviously g(@"(x,,))=@"*!(x,) and @x(@im(ys))=@ki(ys). Thus (2)
and the inequality 0</,+1<m, imply

(6) d(@M(x), p(¥))<af2.

Choose k,>0 and a subsequence of {@*(@'i(,))} which converges to @*(p*(x)).
To avoid complication let

%) (P (x,)) > PPh(x) (i—> o),
then Lemma 2.4 implies that
®) P @2(3,) = PlPh(3)) (i 00).
From (6), (7), (8) and the fact that @*(@"(x))=g"(x)f, (B<t,<a) we have
d(@/(x), pi(y)<c  for k<j<kth,.
In this fashion we have
d(@'(x), pi(¥))<c  for j>O0.

Note that {@'*(x,)} converges to x as n—>oo. To show the above inequality
for j<<0, we choose k_,<<0 and a subsequence {p~'(@'"(x,,))} such that ™} (p'"
(%4,))—>@*-1(x) as i—oco. Since @*-1(x)=xt_, for some ¢_, with —a<t_,<—48,
by (5), (A,) and (B,) we have

d(i(x), pi(y))<c  for k,<j<O0.
Since 7, 1 oo, by (2)
) d(@*-1(x), pz-1(3))<a/2 .

Take k_,<O n and a subsequence of {@ (@' (x,,)} that converges to @*-2
(@*-1(x)) and write @~ Y(@"*X(x,))—>@*-2(@*-1(x)) for simplicity. Then we have

P (@ (V) = iU @i 1(y)) = @i-1+*-2(y) (i—> o0)

and can write @*-2(@*-1(x))=(@*-1(x))?_, for some ¢_, with —a <t ,<—p.
Thus from (9), an (A,) and (B,)

d(¢'(x), pi(y))<c for k_+k_,<j<k_,,

and on induction
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(@), pi(y)<e  for j<0.
Therefore y=x by Lemma 2.2 and thus contradicting (5).

Lemma 2.6. Let A be a connected subset of S*. For 0<€<c,[4, there
extsts 0<<8<E such that if ACBi(x) (x€ANT?), pi(4) N S¥p'(x))F¢ for some

i with 0<i<n and n Pk [Bh(@ (%)) D 4, then @2(4) N SY@"(x)) % .
Proof. Take § with 0<<8<& as in Lemma 2.5. Then conclusion is easily
obtained.

Lemma 2.7. Let ¢, be as above. Then for 0<r<c, there exists NN
such that

PUW (%)) CWi(g"(x))
and
" (We (%) C Wi @™"(x))
for x&T* and n>N.

Proof. We prove for the case of W7 (x) for x&T™*. If this is false, then
there exists 0<<7,<¢, such that for any €N there are #,&T* and m,>n such
that

Pr(W e (%0)) & W:o(@"(0)) -
Then we can find y,& W7 (x,) such that for some k,>0
(1) d(@"*™ (%), @2 "(Yn))>T0 .

If @*n*"s(x,)—>xE T and @}r*"s(y,)—>yES* as n—>oco, by (1) we have

2) d(x,y) 27,
Since y,€ Wi (x,),
©) d(@™Htma(x,), @t y,)) <6

for i€ Z with i+k,+m,>0. Putting /=0 in (3), we have
(4) d(%,)<¢ .
Since {p(p**™(x,))} converges to some & T (take a subsequence if neces-
sary), we can write @'1(x)== for some /,>0 by Lemma 2.3 and
(5) P'(x) = xt, B<i<a.

kytm

Then Lemma 2.4 imples that @y (@i* "*(y,))—>@:(y) as n—>co. Since py(pi
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(y,.))=<pi;‘ katmu(y,), we have by (3) that

d(@"***"n(x,), @iyt a(ya)<cr,
from which
(6) d(@"(x), x(y) <ey .
By (4), (5), (A)) and (B))
(™) d(@'(x), pi(y))<c  for 0<j<.

As above there are [,>0 and a subsequence of {@*(@***™(x,))} which con-
verges to @'2(x) as n—>oco. To avoid complication let @*(@***™(x,))—>p'(x) as
n—>oco. Then we can write

P (Phmn(x,)) = @t htmn(x,) 17 (B<Hi<a).

Since the sequence {f3} converges to some <[, ] (take a subsequence if nec-
essary), we have

P £ > Ph(x) T (B<I<a),
which implies
(®) () = P(x)t (B<t<a).

Lemma 2.4 ensures that @k(@i»*"(y,))— @ix(y) as n— oo, and by (6), (8), (A,)
and (B,) we have d(¢/(x) pi(v))<c for ,<j<l. By (3)

9) d(@" (@ (%)), PHPE (Y <

and thus inductively d(g@'(x), @i(y))<c for j >0.

Since m,>n for all n>>0, for j<<0 there exists m,>0 such that j+k&,4m,>0
and so d(@'(x) @i(y))=<c for j <0. Therefore yeWi(x)N W¥x) (ie. x=y),
contradicting (2).

Lemma 2.8. For any §>0 there exists r>0 such that @,(B}(x))CBio(x))
for any x&T*.

Proof. 1If this is false, then there exists §>0 such that for any €N there
is x,&T* such that y,EB(»,) and d(p(x,), @, (V.)>E. Suppose that x,—
x%eT* and for some [>1 p(x,)—>@' (%) as n—>co. Then by Lemma 2.4 we
have that d(@"1(x,), ii(*o)) =&, since y,—>x, as n—>o0.  But @;1(%,) =@"1(%,), thus
contradicting.

The following is easily obtained from Lemmas 2.7 and 2.8,

Lemma 2.9 ([6], Lemma 3.3). For any & with 0<&<c, there exists e=>0
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such that
W) N Bi) = WIHN B (o= s, u)

Sor any x&€T* and 0<8<e.

3. Proof of Proposition B

Hereafter X is a 3-dimensional closed topological manifold and d is a me-
tric on X. Each local cross-section of families S={S,, -+, S} and I={T}, ---,
T,} defined in Fact 1.1 can be taken as a 2-dimensional disk. Hence there is a
compatible metric (called a connected metric) on each local cross-section such
that every &-closed ball (¢€>0) is connected.

For the proof of Proposition B we define a new family (V= {V}, -+, V,}
of local cross-sections satisfying

(1) each V; is a 2-dimensional disk,

(2) T,cVicV,cSt¥ (1<iLk),

(3) X =V*0,a] = V[—a,0], where V*= U V,

and as before define the first return map r; V-V as Jo(x)=uxt (Y~ }(x)=xt),
where t is the smallest positive (largest negative) time with xt V™.

Let §,>0 be as in §2. Take §, with 0<8,<§, such that B, (V;)CS¥
(=1, +++, k) and assume that §,>0 satisfies Fact 1.2 (replacing T; by V).

For xe V'* define the 5- stable set W;(x, ¥) and 5~ unstable set of Wi(x, vr)
as follows:

Wa(x, ¥) = {yES*; d(¥i(x), ¥i(y))<n, i20},

Wi, w) = {yES*; d(Wi(x), wi(y)<n, i<O} .
Obviously W (x, ) CS*(o=s, u) and there exists 0<<c<<a such that W(x, )
N Wi(x, Jr)={x} for any x& V™ (see Lemma 2.2). Note that Lemmas 2.3, 2.4,
2.5 and 2.6 hold for .

Let C(S*) denote the set of all non-impty closed subsets of S*, then Haus-
doff metric H is defined by

H(4, B) = inf {§>0; N(4)>B, N(B)>A} (4, BEC(S*))

where N,(4) denotes the &-neighborhood of 4 in S*. Then £(S™) is a compact
space under H.

Lemma 3.1 (c.f. [2]). Let Y be a compact connected metric space. If A is
a non-empty closed subset of Y with A=Y, then every connected component in A
intersects to the boundary of A in Y.

We denote by D,(x) (x& V') the connected component of x in the domain
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of 7", Put D, 5(x)==D,(x) N Bf(x) and let A, s(x) be the connected component
of x in Bi(x) N Vrgmisy[ Dy, sre(V"(%))]-

Lemma 3.2. Let 0<&<c,/4. There exists 0<8<E such that if {x;},cz s
a sequence in V* and
(a) of there is non-upper bound subset {j} of Z such that

limx; =%, and lim A, (x;) = A,
j>oe jreo
then A.CWi(X.., ),

(b) if there is non-lower bound subset {j} of Z such that

limx; = x_., and lim A;,(x;) = A_.
Jjr—o Jjr—o

then A_.CWx_o, ).

Proof. For & wich 0<€<¢,/4 we can find 0<€'<<€ and §">0 such that if
d(x,y)=%5(x, yeS*) and |s—t| <8'(|s], |t] <2a), then d(xt, ys)>&'. Take 3
wih 0<8<¢&" as in Lemma 2.6. Since A; 4(x;) CBj(x;), Obviously A; 5(x;)—
AL CB(x..)CB¥(x..) (j—>0). If A.d Wi(%w, ), then we can find k>0 such
tha: ko (A.) G Bi(yoh(x.).

Since x;—x., and A; 4(x;)—>A. as j—oo, there are 0<<n,<k, and />, such
that 20 (A, 5(x;))E BiA(y"o(x;)). Hence 30 (Ay 5(%;)) & Bi(y"o(x;)) for some &'<
A<<2&’. Thus we can find 0<%, <%, such that

Vi, (Ara(x) CBY (i) (0<i<n—1),
Vet (Ara(0)) & BY (P "3(x7) -

Let A4, denote the connected component of x; in

7 oy [ (A a()) N BY ()]
Then we have
1) Wi (An) CBY(Wi(x))  for 0<i<y,.

Since 3 (Ay,s(%;)) is connected and i (A 5(%;)) & B (Y"1(x;)), from Lemma 3.1
it follows that

) Y (An) NSY(P"(21)) F & .

For 7, <<l define 4, as the connected component of x; in 1}»17,’;(,‘1)[\]/»’}1
(A4q-1) N BY(y"(x;))]. Then we have

A y(x) D A0 DAy DDA,

and by (1)
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®) Vi, (Ay) CBY(Y () C Bl (Wi(m)  (0<i<y).

Now we claim that Y7 (4,) N SY("(x)))F¢ for 5 <4<l Indeed, if 4,%
Ay, then y,(A,_)E BY(4(x;)) and hence v,(4,) 1 SH(4" ()b (by Lernma
3.1). Since 0<8<¢€’, obviously 7 (A4,)NSY(¥"(x;))*F¢. For the case 4,=
A,y put fy=min {i>»; 4;=A4,}. Clearly 5, <iy<yn. If {y=y, then yrio(4,,)
N SH(Pio(x;)) %= by (2). If 4>, then A; =4, _,, and hence rio(4,)N S¥
(Yio(x;)) . Inany case we have yrio(4,) N S (Yio(x;)) = ¢. Since 4, CA; 5(%:)
C Bj(x;), combining these facts with (3), we obtain 1 (4,) N S¥y"(x;)) ¢ by
Lemma 2.6. Therefore the claim holds.

Since >, it follows that r; (4;) N SY(¥'(x;))#=¢;. This contradicts the
fact that 4,C A, 4(x;). Therefore (a) holds. In the same way (b) is proved.

Proof of Proposition B. We prove the case of o=u. Fix 0<€<¢,/4 and
let x&T*. Let0<8<&beasin Lemmas 2.5 and 3.2. Assume that int W(x)
is not empty. If y=int Wi(x), then there exists 0<<r<§ such that B},(y)Cint
Wa(x).

If Byy(y"(2)) is not contained in the domain of i, for x&Bi(y) and
neN, by Lemma 2.5 and connectedness of B},(vy"(2)) we can find 2’ €D, 5,
(¥"(2)) such that ¥y (2 )ES§(2) N A;,5(2). We claim that there is >0 such
that By, (v"(2)) C D,(y+"(2)) for 2= B¥(y) and n>k. For, if this is false, then for
meEN there are 2, &BY(y) and n,>m such that B},(v"(2,))E D, (¥"(2.))-
Hence we can find 2,ED,_,(V"(2,)) such that Y., (2%) ESi(2,). Let
2,—>2.EBYy) and A, ,(2,)—>A. as m—>oo (take subsequences if necessary).
Then we have A, C W}(2., yr) by Lemma 3.2. Obviously W(2.., ¥) N Wi(x)D
AaNBY(y)DA.NBYy)Dz... The fact that A,, s(2) NSs(2m) DVgim, (2h)
ensures that A, NBY(y)>2.. Hence Wi(2..,¥)N W¥x) is not one point set
{2..}, which contradicts the expansiveness (see Lemma 2.1).

Let A,(2) denote the connected component of 2 (2 & V*) in 7, (B (V" (2)).
Then for any 0<%<r and k’'>Fk there exists n>k’ such that B}(2)DA,(2)
(zeBY(y)). Indeed, if there is 0<7<r so that for n>k there exists 2,EB}(y)
such that B(z,) DA,(2,), then we have A,(2,) N S¥(2,)+¢ by Lemma 3.1, which
implies A, 5(,) N S¥(2,)=+¢ since »<8.

If z,—z.€B}(y) and A, 4(2,)>A.EC(S*) as n—>oco. Then we have AN
S3(2.)*+¢, and by Lemma 3.2, A.CW(2.,4). Obviously Bi(z.)C B, (y)C
Wi(x), from which

Wi(5m, ) O WH(x) D AN B(2.) D5,
By expansiveness (see Lemma 2.1) we can conclude
) We(2e ¥) N Wi(x) = {2} .
Therefore A. N B}(2.)={2.}, which contradicts the fact that A, N S¥(2..)==¢.
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We have shown that for any 0<<<r there exists 2>k such that B}(2)DA,(2)
for 2€B¥(y). Thus ¥3(A,(2))=B},(¥"(2)). Since SES has interior points,
the cardinal number of B¥(y), Card Bi(y), is infinite, which ensures that there
exist m-distinct points 2y, **+, 2,, in B¥(y) for m>0. Since 7 is arbitrary, we can
choose 0<n<r such that Bi(z,) (=1, --- m) are mutually disjoint. Using
Lemmas 2.5 and 3.2 we can easily check that there is 7>k such that Bi,(y"(2;))
BY(=;) for 7,j with i%j. Hence Bix(z;) (i=1, ---, m) are mutually disjoint.
This contradicts the compactness of S* since m is any positive number.

4. Proof of Proposition A

Let CYV={V,, .-+, V};} and 4: V*—V"* be as in §3. In this section Propo-
sition 4 will be proved. For the proof we need the following

Lemma 4.1. For £>0 there is 0<<u <<€ such that if {x;} CV™* converges to
¥ EV* and {B;} CC(S*) converges to B.€C(S*) and if B;C Wy(x;, ) for any
t>1, then B..C W3(%w, ) (c=S5, u).

Proof. Let p, be as in §2 and §,, §, be as in §3. For €>0 there are
0<p,<p;, 0<<8,<<§, and 0<p<<min {&, §;} such that

(Ay) d(x,y)<8.(x, yeX) impies d(xt, ys)< & for |#|<3a and
[2—s|<p, -

(By) if d(x,y)<p (x,yES™*) and there is V;€V with xteB(V;)  for
|¢| <3a, then yteDj, .

We give the proof for the case of o=s and then the proof of the case o=u
is done in the same way. Since B;—B.., for 2€B.. we can find y,eB; with
y;—>8 (i—>0), and

) d(Y'(x), ¥i(y)<p (n20).

holds because B;C Wi(x;, ). Since d(x;,y;)<p for i, we have d(x., 2)<pu.
Replace @ by 4 and use Lemma 2.3. Then there is /;>1 such that +Jr(x;)—
\Jr'1(x..) as i—> oo (take a subsequence if necessary), and so we write Y'1(x..) =x..t,
for some ¢t with 8<t<a. Applying Lemma 2.4 for +» we have

(2) d(Wh(x.), VL) <p

Note that d(%., 2)<pu. Then from (4,), (B,) we have d(yr/(x..), ¥ri_(2))<¢€ for
0<j<l.

Since Yr(x;)—>r'1(x..), there is [,>1 such that \%(x;) converges to \r'2({r'1(x..))
as i—oo (take a subsequence if necessary). Thus we have d(y(x..), ¥i_(2)) <€
for ,<j<l+1, by (4,) and (B,) and so d(yV/(x..), Vi (2))<E (0<j<lL+1). In
this fashion we see that the above inequality holds for all j >0. Hence 2 €W
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(%=, ) and therefore B, C Wi(x.., ).

The proof of the following lemma is very similar to that of Lemma 4.1
and so we omit the proof.

Lemma 4.2. For >0 there is 0<p<<& such that if {x;} CV* converges to
x.€V* and {B} CC(S*) converges to B.€C(S™) and if %, (B;) CBL(V"(x;)) for
0<n<i(—i<n<0), then B. C W(%w, V) (B C Wi(X.., V), where iEN.

RemMArk 4.3. The above Lemmas 4.1 and 4.2 hold for the first return
map @: Tt—T".

We are ready to prove Proposition A. Let ¢, be as in §2. Since C;(x)C
Cu(x) (x€T™) if 0<&<E’, we may prove the proposition for 0<<€<¢,/8.

We first give the proof for o=s. Take 0<<p <<€ as in Lemma 4.2. We
can find 0<§<p as in Lemma 2.5, wihch is our requirement.

Indeed, take and fix x&T*. For simplicity write x(j)=¢’(x) (j=0).
Since T'* is compact, we have x(j)—»>x.&T* as j—>oco. From Proposition B it
follows that int W4(x..)=¢. For 0<<§/2 there is m,>0 such that

(1) 2o (B o(%.0)) & Bhu(p™"1(x.0)) -

We may assume that the number m, is the smallest one satisfying (1). Since
#(J)—>%., we choose a large number j,>m, such that d(x(J,), x.)<7/2 and

) diam @z 2" [BY(x(jn)] =24 .

Since T*CV'* and x., is an interior point in V*, for >0 small enough we can
find a positive integer /, such that m,<[,<j, and @7 "1[Bi(x(j.)))]="7 " i [BY(x

()] From (2)
(3) diam ez, [BY(i)]=2 .

Let j5>j, be an integer such that %(j,)=+~7(x). Then (3) can be rewriteten as
follows: we have

) diam v, [BY(W(¥)] =25
from which there exists 0<<n,<I, such that for 0<i<n,
() Vi [BY(¥(x))] € BL(y/~i(x)) ,
(6) Vi (B (W(2))] & Bh(yir~(%)) -

Denote by A, (y/17*1(x)) the connected component of +/1="(x) in the subset

B*(«:»f”v-wx))nw‘,-" i B @)

= NP7 1 ([ BRI ()] N g (o [BEa(977(2))]
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and denote by C(y»»~"1(x)) the connected component of q,ifrw(x) in the subset
B (975 "()) N Vg [ B ()] -

Since »<8/2, by (5) we have

) By (2 (2)) D C (Y (x))

From (6) and Lemma 3.1
C (Y7~ "(x)) N Sh(yr"1(x)) = ¢ .

Since B¥(y/1(x)) is connected, by (7)

(®) A (W1 m(2)) (1 S (1 ™"a(x)) = b .

Put A(0)=A,, (Y'77"(x)) and for k>0 let A(k) be the connected component
of \7"~k(x) in the subset

Fghmymroagey AR 1] A B )
Then we have

YT A1) TV -m ((A0))
C Bh(yir "+ (x))

for 0<i<n,—1 and so

) Vi(A(ji—ny)) CBU(v(x) (0<i<ji—1)
and
(10) VI(A( —1,)) C Byp(Wr(x)) -
To see the existence of 0<¢< j;—n, such that
(11) Ve(A(jn—n)) N U (%) = ¢,

suppose that this relation is false (i.e. Yi(A(j5—nn)) N SE(YPi(x))=¢ (0<i<
j4—n,)). Then we have A(j;—n,)C U¥x). Since Yryln(A(j;—n,—1))\Bh(x)=*
¢ implies A(j;—n,) N St(x)3$ by Lemma 3.1, this is inconsistent with the as-
sumption. Thus Vily(A(j;—n,—1))CB(x) and  A(j7—n,) =i (A(j7—m,
—1)). This shows that +r(A(j;—n,))=A(j5—n,—1). To obtain the con-
clusion we use induction on 7. Suppose that there is 0<7 < j;—n, with

(12) Vi(A(jn =) = A(js—m,—1) .

By Lemma 3.1 rghui(py(Ajs—nn—i— )\BL(w+'(x)) +¢ implies A(js—n,—i)
NSE(YPi(x)Fd. Yi(A(Js—n,)) N SE(Y(x))=¢ by hypothesis, thus contradict-
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ing our assumption. Therefore yri.i,(A(j5—n,—i—1)) CBi(¢+(x)) and so
A1) = e Al —m—i—1)).
From (12)
A1) = Ve A —ma—i—T))
and hence
Vi (A=) = A(jy—ny—i—1).
Since Yi(A(j5—n))=A(js—n,—1) (0<i< j5—n,), We have
V(A1) = A(0) = A, (Y17 "(x)) .

Therefore our assumption is inconsistent with (8).
From (9), (10), (11) and Lemma 2.5 it follows that

(13) A(ji—n) N Ss(x) + ¢ .

Since A(j5—m,) CAj(x) and Ay (x) N.Ss(x)+¢ and since Ay (¥)—>A.€C(ST) as
7—>0, we have A..NSy(x)+¢. Notice that A.. is connected because each A is
so. Since

SN

V(A @) CBUyi(x))  for 0<i<j7,

we have A..C W§(%w, yr) by Lemma 4.2. If C;(x, vr) and Cj(x) denote the con-
nected component of x in Wi(x, ¥r) and Wi(x) respectively, then we have A..C
Ci(x, ). Thus Cy(x, )N SY(x)+F¢p. Since Wi(x, y)CWi(x, @) for x T,
C:(x, yr)C Ci(x) and therefore Cj(x) N S¥(x)+=o.

The proof of o=u is done in the same fashion and so we omit it.

ReMARK 4.4. Let xV* and denote by Cg(x, ) the connected compo-
nent of x in Wg(x, yr) (0=s,u). From the proof of Proposition A4 the following
is concluded: for €>0 there is 0<8<é& such that Cj(x, )N Ss(x)+¢ for
x€V* (o=s,u).

5. Local connectedness of C;(x)

Let ¢, be as in §2 and let 0<<&,<<¢,/4 be as in Lemma 4.1 for ¢;. As before
& and 9 denote families of local cross-sections.

Proposition C. C;(x) (c=s, u) are locally connected for all 0<E<LE, and
xeT*.

This was proved in K. Hiraide [5] for homeomorphisms. However the
technique of [5] is adapted for the first return map @: T*—T*. For complete-
ness we give a proof.
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Fix x€T (T€9) and let §>>0 be as in Proposition A for 0<<e<¢,. To
obtain the conclusion for o=s, assume that C$(x) is not locally connected. Then
we see that there are y& Cs(x) and 0<<r<§/2 such that the connected component
of ¥ in C§(x) N BY(y) does not contain C§(x) N BY(v) for all A>0. Denote by X
the set of all connected component in C§(x) N Bé(y). Since Ci(x) is connected
and Cj(x) N\ BYy)SCi(x), we have by Lemma 3.1 that KN S¥(y)=%¢ for all
KeXK.

Fix 0<t<r and put K,={KeX: KNB¥y)=+¢}. Then it is easily
checked that X is an infinite set. Hence there is a sequence {K};cn in K, with
K;N K;=¢ for i = j such that K;—~K.eC(C;(x) N BY(y)) as i—>oo. Since each
K, is connected, so is K... Hence K., is contained in a connected component in
Ci(»)NB(y). Therefore we may assume that K; N K.=¢ for all i€ N.

Since S(S€& and T*CS) is a disk, we have that A=Bt(y)/Ui(y) is an
annulus bounded by circles S¥(y) and S¥(y). Since K;NS¥y)+¢, we take
a,eK;NS¥y). Denote by L, the connected component of a; in AN K;. Since
K; is connected and B¥(y) N K; ¢, there is b, L;N S¥(y)*+¢ by Lemma 3.1.
Since K;NK;=¢ for i=j, we have that L;NL;=¢, a;%a; and b;%b,. By
compactness we may assume that a,—~a..€S¥(y), b—>b.=S%y) and L,—~L.<
C(4) as i—>co. Then @w,b.EL.. Since L,CK,, it follows that L.cCK..
Since K; N K..=¢, we have that L;N L.=¢, a;%a., and b;%b... Therefore by
taking a subsequence of {a;};c if necessary, we can choose the arcs g;a.. in S¥(y)
from a; to a., such that

1) ;020,02 28;0,2 .
In the same way, choose the arcs d; b.. in S¥(y) from 5; to b.. such that
(2) b b R by bR 2D 0. R .

Since L;, L;y, and L., are connected and mutually disjoint, it is checked that the
orientation of g@; a.. from a; to a.. coincides with that of b, b.. from &; to k...
Indeed, we can take mutually disjoint connected neighborhoods N;, N;,, and N,
of L;, L;y, and L, in A respectively. Then there is an arc 4; in N; from q; to
b; such that 4; N S¥(y)={a;} and 4;N S¥(y)={b;}, and there is an arc 4., in N,
from a. to b. such that A.NS¥y)={a.} and A.NS¥y)={b.}. Since
N;NN.=¢, obviously 4;N A.=¢. Hence A\{4;UA.} is decomposed into
two connected components U, and U,. Since a;,,& U, U U, we may assume that
a;,€U,. If the orientation of g; 4., differs from that of b; b.., then b,,, U, by
(1) and (2). In this case, every arc in Ny, from a4, to b;,, must intersect 4; or
A.. This contradicts the fact that N, Ny, and N, are mutually disjoint.
Therefore the orientation of g; a.. must coincide with that of b; b..

For i>2, take z;€L; such that d(y, 2;)=t+(r—1)/2, since L,C K,C C:(x),
obviously z;,€C;(x) N Cy(2;, ). Hence Ci(x)NCi(z;, ¥v)={2;} by expansive-
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ness. Since #;,€L;and L;_; U L, C Ci(x), we have that (L,_, U L,,,) N (C¥(2;, ¥)
UL;)=¢. Hence we can take a connected neighborhood N;_, of L;_, in 4 and
a connected neighborhood N, of L.y, in 4 such that N;_,NN;;,=¢ and (N,_,
UN,)N(C¥2, ¥)UL;)=¢. Then there is an arc 4;_, in N,_, from a;_, to
b;_, such that 4;_, N S¥(y)={a;_,} and 4, N S¥y)=1{b;_,}, and there is an arc
A;4y in Ny, from a;,, to by, such that 4,,, N SHy)={a;1,} and 4;,,NSHy)=
{bisi}. Obviously (4;-,U A;41) N (Ci(=, ¥) UL;)=¢. Denote by 4;_; a4, the
subarc in g;_, a.. from a;_, to a;4, and by b;_, b,,, the subarc in b,_, b.. from b,_,
to b,,;. 'Then we have

'=4;,,U4;,Va;_;a;.,Ub;_; by

is a simple closed curve in A. From the relation betwee the orientations of
a;_, a.. and h;_; b.., it follows that T" bounds a disk D in 4. Then we see that z;
is an interior point of D. Since 7<8/2, we have Ci(2;, V)N S (y)+¢ (see
Ci(x, 4r) N Ss(x)=*=¢ in the proof of Proposition A). By the connectedness of
C4(2;, ) we have T'NCy(=2;, Y)=*+¢. Since (A;_;U 4;1+,) N C¥z;d)=0, it is
clear that
Cizoy)Naiauy+=¢ or Ci(zuYv)Nbi by F+ ¢
Without loss of generality we have
w,€CYzp, ¥)N G G F ¢

Since diam (¢; a..)—>0 as i—> o0, we see that w;,—>a., as i—>cc0. Since L,—~L.,, we
may assume that 2,—>2.E L, as i—>co. That d(y, 2.)==t-+(r—1)/2 and w;,&C*
(2 ) ensures a.€ W (3., V) (see Lemma 4.1). Since ., 2.€L.CK.CC;
(%), we obtain by expansiveness that a.==z2.. This contradicts the facts that
a.<S%(y) and d(y, 2.)=t+4(r—1)/2. 'Therefore Cj(x) is locally connected. In
the same way, the conclusion for o=u is obtained.

ReMARK 5.1. Proposition C is true for Ci(x, ¥) (x& V™).

6. Proof of Theorem

In this section our Theorem will be proved. Let o, and ¢, be as in §2
respectively. Let 0<& <min{a,/2, ¢,/4} be as in §5.

Lemma 6.1. Let 0<6<§&, and A and B be non-empty subsets of T+. If
Wi(x) N We(y)=£P for any (x,y)EAXB, then Wi(x) N Wi(y) consists of exactly
one point [x,y] and in fact [, ]:AX B—S* is a continuous map.

Proof. Take 2, z,€W:i(x)N W% ). Thend(ep"(x), p¥(z;))<E(=1, 2) for
any m>0, and so d(@2(2;), pF(2,))<26<a, Since @/(z)=¢ "Y(2;)¢;-, and
@' (2)=9’"H(2,) ti-1(B<tj, tj_1<a) by definition, there exist {a;} and {b;}
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(¢=1, 2) such that

P () = zx(ig (t+a)), lal<p

and
Pr() = 33 (H+b), bl <p.

We can easily caluculate

I% (tit+a;)— g}:(ti“‘ai) | =|tptanl <at+p<a,
and ®)

|35 @-+0)— 3 (@148 | = tat-bal Sa-+p<an.

Since @f(2)=¢@'*(2))t; and @'(2,)=@'*(2,)t; (—a<t;, t;<—p), for m<0
as above we can write

Pr(E) = (S (t+a)), lal<p

and
Pr(E) = 2 D (E+5), bl <p.

For this case (%) holds. By Lemma 2.1 here we have that z=z,¢ for some
|2] <&/3, from which 2,=2,.

To show that [, ]: AXB—S* is continuous, assume that a sequence
{(%;, ¥:)}ien in AXB converges to (x,y)EAXB and put 2,=[x;,y;]. Then
there are a subsequence {z;} of {2} and 2,€S* such that z,—z. as j—>oo.
Since z;€ W;(x;), it follows from Remark 4.3 thzt 2, € W;(x). In the same way
we have z. € Wi (y). Since c<a<ay/2, we see that W7 (x) N W7 (y) consists
of one point. Hence W? (x) N W7 (y)D Wi(x) N We(y)={[x, ]}, and therefore
2.==[x,y]. Continuity of [ , ] was proved.

Lemma 6.2. Cj(x) (0<&LE,) s arcwise connected and locally arcwise con-
nected (o=s, u).

Proof. Combining Proposition C' with Theorem 5.9 of [3], we see that
C’(x) is a peano space. 'Then Theorem 6.29 of [3] completes the proof.

Lemma 6.3. Let 0<&<E,. For each pair (y, 2) of distinct points in Cg(x)
(o=s, u) there exists an arc from y to 2 in Cq(x). Furthermore such an arc is
unique.
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Proof. The first statement follows from Lemma 6.2. We prove the second
statement for e=ys. To do this, we assume that there are two arcs from y to 2
in Ci(x). Then we can find a simple closed curve I" in Ci(»). Choose r with
0<r<¢/2 by Lemma 2.8 such that ¢,(B¥(x))CB¥p(x)) for all x&T*. Let ¢,
be as in §2. Then we can find N &N such that g}(W? (x)) C W3(p"(x)) for all
n>N. Since I'CC;(x)C Wi (x), we have @i(T") C W;(@"(x)) C Bi(p"(x)) for all
n>N. Since B¥(@"(x))is a disk and @¥(T") is a simple closed curve in B¥(@¥(x)),
we see that @(T") bounds a disk D in B¥(e?(x)).

Now we claim that @}~ (D) C B¥(@"*+(x)) for all i>0. Indeed, DC B¥(p¥
(%)) by the choice of . Since @Y *(I") C B} (@Y +(x)) and ¥ *}(T") is the bounda-
ry of @er,y(D), it follows that @, (,)(D)CB¥@"**(x)). In the same way, we
obtain @i, (D)C B (@"*i(x)) for alli>2. Therefore the above claim holds and
so DCW;(@"(x)), thus contradicting Proposition B (since 0<r<&<c/4).
Therefore an arc from y to 2 in Ci(x) is unique. In the same way the con-
clusionfor o=wu is obtained.

Let 4r: V*—V* be the first return map defined in §3 and Cj(x, yr) denote
the connected component of x in W;(x, ) as before. Notice that Cg(x, ¥)C
C:(x) for x& T*(a=s, u) (since Wi(x, yr) C W5(x)).

REMARK 6.4. Lemmas 6.2 and 6.3 hold for the first return map .

Let y and 2 be distinct elements of C¢(x) (Cs(x, v¥r)). Since there is an arc
from y to 2z in C7(x) (C;(%, vr)) and such an arc is unique by Lemma 6.3, we
denote it by o(y, 2; %) (5e(3, 2; x, ). Remark that C7(x)CCt (x). Then we
see easily that a,(y, 2; ¥)=0,,(y, 2; x). Hence we omit & and write o(y, 2; x)=
oe(y, 2; x). We denote by IC;(x) the union of all open arcs in C7(x) and define

BCi(x) = C(x\ICE(%) U {a}) .

x belongs to ICI(x). For «» we define ICq(x, yr) and BCy(x, ) in the same
fashion as above. Then for 0<<€<¢; it holds that BC3(x)=¢ and

Cix)= U oa(xb;x).
beBCq(x)
If A be an arc in Cj(x) and if x is an end point of 4, then there exists b€ BCq ()
such that ACo(x, b; x).

Let a,b and ¢ be elements of Cj(x) such that a=b and asc. When
o(a, b; x) No(a, c; x)R {a}, we write o(a, b; x)~a(a, c; x). In this case, we see
by Lemma 6.3 that o(a,b; *)No(a,c; x) is a subarc of both o(a, b; x) and
o(a,c;x). From this fact it follows that “~” is an equivalence relation on
{o(x, b; x); b&BC;(x)}. We define

Py(x) = #[{o(x, b; x): b&BC(x)}/~]
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and define in the same fashion

Pe(x, ) = #[{o (x, b; x,¥); bEBCL(%, ¥)/~],
where #[-] denotes the cardinal number of . Under the these notations we
have Pg(x)=Pe¢(x) (*€T") and Pg(x,yr)=Pe(x, V) (x€V*). Since Pg(x) is
independent of £(0<€<§;), we omit € and write P°(x)=P¢(x).

Put Sing”(@)={x&T*: P°(x)>3} and Sing’(y)={x&V™*; P°(x, ¥r)>3}.
Then we have that Sing”(p) is a finite set for o==5, 4 and that if P°(x)>3
(P°(x, 4r)=3) for o===s or u, then xEPer(p) (Per(yr)), where Per(p) and Per ()
are the sets of all periodic points of @ and +J respectively. Hence if P(x)
(P°(x, 4)) is infinite, then x&Per(p) (Per(yr)). Thus Lemma 6.3 ensures that
P?(x) (P°(x, vr)) is finite for x& TH(V*) (c.f. [5], Lemma 4.10).

Let 0<€<g, x€ T+ and ye Ce(x)\{x} (c=s,u). We say thaty is a branch
point of Cq(x) if there are distinct element a;, a, of BC7(x) such that o(x, a;; x) N
o (%, ay; xX)=a(x,y; x). In this case, we remark that o(x,y; ) & o(x, a;; x)
(#=1,2). If yis a branch point of C¢(x), then y & Sing’(e).

Lemma 6.5. There exists sufficiently small £,>0 such that for 0<<€<&,,
C:(x) has at most one branch point (c=s,u). If P7(x)>3, then Cq(x) has no branch
points.

Using Lemma 6.5 we can show that P°(x)>2 for x& T*(c=s,u). Moreover
we have the following

Lemma 6.6. For any >0 there exists 0<<8 <& such that

S{x)No(x,a;x)FP (0 =ys,1u)
for all x& T+ and all ac BCq(x).

Let £>0 be sufficiently small and let 0<<8<¢& be as in Lemma 6.6. By
Lemma 6.5, for every x&T* we can choose 0<<&(x)<<8/2 such that C3(x)N
B} ,,(x) has no branch points (o=s, ) of C5(x) and then define

Sto(®) = {a€ Sk, (*) N Ci(x): o (x, a; )\ {a} C Usiy(x)} .

Here we remark that S%,)(x) is a circle for every x&T*. Obviously (St (x)]
=P(x) for all x & T* and o=5, 4. The following ensures the existence of trans-
versal singular foliations on a neighborhood of each point of 7.

Lemma 6.7. For every x& T, S, (x) is a finite set with at least two
elements (o=s,u). If I3, I3, -+, I; denote all open arcs in which Dj(x) cut
St (%), then each element of S%.,(x) is contained in some I and distinct two ele-
ments of Sg(.(x) ts not contained in same I where i=1,2, ---, L.

By Lemma 6.7 we have P'(x)=P*(x) for x&T*.
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Lemma 6.8. There exists >0 such that for every x& T there is 0< §<&(x)

such that if

yEBy(x)\ U o(x a;x)

aES:'(,)(x)

then Cy(y, ) is an arc (o=s, u).

Using Lemmas 6.1, 6.3, 6.7 and 6.8 we can construct a singular foliated

neighborhood U, and transversal singular foliations on U, for each x&T*. The
details of the construction is described in K. Hiraide [5] and so we omit it.

(]

[2]
(3]

(4]
(5]
(6l
7]
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