Oka, M.
Osaka J. Math.
27 (1990), 863-883

SINGULAR FOLIATIONS ON CROSS-SECTIONS OF EXPANSIVE FLOWS ON 3-MANIFOLDS

Masatoshi OKA

(Received September 11, 1989)

1. Introduction

The notion of cross-sections is one of useful methods to investigate the behaviors of flows. H.B. Keynes and M. Sears [6] constructed a family of cross-sections and a first return map for a non-singular flow. In this paper we shall construct singular foliations on cross-sections invariant under the first return maps of flows furnishing expansiveness on three dimensional closed manifolds.

Recently K. Hiraide [5] showed the existence of invariant singular foliations for expansive homeomorphisms of closed surfaces. We shall construct singular foliations on cross-sections by using the method mentioned in [5]. However the first return maps are not continuous and we shall prepare supplementary tools to get our conclusion.

Let X be a closed topological manifold with metric $d . \quad \mathrm{By}(X, \boldsymbol{R})$ we denote a real continuous flow (abbrev. flow) without fixed points and the action of $t \in \boldsymbol{R}$ on $x \in X$ is written $x t$. (X, \boldsymbol{R}) is called an expansive flow if for any $\varepsilon>0$ there exists $\delta>0$ with the property that if $d(x t, y h(t))<\delta(t \in \boldsymbol{R})$ for a pair of points $x, y \in X$ and for an increasing homeomorphism $h: \boldsymbol{R} \rightarrow \boldsymbol{R}$ such that $h(0)=$ 0 and $h(\boldsymbol{R})=\boldsymbol{R}$, then $y=x t$ for some $|t|<\varepsilon$. Every non-trivial expansive flow has no fixed points (see [1]). Hereafter the natural numbers, the integers and the real number will be denoted by $\boldsymbol{N}, \boldsymbol{Z}$ and \boldsymbol{R} respectively.

Let $S I=\{x t ; x \in S$ and $t \in I\}$ for an interval I and $S \subset X$. A subset $S \subset X$ is called a local cross-section of time $\zeta>0$ for a flow (X, \boldsymbol{R}) if S is closed and $S \cap x[-\zeta, \zeta]=\{x\}$ for all $x \in S$. If S is a local cross-section of time ζ, the action maps $S \times[-\zeta, \zeta]$ homeomorphically onto $S[-\zeta, \zeta]$. By the interior S^{*} of S we mean $S \cap \operatorname{int}(S[-\zeta, \zeta])$. Note that $S^{*}(-\varepsilon, \varepsilon)$ is open in X for any $\varepsilon>0$. Put $\varepsilon_{0}=\inf \{t>0 ; x t=x$ for some $x \in X\}$. Under the above assumptions and notations we have the following

Fact 1.1 ([6], Lemma 2.4). There is $0<\zeta<\varepsilon_{0} / 2$ satisfying that for each $0<\alpha<\zeta / 3$ we can find a finite family $\mathcal{S}=\left\{S_{1}, S_{2}, \cdots, S_{k}\right\}$ of pairwise disjoint local cross-sections of time ζ and diameter at most α and a family of local corss-
sections $\mathscr{I}=\left\{T_{1}, T_{2}, \cdots, T_{k}\right\}$ with $T_{i} \subset S_{i}^{*}(i=1,2, \cdots k)$ such that

$$
X=T^{+}[0, \alpha]=T^{+}[-\alpha, 0]=S^{+}[0, \alpha]=S^{+}[-\alpha, 0]
$$

where $T^{+}=\bigcup_{i=1}^{k} T_{i}$ and $S^{+}=\bigcup_{i=1}^{k} S_{i}$.
Take $\zeta>0$ as in Fact 1.1 and fix $0<\alpha<\zeta / 3$. \mathcal{S} and \mathscr{I} are families of local cross-sections of time ζ as in Fact 1.1. Put $\beta=\sup \left\{\delta>0 ; x(0, \delta) \cap S^{+}=\phi\right.$ for $\left.x \in S^{+}\right\}$. Obviously $0<\beta \leq \alpha$. Take and fix ρ with $0<\rho<\alpha$.

For $x \in T^{+}$let $t \in \boldsymbol{R}$ be the smallest positive time such that $x t \in T^{+}$. Then obviously $\beta \leqq t \leqq \alpha$ and a map $\varphi(x)=x t$ is defined. It is easily checked that φ : $T^{+} \rightarrow T^{+}$is bijective.

For $S_{i} \in \mathcal{S}$ set $D_{\rho}^{i}=S_{i}[-\rho, \rho]$ and define a projective map $P_{\rho}^{i}: D_{\rho}^{i} \rightarrow S_{i}$ by $P_{\rho}^{i}(x)=x t$, where $x t \in S_{i}$ and $|t| \leq \rho$. Then P_{ρ}^{i} is continuous and surjective. We write $D_{\rho}^{i}=D_{\rho}$ and $P_{\rho}^{i}=P_{\rho}$ if there is no confusion. From continuity of (X, \boldsymbol{R}) we have

Fact 1.2. There exists $\delta_{0}>0$ such that if $d(x, y) \leq \delta_{0}\left(x, y \in S^{+}\right)$and $x t \in T_{j}$ $(|t| \leq 3 \alpha)$ for some $T_{j} \in \mathcal{I}$, then $y t \in D_{\rho}^{j}$.

We can set up a shadowing orbit of $y \in S^{+}$relative to a φ-orbit of $x \in T^{+}$ as follows. If $d(x, y) \leq \delta_{0}$, then $y_{x}^{1}=P_{\rho}(y t)$ for the time t with $\varphi(x)=x t$ by Fact 1.2. Whenever $\varphi^{i}(x)$ and y_{x}^{i} are defined such that $d\left(\varphi^{i}(x), y_{x}^{i}\right)<\delta_{0}$, we write $y_{x}^{i+1}=P_{\rho}\left(y_{x}^{i} t\right)$ where $\varphi\left(\varphi^{i}(x)\right)=\varphi^{i}(x) t$. Thus we obtain a time delayed y shadowing orbit along a piece of the orbit of x. Also the negative powers of φ is constructed as above and so we obtain $\left\{y_{x}^{i} ; i \in \boldsymbol{Z}\right\}$. For simplicity write

$$
y=\varphi_{x}^{0}(y), \varphi_{x}(y)=\varphi_{x}^{1}(y) \quad \text { and } \quad y_{x}^{i}=\varphi_{x}^{i}(y) \quad(i \in Z)
$$

and to avoid complication $\varphi_{*}^{l}\left(\boldsymbol{\varphi}_{x}^{k}(y)\right)$ instead of $\varphi_{\varphi^{k}(x)}^{l}\left(\varphi_{x}^{k}(y)\right)$.
For $x \in T^{+}$the η-stable (η-unstable) set

$$
\begin{array}{lll}
W_{\eta}^{s}(x)=\left\{y \in S^{+} ; d\left(\varphi^{i}(x), \varphi_{x}^{i}(y)\right) \leq \eta\right. & \text { for all } & i \geq 0\} \\
\left(W_{\eta}^{u}(x)=\left\{y \in S^{+} ; d\left(\varphi^{i}(x), \varphi_{x}^{i}(y)\right) \leq \eta\right.\right. & \text { for all } & i \leq 0\})
\end{array}
$$

is defined. Remark that $W_{\eta}^{\sigma}(x) \subset S^{+}$for $x \in T^{+}(\sigma=s, u)$.
The complex numbers will be denoted by \boldsymbol{C}. For $p \in \boldsymbol{N}$, let $\pi_{p}: \boldsymbol{C} \rightarrow \boldsymbol{C}$ be the map which sends z to z^{p}. We define the domains $\mathscr{D}_{p}(p=1,2, \cdots)$ of \boldsymbol{C} by

$$
\mathscr{D}_{2}=\{z \in C:|\operatorname{Re} z|<1,|\operatorname{Im} z|<1\},
$$

$\mathscr{D}_{1}=\pi_{2}\left(\mathscr{D}_{2}\right)$ and $\mathscr{D}_{p}=\pi_{p}^{-1}\left(\mathscr{D}_{1}\right)$. It is easily checked that $\pi_{p}: \mathscr{D}_{p} \rightarrow \mathscr{D}_{1}$ is a p-fold branched cover for every $p \in \boldsymbol{N}$. Denote by \mathscr{H}_{2} and \mathcal{V}_{2} the horizontal and vertical foliations on \mathscr{D}_{2} respectively. We define the decomposition \mathscr{H}_{1} (resp. \mathscr{V}_{1}) of \mathscr{D}_{1} as the projection of $\mathscr{H}_{2}\left(\right.$ resp. $\left.\mathscr{V}_{1}\right)$ by $\pi_{2}: \mathscr{D}_{2} \rightarrow \mathscr{D}_{1}$, and define the decom-
position $\mathscr{H}_{p}\left(\right.$ resp. $\left.\mathscr{V}_{p}\right)$ of \mathscr{D}_{p} as the lifting of $\mathscr{H}_{1}\left(\right.$ resp. $\left.\mathcal{V}_{1}\right)$ by $\pi_{p}: \mathscr{D}_{p} \rightarrow \mathscr{D}_{1}$.
Let $U_{x}\left(x \in T^{+}\right)$be a neighborhood of x in S^{+}. A decomposicion $\mathscr{F}_{U_{x}}$ of U_{x} is called a C^{0} local singular foliation if every $L \in \mathscr{F}_{U_{x}}$ is arcwise connected and if there are $p(x) \in \boldsymbol{N}$ and a C^{0} chart $h_{x}: U_{x} \rightarrow \boldsymbol{C}$ around x such that
(1) $h_{x}(x)=0$,
(2) $h_{x}\left(U_{x}\right)=\mathscr{D}_{p(x)}$,
(3) h_{x} sends each $L \in \mathscr{I}_{U_{x}}$ onto some element of $\mathscr{H}_{p}(x)$.

The number $p(x)$ is called the number of separatrices at x. We asy that x is a regulra point if $p(x)=2$, and x is a singular point with $p(x)$-singularities (or $p(x)$ prong singularity) if $p(x) \neq 2$. A neighborhood U_{x} of x equipped with a C^{0} local singular foliation is called a C^{0} singular foliated neighborhood.

Let $\mathscr{F}_{U_{x}}$ and $\mathscr{F}_{U_{x}}^{\prime}$ be local singular foliations on U_{x}. We say that $\mathscr{F}_{U_{x}}^{\prime}$ is transverse to $\mathscr{F}_{U_{x}}$ if $\mathscr{F}_{U_{x}}$ and $\mathscr{F}_{U_{x}}^{\prime}$ have the same number $p(x)$ at x and if there is a C^{0} chart $h_{x}: U_{x} \rightarrow C$ such that
(1) $h_{x}(x)=0$,
(2) $h_{x}\left(U_{x}\right)=\mathscr{D}_{p(x)}$,
(3) h_{x} sends each $L \in \mathscr{F}_{U_{x}}$ onto some element of $\mathscr{H}_{p(x)}$,
(4) h_{x} sends each $L^{\prime} \in \mathscr{F}_{U_{x}}^{\prime}$ onto element of $\mathscr{V}_{p(x)}$.

If there are C^{0} transversal singular foliations on U_{x}, then U_{x} is called a C^{0} transversal singular foliated neighborhood. Our aim is to prove the following

Theorem. Let (X, \boldsymbol{R}) be an expansive flow on a closed 3-manifold X. Then there is a sufficiently small η such that for every $x \in T^{+}$there is a C^{0} transversal singular foliated neighborhood U_{x} such that if $L \in \mathscr{F}_{U_{x}}\left(\mathscr{F}_{U_{x}}^{\prime}\right)$ contains $y \in T^{+}$, then $L=W_{\eta}^{s}(y) \cap U_{x}\left(W_{\eta}^{u}(y) \cap U_{x}\right)$.

For the proof we need that $W_{\eta}^{\sigma}(x)(\sigma=s, u)$ is arcwise connected. However it is difficult to directly verify the connectendness of $W_{\eta}^{\sigma}(x)$. In $\S 4$ we shall prove the following proposition, which plays an important role through the paper. We denote by $C_{\eta}^{\sigma}(x)$ the connected component of x in $W_{\eta}^{\sigma}(x)(\sigma=s, u)$. Let $S_{\delta}^{*}(x)$ be a circle in S^{+}with the radius δ and the center x.

Proposition A. For any $\varepsilon>0$ there exists $\delta>0$ such that for all $x \in T^{+}$

$$
C_{\varepsilon}^{\sigma}(x) \cap S_{\delta}^{\sharp}(x) \neq \phi \quad(\sigma=s, u) .
$$

Hereafter int $W_{\mathrm{g}}^{\sigma}(x)$ denotes the interior of $W_{\mathrm{q}}^{\sigma}(x)$ in S^{+}. Proposition A is obtained by the following

Proposition B. There exists $c_{1}>0$ such that if $0<\varepsilon \leq c_{1} / 4$, then

$$
\operatorname{int} W_{\varepsilon}^{\sigma}(x)=\phi \quad\left(x \in T^{+}, \sigma=s, u\right)
$$

In §2 we shall prepare some notations and establish several properies for
the first return map φ. In $\S 3$ and $\S 4$ Proposition B and A will be proved. To find constants $c_{1}>0$ and $\delta>0$ in Propositions A and B we need to treat the first return map φ like an expansive homeomorphism. However φ is not continuous as mentioned above. So we shall introduce a new first return map ψ defined on an extended domain V^{+}containing T^{+}. It will be shown that $C_{\varepsilon}^{\sigma}(x)\left(\sigma=s, u, x \in T^{+}\right)$is locally connected for sufficiently small $\varepsilon>0$. In §6 the proof of our Theorem will be given.

2. Preliminaries

As before let X be a colsed topological manifold with metric d and (X, \boldsymbol{R}) be an expanisive flow on it. This section contains some lemmas that need subsequently. Under the notations in $\S 1$, we have the following.

Lemma 2.1 ([1], Theorem 3). (X, \boldsymbol{R}) is expansive if and only if for any $\varepsilon>0$ there exists $\alpha>0$ with the following property: if $\boldsymbol{t}=\left(\boldsymbol{t}_{i}\right)_{i=-\infty}^{\infty}$ and $\boldsymbol{u}=\left(u_{i}\right)_{i=-\infty}^{\infty}$ are doubly infinite sequences of real numbers with $t_{0}=u_{0}=0,0<t_{i+1}-t_{i} \leq \alpha$, $\left|u_{i+1}-u_{i}\right| \leq \alpha, t_{i} \rightarrow \infty$ and $t_{-i} \rightarrow-\infty$ as $i \rightarrow \infty$, and if $x, y \in X$ satisfy $d\left(x t_{i}, y u_{i}\right) \leq \alpha$ for any $i \in \boldsymbol{Z}$, then $y=x$ for some $|t|<\varepsilon$.

Let $\zeta>0$ be as in Fact 1.1 and $\alpha_{0}>0$ be as in Lemma 2.1 for $\zeta / 3$. For $0<\alpha<\min \left\{\alpha_{0} / 2, \zeta / 3\right\}$ we construct as in Fact 1.1 families $\mathcal{S}=\left\{S_{1}, \cdots, S_{k}\right\}$ and $\mathcal{I}=\left\{T_{1}, \cdots, T_{k}\right\}$ of local cross-sections of time ζ. To simplify we set the following notations.

Convention For $Q \subset X, x \in X$ and $\delta>0$

$$
\begin{aligned}
& B_{\delta}(Q)=\{x \in X ; d(x, Q) \leq \delta\} \\
& U_{\delta}(Q)=\{x \in X ; d(x, Q)<\delta\} \\
& S_{\delta}(x)=\{y \in X ; d(x, y)=\delta\},
\end{aligned}
$$

and for $Q \subset S^{+}$

$$
\begin{aligned}
& B_{\delta}^{*}(Q)=B_{\delta}(Q) \cap S^{+}, \\
& U_{\delta}^{*}(Q)=U_{\delta}(Q) \cap S^{+} .
\end{aligned}
$$

Here $B_{\delta}(x)$ and $U_{\delta}(x)$ mean $B_{\delta}(\{x\})$ and $U_{\delta}(\{x\})$ respectively. Let $\rho>0$ be as in $\S 1$ and put $D_{\xi}^{i}=S_{i}[-\xi, \xi](0<\xi \leq \rho)$ and P_{ξ}^{i} : $D_{\xi}^{i} \rightarrow S_{i}$ denote the projection along the orbits. Sometimes we write $D_{\xi}^{i}=D_{\xi}$ and $P_{\xi}^{i}=P_{\xi}$. Put $\delta_{1}=$ $\min \left\{d\left(S_{i}, S_{j}\right) ; S_{i}, S_{j} \in \mathcal{S}, i \neq j\right\}$ and take $0<\delta_{2}<\delta_{1}$ such that $B_{\delta_{2}}^{*}\left(T_{i}\right) \subset S_{i}^{*}$ for $i=1, \cdots, k$, where S_{i}^{*} is the interior of S_{i}. Then we have

Lemma 2.2 ([6], Theorem 2.7). There exists $0<c<\alpha$ such that $W_{c}^{s}(x) \cap$ $W_{c}^{u}(x)=\{x\}$ for any $x \in T^{+}$.

To prove that Proposition B is true though φ is not continuous, we prepare
the following Lemmas $2.3 \sim 2.9$.
Lemma 2.3 Let $\left\{x_{n}\right\} \subset T^{+}$converge to $x \in T^{+}$as $n \rightarrow \infty$ and fix $i \in Z$. If a_{i} is an accumulation point of $\left\{\boldsymbol{\varphi}^{i}\left(x_{n}\right)\right\}$, then there exists $k_{i} \in \boldsymbol{Z}$ such that $a_{i}=\boldsymbol{\varphi}^{k_{i}}(x)$, where $k_{i} \geq i$ if $i \geq 0$ and $k_{i} \leq i$ if $i<0$.

This follows from the fact that each $T_{i} \in \mathscr{I}$ is closed.
Lemma 2.4 ([6], Lemma 2.9) Suppose that $x_{n} \rightarrow x\left(x_{n} \in T^{+}\right), y_{n} \rightarrow y\left(y_{n} \in S^{+}\right)$ as $n \rightarrow \infty$ and each $\phi_{x_{n}}^{i}\left(y_{n}\right)$ is defined for $0 \leq i \leq k(k \leq i \leq 0)$. If $\phi^{k}\left(x_{n}\right) \rightarrow \phi^{l_{k}}(x)$ as $n \rightarrow \infty$ for some integer l_{k}, then $\varphi_{x_{n}}^{k}\left(y_{n}\right) \rightarrow \varphi_{x}^{l} k(y)$ as $n \rightarrow \infty$.

Let c be as in Lemma 2.2. We find $0<\delta_{3}<\delta_{2}, 0<\rho_{1}<\rho$ and $0<c_{1}<$ min $\left\{c, \delta_{3}\right\}$ such that
$\left(\mathrm{A}_{1}\right) \quad$ if $d(x, y)<\delta_{3}(x, y \in X)$, then $d(x t, y s) \leq c$ for $|t| \leq 3 \alpha$ and $|t-s| \leq 2 \rho_{1}$,
$\left(\mathrm{B}_{1}\right) \quad$ it $d(x, y) \leq c_{1}\left(x, y \in S^{+}\right)$and $x t \in T_{j}(|t| \leq 3 \alpha)$ for some $T_{j} \in \mathscr{I}$, then $y t \in D_{\rho_{1}}^{j}$.
The following is a lemma given for expansive homeomorphisms of a compact metric space by Mañe [7].

Lemma 2.5. For any $0<\varepsilon \leq c_{1} / 2$, there ϵ xists $0<\delta \leq \varepsilon$ such that if $d(x, y) \leq$ $\delta\left(x \in T^{+}, y \in S^{+}\right)$and

$$
\varepsilon \leq \max \left\{d\left(\boldsymbol{\varphi}^{i}(x), \varphi_{x}^{i}(y)\right) ; 0 \leq i \leq n\right\} \leq c_{1} / 2,
$$

then $d\left(\varphi^{n}(x), \varphi_{x}^{n}(y)\right) \geq \delta$.
Proof. If this is false, there exists $0<\varepsilon_{0} \leq c_{1} / 2$ such that for $n \in N$ with $1 / n \leq \varepsilon_{0}$ there are $m_{n} \in N, x_{n} \in T^{+}$and $y_{n} \in S^{+}$such that

$$
\begin{equation*}
d\left(x_{n}, y_{n}\right) \leq 1 / n \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\varepsilon_{0} \leq \max \left\{d\left(\varphi^{i}\left(x_{n}\right), \varphi_{x_{n}}^{i}\left(y_{n}\right)\right) ; 0 \leq i \leq m_{n}\right\} \leq c_{1} / 2 \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
d\left(\varphi^{m_{n}}\left(x_{n}\right), \varphi_{x_{n}}^{m_{n}}\left(y_{n}\right)\right)<1 / n . \tag{3}
\end{equation*}
$$

By (2) we have

$$
\begin{equation*}
\varepsilon_{0} \leq d\left(\phi^{l_{n}}\left(x_{n}\right), \phi_{x_{n}^{n}}^{l_{n}}\left(y_{n}\right)\right) \leq c_{1} / 2 \tag{4}
\end{equation*}
$$

for some $0 \leq l_{n}<m_{n}$. Obviously $l_{n} \rightarrow \infty$ and $m_{n}-l_{n} \rightarrow \infty(n \rightarrow \infty)$. Since T^{+}and S^{+}are compact, $\phi^{l_{n}}\left(x_{n}\right) \rightarrow x \in T^{+}$and $\varphi_{x_{n}^{n}}^{l_{n}}\left(y_{n}\right) \rightarrow y \in S^{+}$as $n \rightarrow \infty$ (take subsequences if necessary). By (4),

$$
\begin{equation*}
\varepsilon_{0} \leq d(x, y) \leq c_{1} / 2 \tag{5}
\end{equation*}
$$

Since $\left\{\varphi^{l_{n}}\left(x_{n}\right)\right\}$ converges to x, there are a subsequence $\left\{\varphi\left(\varphi^{l_{n_{i}}}\left(x_{n_{i}}\right)\right\}\right.$ and $k_{1}>0$
such that $\boldsymbol{\varphi}\left(\boldsymbol{\varphi}^{l_{n_{i}}}\left(x_{n_{i}}\right)\right) \rightarrow \varphi^{k_{1}}(x)$ as $i \rightarrow \infty$ (by Lemma 2.3). Lemma 2.4 ensures that $\varphi_{*}\left(\varphi_{x_{n_{i}}}^{l_{n_{i}}}\left(y_{n_{i}}\right)\right) \rightarrow \varphi_{x}^{k_{1}}(y)$ as $i \rightarrow \infty$. While $\phi^{k_{1}}(x)$ can be written as $\phi^{k_{1}}(x)=x t_{1}$ for some t_{1} with $\beta \leq t_{1} \leq \alpha$. Using (5), (A_{1}) and (B_{1}), we have

$$
d\left(\varphi^{j}(x), \varphi_{x}^{j}(y)\right) \leq c \quad \text { for } \quad 0 \leq j \leq k_{1}
$$

Obviously $\varphi\left(\phi^{l_{n_{i}}}\left(x_{n_{i}}\right)\right)=\phi^{l_{n_{i}}+1}\left(x_{n_{i}}\right)$ and $\varphi_{*}\left(\varphi_{x_{n_{i}}}^{l_{n_{n}}}\left(y_{n_{i}}\right)\right)=\varphi_{x_{n_{i}}}^{l_{n_{i}+1}}\left(y_{n_{i}}\right)$. Thus (2) and the inequality $0 \leq l_{n}+1 \leq m_{n}$ imply

$$
\begin{equation*}
d\left(\varphi^{k_{1}}(x), \varphi_{x}^{k_{1}}(y)\right) \leq c_{1} / 2 \tag{6}
\end{equation*}
$$

Choose $k_{2}>0$ and a subsequence of $\left\{\phi^{2}\left(\phi^{l_{n_{i}}}\left(x_{n_{i}}\right)\right)\right\}$ which converges to $\phi^{k_{2}}\left(\phi^{k_{1}}(x)\right)$. To avoid complication let

$$
\begin{equation*}
\varphi\left(\varphi^{l_{n_{i}}+1}\left(x_{n_{i}}\right)\right) \rightarrow \phi^{k_{2}}\left(\phi^{k_{1}}(x)\right) \quad(i \rightarrow \infty) \tag{7}
\end{equation*}
$$

then Lemma 2.4 implies that

$$
\begin{equation*}
\varphi_{*}\left(\varphi_{x_{n_{i}}}^{l_{n_{i}}+1}\left(y_{n_{i}}\right)\right) \rightarrow \varphi_{*}^{k_{2}}\left(\varphi_{x}^{k_{1}}(y)\right) \quad(i \rightarrow \infty) \tag{8}
\end{equation*}
$$

From (6), (7), (8) and the fact that $\varphi^{k_{2}}\left(\phi^{k_{1}}(x)\right)=\varphi^{k_{1}}(x) t_{2}\left(\beta \leq t_{2} \leq \alpha\right)$ we have

$$
d\left(\varphi^{j}(x), \varphi_{x}^{j}(y)\right) \leq c \quad \text { for } \quad k_{1} \leq j \leq k_{1}+k_{2}
$$

In this fashion we have

$$
d\left(\varphi^{j}(x), \varphi_{x}^{j}(y)\right) \leq c \quad \text { for } \quad j \geq 0
$$

Note that $\left\{\boldsymbol{\varphi}^{l_{n}}\left(x_{n}\right)\right\}$ converges to x as $n \rightarrow \infty$. To show the above inequality for $j<0$, we choose $k_{-1}<0$ and a subsequence $\left\{\varphi^{-1}\left(\varphi^{l_{n_{i}}}\left(x_{n_{i}}\right)\right)\right\}$ such that $\varphi^{-1}\left(\varphi^{l_{n_{i}}}\right.$ $\left.\left(x_{n_{i}}\right)\right) \rightarrow \varphi^{k-1}(x)$ as $i \rightarrow \infty$. Since $\varphi^{k-1}(x)=x t_{-1}$ for some t_{-1} with $-\alpha \leq t_{-1} \leq-\beta$, by (5), (A_{1}) and (B_{1}) we have

$$
d\left(\varphi^{j}(x), \varphi_{x}^{j}(y)\right) \leq c \quad \text { for } \quad k_{-1} \leq j \leq 0
$$

Since $l_{n} \uparrow \infty$, by (2)

$$
\begin{equation*}
d\left(\phi^{k-1}(x), \varphi_{x}^{k-1}(y)\right) \leq c_{1} / 2 . \tag{9}
\end{equation*}
$$

Take $k_{-2}<0 \mathrm{n}$ and a subsequence of $\left\{\varphi^{-1}\left(\varphi^{l_{n_{i}}}{ }^{-1}\left(x_{n_{i}}\right)\right\}\right.$ that converges to φ^{k-2} $\left(\varphi^{k-1}(x)\right)$ and write $\varphi^{-1}\left(\varphi^{l_{n}-1}\left(x_{n}\right)\right) \rightarrow \varphi^{k-2}\left(\varphi^{k-1}(x)\right)$ for simplicity. Then we have

$$
\varphi_{*}^{-1}\left(\varphi_{x_{n}^{n}}^{l_{n}^{-1}}\left(y_{n}\right)\right) \rightarrow \varphi_{*}^{k-2}\left(\varphi_{x}^{k-1}(y)\right)=\varphi_{x}^{k-1+k-2}(y) \quad(i \rightarrow \infty)
$$

and can write $\phi^{k-2}\left(\phi^{k-1}(x)\right)=\left(\phi^{k-1}(x)\right) t_{-2}$ for some t_{-2} with $-\alpha \leq t_{-2} \leq-\beta$. Thus from (9), an (A_{1}) and (B_{1})

$$
d\left(\phi^{j}(x), \varphi_{x}^{j}(y)\right) \leq c \quad \text { for } \quad k_{-1}+k_{-2} \leq j \leq k_{-1}
$$

and on induction

$$
d\left(\varphi^{j}(x), \varphi_{x}^{j}(y)\right) \leq c \quad \text { for } \quad j<0 .
$$

Therefore $y=x$ by Lemma 2.2 and thus contradicting (5).
Lemma 2.6. Let A be a connected subset of S^{+}. For $0<\varepsilon \leq c_{1} / 4$, there exists $0<\delta \leq \varepsilon$ such that if $A \subset B_{\delta}^{*}(x)\left(x \in A \cap T^{+}\right)$, $\varphi_{x}^{i}(A) \cap S_{\varepsilon}^{\ddagger}\left(\phi^{i}(x)\right) \neq \phi$ for some i with $0 \leq i \leq n$ and $\bigcap_{i=0}^{n} \varphi_{\varphi_{i}(x)}^{-1}\left[B_{2_{\mathrm{e}}}^{*}\left(\varphi^{i}(x)\right)\right] \supset A$, then $\varphi_{x}^{n}(A) \cap S_{\delta}^{\ddagger}\left(\varphi^{n}(x)\right) \neq \phi$.

Proof. Take δ with $0<\delta \leq \varepsilon$ as in Lemma 2.5. Then conclusion is easily obtained.

Lemma 2.7. Let c_{1} be as above. Then for $0<r \leq c_{1}$ there exists $N \in \boldsymbol{N}$ such that

$$
\varphi_{x}^{n}\left(W_{c_{1}}^{s}(x)\right) \subset W_{r}^{s}\left(\varphi^{n}(x)\right)
$$

and

$$
\varphi_{x}^{-n}\left(W_{c_{1}}^{u}(x)\right) \subset W_{r}^{u}\left(\varphi^{-n}(x)\right)
$$

for $x \in T^{+}$and $n \geq N$.
Proof. We prove for the case of $W_{c_{1}}^{s}(x)$ for $x \in T^{+}$. If this is false, then there exists $0<r_{0} \leq c_{1}$ such that for any $n \in \boldsymbol{N}$ there are $x_{n} \in T^{+}$and $m_{n} \geq n$ such that

$$
\varphi_{x_{n}}^{m_{n}}\left(W_{c_{1}}^{s}\left(x_{n}\right)\right) \nsubseteq W_{r_{0}}^{s}\left(\varphi^{m_{n}}\left(x_{n}\right)\right)
$$

Then we can find $y_{n} \in W_{c_{1}}^{s}\left(x_{n}\right)$ such that for some $k_{n} \geq 0$

$$
\begin{equation*}
d\left(\varphi^{k_{n}+m}\left(x_{n}\right), \varphi_{x_{n}}^{k_{n}+m_{n}}\left(y_{n}\right)\right)>r_{0} . \tag{1}
\end{equation*}
$$

If $\varphi^{k_{n}+m_{n}}\left(x_{n}\right) \rightarrow x \in T^{+}$and $\varphi_{x_{n}}^{k_{n}+m_{n}}\left(y_{n}\right) \rightarrow y \in S^{+}$as $n \rightarrow \infty$, by (1) we have

$$
\begin{equation*}
d(x, y) \geq r_{0} \tag{2}
\end{equation*}
$$

Since $y_{n} \in W_{c_{1}}^{s}\left(x_{n}\right)$,

$$
\begin{equation*}
d\left(\varphi^{i+k_{n}+m_{n}}\left(x_{n}\right), \varphi_{x_{n}}^{i+k_{n}+m_{n}}\left(y_{n}\right)\right) \leq c_{1} \tag{3}
\end{equation*}
$$

for $i \in \boldsymbol{Z}$ with $i+k_{n}+m_{n} \geq 0$. Putting $i=0$ in (3), we have

$$
\begin{equation*}
d(x, y) \leq c_{1} . \tag{4}
\end{equation*}
$$

Since $\left\{\varphi\left(\varphi^{k_{n}+m_{n}}\left(x_{n}\right)\right)\right\}$ converges to some $\bar{x} \in T^{+}$(take a subsequence if necessary), we can write $\phi^{l_{1}}(x)=\bar{x}$ for some $l_{1}>0$ by Lemma 2.3 and

$$
\begin{equation*}
\varphi^{l_{1}(x)}=x t, \quad \beta \leq t \leq \alpha \tag{5}
\end{equation*}
$$

Then Lemma 2.4 imples that $\varphi_{*}\left(\varphi_{x_{n}^{n}}^{k_{n}+m_{n}}\left(y_{n}\right)\right) \rightarrow \varphi_{x}^{l}(y)$ as $n \rightarrow \infty$. Since $\varphi_{*}\left(\varphi_{x_{n}}^{k_{n}+m_{n}}\right.$
$\left.\left(y_{n}\right)\right)=\varphi_{x_{n}}^{1+k_{n}+m_{n}}\left(y_{n}\right)$, we have by (3) that

$$
d\left(\varphi^{1+k_{n}+m_{n}}\left(x_{n}\right), \quad \boldsymbol{\varphi}_{x_{n}}^{1+k_{n}+m_{n}}\left(y_{n}\right)\right) \leq c_{1},
$$

from which

$$
\begin{equation*}
d\left(\varphi^{l_{1}}(x), \varphi_{x}^{l_{1}}(y)\right) \leq c_{1} . \tag{6}
\end{equation*}
$$

By (4), (5), (A_{1}) and (B_{1})

$$
\begin{equation*}
d\left(\phi^{j}(x), \varphi_{x}^{j}(y)\right) \leq c \quad \text { for } \quad 0 \leq j \leq l_{1} \tag{7}
\end{equation*}
$$

As above there are $l_{2}>0$ and a subsequence of $\left\{\varphi^{2}\left(\phi^{k_{n}+m_{n}}\left(x_{n}\right)\right)\right\}$ which converges to $\varphi^{l_{2}}(x)$ as $n \rightarrow \infty$. To avoid complication let $\varphi^{2}\left(\varphi^{k_{n}+m_{n}}\left(x_{n}\right)\right) \rightarrow \varphi^{t_{2}(x)}$ as $n \rightarrow \infty$. Then we can write

$$
\varphi^{2}\left(\varphi^{k_{n}+m_{n}}\left(x_{n}\right)\right)=\varphi^{1+k_{n}+m_{n}}\left(x_{n}\right) t_{2}^{n} \quad\left(\beta \leq t_{2}^{n} \leq \alpha\right) .
$$

Since the sequence $\left\{t_{2}^{n}\right\}$ converges to some $t \in[\beta, \alpha]$ (take a subsequence if necessary), we have

$$
\varphi^{1+k_{n}+m_{n}}\left(x_{n}\right) t_{2}^{n} \rightarrow \phi^{l_{1}(x) t} \quad(\beta \leq t \leq \alpha),
$$

which implies

$$
\begin{equation*}
\phi^{t_{2}}(x)=\phi^{l_{1}(x) t} \quad(\beta \leq t \leq \alpha) . \tag{8}
\end{equation*}
$$

Lemma 2.4 ensures that $\varphi_{*}^{2}\left(\varphi_{x_{n}}^{k_{n}+m_{n}}\left(y_{n}\right)\right) \rightarrow \varphi_{x}^{l_{2}}(y)$ as $n \rightarrow \infty$, and by (6), (8), (A_{1}) and $\left(\mathrm{B}_{1}\right)$ we have $d\left(\boldsymbol{\varphi}^{j}(x) \varphi_{x}^{j}(y)\right) \leq c$ for $l_{1} \leq j \leq l_{2}$. By (3)

$$
\begin{equation*}
d\left(\varphi^{2}\left(\varphi^{k_{n}+m_{n}}\left(x_{n}\right)\right), \varphi_{*}^{2}\left(\varphi_{x_{n}^{n}}^{k_{n}+m_{n}}\left(y_{n}\right)\right)\right) \leq c_{1}, \tag{9}
\end{equation*}
$$

and thus inductively $d\left(\phi^{j}(x), \phi_{x}^{j}(y)\right) \leq c$ for $j \geq 0$.
Since $m_{n} \geq n$ for all $n>0$, for $j<0$ there exists $m_{n}>0$ such that $j+k_{n}+m_{n} \geq 0$ and so $d\left(\varphi^{j}(x) \varphi_{x}^{j}(y)\right) \leqq c$ for $j \leq 0$. Therefore $y \in W_{c}^{s}(x) \cap W_{c}^{u}(x)$ (i.e. $x=y$), contradicting (2).

Lemma 2.8. For any $\varepsilon>0$ there exists $r>0$ such that $\varphi_{x}\left(B_{r}^{\sharp}(x)\right) \subset B_{\varepsilon}^{\sharp}(\phi(x))$ for any $x \in T^{+}$.

Proof. If this is false, then there exists $\varepsilon_{0}>0$ such that for any $n \in \boldsymbol{N}$ there is $x_{n} \in T^{+}$such that $y_{n} \in B_{1 / n}^{\ddagger}\left(x_{n}\right)$ and $d\left(\boldsymbol{\varphi}\left(x_{n}\right), \varphi_{x_{n}}\left(y_{n}\right)\right)>\varepsilon_{0}$. Suppose that $x_{n} \rightarrow$ $x_{0} \in T^{+}$and for some $l \geq 1 \varphi\left(x_{n}\right) \rightarrow \varphi^{l}\left(x_{0}\right)$ as $n \rightarrow \infty$. Then by Lemma 2.4 we have that $d\left(\phi^{l_{1}}\left(x_{0}\right), \varphi_{x_{0}}^{l_{1}}\left(x_{0}\right)\right) \geq \varepsilon_{0}$ since $y_{n} \rightarrow x_{0}$ as $n \rightarrow \infty$. But $\varphi_{x_{0}}^{l_{1}}\left(x_{0}\right)=\varphi^{l_{1}}\left(x_{0}\right)$, thus contradicting.

The following is easily obtained from L.emmas 2.7 and 2.8.
Lemma 2.9 ([6], Lemma 3.3). For any ε with $0<\varepsilon<c_{1}$ there exists $e>0$
such that

$$
W_{c_{1}}^{\sigma}(x) \cap B_{\delta}^{*}(x)=W_{\mathrm{z}}^{\sigma}(x) \cap B_{\delta}^{*}(x) \quad(\sigma=s, u)
$$

for any $x \in T^{+}$and $0<\delta \leq e$.

3. Proof of Proposition B

Hereafter X is a 3-dimensional closed topological manifold and d is a metric on X. Each local cross-section of families $\mathcal{S}=\left\{S_{1}, \cdots, S_{k}\right\}$ and $\mathscr{I}=\left\{T_{1}, \cdots\right.$, $\left.T_{k}\right\}$ defined in Fact 1.1 can be taken as a 2-dimensional disk. Hence there is a compatible metric (called a connected metric) on each local cross-section such that every ε-closed ball $(\varepsilon>0)$ is connected.

For the proof of Proposition B we define a new family $C \mathcal{V}=\left\{V_{1}, \cdots, V_{k}\right\}$ of local cross-sections satisfying
(1) each V_{i} is a 2-dimensional disk,
(2) $T_{i} \subset V_{i}^{*} \subset V_{i} \subset S_{i}^{*} \quad(1 \leq i \leq k)$,
(3) $X=V^{+}[0, \alpha]=V^{+}[-\alpha, 0]$, where $V^{+}=\bigcup_{i=1}^{k} V_{i}$,
and as before define the first return map $\psi ; V^{+} \rightarrow V^{+}$as $\psi(x)=x t\left(\psi^{-1}(x)=x t\right)$, where t is the smallest positive (largest negative) time with $x t \in V^{+}$.

Let $\delta_{1}>0$ be as in $\S 2$. Take δ_{2} with $0<\delta_{2}<\delta_{1}$ such that $B_{\delta_{2}}\left(V_{i}\right) \subset S_{i}^{*}$ ($i=1, \cdots, k$) and assume that $\delta_{0}>0$ satisfies Fact 1.2 (replacing T_{j} by V_{j}).

For $x \in V^{+}$define the η^{-}stable set $W_{\eta}^{s}(x, \psi)$ and η^{-}unstable set of $W_{\eta}^{u}(x, \psi)$ as follows:

$$
\begin{aligned}
& W_{\eta}^{s}(x, \psi)=\left\{y \in S^{+} ; d\left(\psi^{i}(x), \psi_{x}^{i}(y)\right)<\eta, i \geq 0\right\} \\
& W_{\eta}^{u}(x, \psi)=\left\{y \in S^{+} ; d\left(\psi^{i}(x), \psi_{x}^{i}(y)\right)<\eta, i \leq 0\right\}
\end{aligned}
$$

Obviously $W_{\eta}^{\sigma}(x, \psi) \subset S^{+}(\sigma=s, u)$ and there exists $0<c<\alpha$ such that $W_{c}^{s}(x, \psi)$ $\cap W_{c}^{u}(x, \psi)=\{x\}$ for any $x \in V^{+}$(see Lemma 2.2). Note that Lemmas 2.3, 2.4, 2.5 and 2.6 hold for ψ.

Let $\mathcal{C}\left(S^{+}\right)$denote the set of all non-impty closed subsets of S^{+}, then Hausdoff metric H is defined by

$$
H(A, B)=\inf \left\{\varepsilon>0 ; N_{\varepsilon}(A) \supset B, N_{\varepsilon}(B) \supset A\right\} \quad\left(A, B \in \mathcal{C}\left(S^{+}\right)\right)
$$

where $N_{8}(A)$ denotes the ε-neighborhood of A in S^{+}. Then $\mathcal{C}\left(S^{+}\right)$is a compact space under H.

Lemma 3.1 (c.f. [2]). Let Y be a compact connected metric space. If A is a non-empty closed subset of Y with $A \neq Y$, then every connected component in A intersects to the boundary of A in Y.

We denote by $D_{n}(x)\left(x \in V^{+}\right)$the connected component of x in the domain
of ψ_{x}^{-n}. Put $D_{n, \delta}(x)=D_{n}(x) \cap B_{\delta}^{z}(x)$ and let $\Delta_{n, \delta}(x)$ be the connected component of x in $B_{\delta}^{\xi}(x) \cap \psi_{\psi^{n}(x)}^{-n}\left[D_{n, \delta / 2}\left(\psi^{n}(x)\right)\right]$.

Lemma 3.2. Let $0<\varepsilon \leq c_{1} / 4$. There exists $0<\delta \leq \varepsilon$ such that if $\left\{x_{i}\right\}_{i \in Z}$ is a sequence in V^{+}and
(a) if there is non-upper bound subset $\{j\}$ of \boldsymbol{Z} such that

$$
\lim _{j \rightarrow \infty} x_{j}=x_{\infty} \quad \text { and } \quad \lim _{j \rightarrow \infty} \Delta_{j, \delta}\left(x_{j}\right)=\Delta_{\infty},
$$

then $\Delta_{\infty} \subset W_{\varepsilon}^{s}\left(x_{\infty}, \psi\right)$,
(b) if there is non-lower bound subset $\{j\}$ of \boldsymbol{Z} such that

$$
\lim _{j \rightarrow-\infty} x_{j}=x_{-\infty} \quad \text { and } \quad \lim _{j \rightarrow-\infty} \Delta_{j, \delta}\left(x_{j}\right)=\Delta_{-\infty}
$$

then $\quad \Delta_{-\infty} \subset W_{e}^{u}\left(x_{-\infty}, \psi\right)$.
Proof. For ε with $0<\varepsilon \leq c_{1} / 4$ we can find $0<\varepsilon^{\prime}<\varepsilon$ and $\delta^{\prime}>0$ such that if $d(x, y) \geq \varepsilon\left(x, y \in S^{+}\right)$and $|s-t|<\delta^{\prime}(|s|,|t|<2 \alpha)$, then $d(x t, y s) \geq \varepsilon^{\prime}$. Take δ wi h $0<\delta \leq \varepsilon^{\prime}$ as in Lemma 2.6. Since $\Delta_{j, \delta}\left(x_{j}\right) \subset B_{\delta}^{\ddagger}\left(x_{j}\right)$, Obviously $\Delta_{j, \delta}\left(x_{j}\right) \rightarrow$ $\Delta_{\infty} \subset B_{\delta}^{\ddagger}\left(x_{\infty}\right) \subset B_{\varepsilon^{\prime}}^{\ddagger}\left(x_{\infty}\right)(j \rightarrow \infty)$. If $\Delta_{\infty} \nsubseteq W_{\varepsilon}^{s}\left(x_{\infty}, \psi\right)$, then we can find $k_{0}>0$ such that $\psi_{x_{\infty}}^{k_{0}}\left(\Delta_{\infty}\right) \nsubseteq B_{e}^{*}\left(\psi^{k_{0}}\left(x_{\infty}\right)\right)$.

Since $x_{j} \rightarrow x_{\infty}$ and $\Delta_{j, \delta}\left(x_{j}\right) \rightarrow \Delta_{\infty}$ as $j \rightarrow \infty$, there are $0<\eta_{0} \leq k_{0}$ and $l>\eta_{0}$ such that $\psi_{x_{l}}^{\eta_{0}}\left(\Delta_{l, 8}\left(x_{l}\right)\right) \nsubseteq B_{\varepsilon^{\prime}}^{\#}\left(\psi^{\eta_{0}}\left(x_{l}\right)\right)$. Hence $\psi_{x_{l}}^{\eta_{0}}\left(\Delta_{l, \delta}\left(x_{l}\right)\right) \nsubseteq B_{\lambda}^{*}\left(\psi^{\eta_{0}}\left(x_{l}\right)\right)$ for some $\varepsilon^{\prime}<$ $\lambda<2 \varepsilon^{\prime}$. Thus we can find $0<\eta_{1} \leq \eta_{0}$ such that

$$
\begin{aligned}
& \psi_{x_{l}}^{i}\left(\Delta_{l, \delta}\left(x_{l}\right)\right) \subset B_{\lambda}^{\ddagger}\left(\psi^{i}\left(x_{l}\right)\right) \quad\left(0 \leq i \leq \eta_{1}-1\right), \\
& \psi_{x_{l}^{1}}^{1}\left(\Delta_{l, \delta}\left(x_{l}\right)\right) \subset B_{e^{\prime}}^{\prime}\left(\psi^{\eta_{1}}\left(x_{l}\right)\right) .
\end{aligned}
$$

Let $A_{n_{1}}$ denote the connected component of x_{l} in

$$
\psi_{\psi^{n_{1}}\left(x_{l}\right)}^{-\eta_{1}}\left[\psi_{x_{l}}^{\eta_{1}}\left(\Delta_{l, 8}\left(x_{l}\right)\right) \cap B_{\varepsilon^{\prime}}^{\ddagger}\left(\psi^{\eta_{1}}\left(x_{l}\right)\right)\right] .
$$

Then we have

$$
\begin{equation*}
\psi_{x_{l}}^{i}\left(A_{\eta_{1}}\right) \subset B_{\lambda}^{\ddagger}\left(\psi^{i}\left(x_{l}\right)\right) \quad \text { for } \quad 0 \leq i \leq \eta_{1} . \tag{1}
\end{equation*}
$$

Since $\psi_{x_{l}}^{\eta_{1}}\left(\Delta_{l, \delta}\left(x_{l}\right)\right)$ is connected and $\psi_{x_{l}}^{\eta_{1}}\left(\Delta_{l, \delta}\left(x_{l}\right)\right) \nsubseteq B_{e^{\prime}}^{\neq}\left(\psi^{\eta_{1}}\left(x_{l}\right)\right)$, from Lemma 3.1 it follows that

$$
\begin{equation*}
\psi_{x_{l}}^{\eta_{1}}\left(A_{\eta_{1}}\right) \cap S_{\varepsilon^{\prime}}^{\xi^{\prime}}\left(\psi^{\eta_{1}}\left(x_{l}\right)\right) \neq \phi . \tag{2}
\end{equation*}
$$

For $\eta_{1}<\eta \leq l$ define A_{η} as the connected component of x_{l} in $\psi_{\psi^{\eta}\left(x_{l}\right)}^{-\eta}\left[\psi_{x_{l}}^{\eta}\right.$ $\left.\left(A_{\eta-1}\right) \cap B_{e^{\prime}}^{\prime}\left(\psi^{\eta}\left(x_{l}\right)\right)\right]$. Then we have

$$
\Delta_{l, \delta}\left(x_{l}\right) \supset A_{n_{1}} \supset A_{n_{1}+1} \supset \cdots \supset A_{l}
$$

and by (1)

$$
\begin{equation*}
\psi_{x_{l}}^{i}\left(A_{\eta}\right) \subset B_{\lambda}^{\prime}\left(\psi^{i}\left(x_{l}\right)\right) \subset B_{2_{e^{\prime}}^{\prime}}^{{ }^{\prime}}\left(\psi^{i}\left(x_{l}\right)\right) \quad(0 \leq i \leq \eta) . \tag{3}
\end{equation*}
$$

Now we claim that $\psi_{x_{l}}^{\eta}\left(A_{\eta}\right) \cap S_{\delta}^{*}\left(\psi^{\eta}\left(x_{l}\right)\right) \neq \phi$ for $\eta_{1}<\eta \leq l$. Indeed, if $A_{\eta} \neq$ $A_{\eta-1}$, then $\psi_{x_{l}}^{\eta}\left(A_{\eta-1}\right) \nsubseteq B_{e^{\prime}}^{\ddagger}\left(\psi^{\eta}\left(x_{l}\right)\right)$ and hence $\psi_{x_{l}}^{\eta}\left(A_{\eta}\right) \cap S_{\varepsilon^{\prime}}^{\ddagger}\left(\psi^{\eta}\left(x_{l}\right)\right) \neq \phi$ (by Lemma 3.1). Since $0<\delta \leq \varepsilon^{\prime}$, obviously $\psi_{x_{l}}^{\eta}\left(A_{\eta}\right) \cap S_{\delta}^{\ddagger}\left(\psi^{\eta}\left(x_{l}\right)\right) \neq \phi$. For the case $A_{\eta}=$ $A_{\eta-1}$ put $i_{0}=\min \left\{i \geq \eta_{1} ; A_{i}=A_{\eta}\right\}$. Clearly $\eta_{1} \leq i_{0}<\eta$. If $i_{0}=\eta_{1}$, then $\psi_{x_{i}^{i_{0}}}\left(A_{\eta_{1}}\right)$ $\cap S_{\varepsilon^{\prime}}^{\ddagger}\left(\psi^{i_{0}}\left(x_{l}\right)\right) \neq \phi$ by (2). If $i_{0}>\eta_{1}$, then $A_{i_{0}} \neq A_{i_{0}-1}$, and hence $\psi_{x_{i}}^{i_{0}}\left(A_{n}\right) \cap S_{\varepsilon^{\prime}}^{i}$ $\left(\psi^{i_{0}}\left(x_{l}\right)\right) \neq \phi . \quad$ In any case we have $\psi_{x_{l}}^{i_{0}}\left(A_{\eta}\right) \cap S_{\varepsilon^{\prime}}^{\ddagger}\left(\psi^{i_{0}}\left(x_{l}\right)\right) \neq \phi . \quad$ Since $A_{\eta} \subset \Delta_{l, \delta}\left(x_{l}\right)$ $\subset B_{\delta}^{*}\left(x_{l}\right)$, combining these facts with (3), we obtain $\psi_{x_{l}}^{\eta}\left(A_{\eta}\right) \cap S_{\delta}^{\ddagger}\left(\psi^{\eta}\left(x_{l}\right)\right) \neq \phi$ by Lemma 2.6. Therefore the claim holds.

Since $l>\eta_{1}$, it follows that $\psi_{x_{l}}^{l}\left(A_{l}\right) \cap S_{\delta}^{*}\left(\psi^{l}\left(x_{l}\right)\right) \neq \phi_{l}$. This contradicts the fact that $A_{l} \subset \Delta_{l, 8}\left(x_{l}\right)$. Therefore (a) holds. In the same way (b) is proved.

Proof of Proposition B. We prove the case of $\sigma=u$. Fix $0<\varepsilon \leq c_{1} / 4$ and let $x \in T^{+}$. Let $0<\delta \leq \varepsilon$ be as in Lemmas 2.5 and 3.2. Assume that int $W_{\mathrm{e}}^{u}(x)$ is not empty. If $y \in \operatorname{int} W_{z}^{u}(x)$, then there exists $0<r \leq \delta$ such that $B_{2 r}^{\ddagger}(y) \subset$ int $W_{\text {e }}^{u}(x)$.

If $B_{\delta / 2}\left(\psi^{\eta}(z)\right)$ is not contained in the domain of $\psi_{\psi^{n}(z)}^{-n}$ for $z \in B_{r}^{\ddagger}(y)$ and $n \in \boldsymbol{N}$, by Lemma 2.5 and connectedness of $B_{\delta / 2}^{\ddagger}\left(\psi^{n}(z)\right)$ we can find $z^{\prime} \in D_{n, \delta / 2}$ $\left(\psi^{n}(z)\right)$ such that $\psi_{\psi^{n}(z)}^{n}\left(z^{\prime}\right) \in S_{\delta}^{\ddagger}(z) \cap \Delta_{j, \delta}(z)$. We claim that there is $k>0$ such that $B_{\delta / 2}^{\ddagger}\left(\psi^{n}(z)\right) \subset D_{n}\left(\psi^{n}(z)\right)$ for $z \in B_{r}^{\ddagger}(y)$ and $n \geq k$. For, if this is false, then for $m \in \boldsymbol{N}$ there are $z_{m} \in B_{r}^{\ddagger}(y)$ and $n_{m} \geq m$ such that $B_{\delta / 2}^{\ddagger}\left(\psi^{n_{m}}\left(z_{m}\right)\right) \nsubseteq D_{n_{m}}\left(\psi^{n_{m}}\left(z_{m}\right)\right)$. Hence we can find $z_{m}^{\prime} \in D_{n_{m}, \delta / 2}\left(\psi^{\left.n_{m}\left(z_{m}\right)\right)}\right.$ such that $\psi_{\psi^{n} m_{m}{ }^{n_{m}\left(z_{m}\right)}}\left(z_{m}^{\prime}\right) \in S_{\delta}^{f}\left(z_{m}\right)$. Let $z_{m} \rightarrow z_{\infty} \in B_{r}^{\ddagger}(y)$ and $\Delta_{n_{m}, \delta}\left(z_{m}\right) \rightarrow \Delta_{\infty}$ as $m \rightarrow \infty$ (take subsequences if necessary). Then we have $\Delta_{\infty} \subset W_{\varepsilon}^{s}\left(z_{\infty}, \psi\right)$ by Lemma 3.2. Obviously $W_{\varepsilon}^{s}\left(z_{\infty}, \psi\right) \cap W_{\varepsilon}^{u}(x) \supset$ $\Delta_{\infty} \cap B_{2 r}^{\ddagger}(y) \supset \Delta_{\infty} \cap B_{r}^{\ddagger}(y) \ni z_{\infty}$. The fact that $\Delta_{n_{m}, \delta}\left(z_{m}\right) \cap S_{\delta}\left(z_{m}\right) \ni \psi_{\psi^{m}{ }^{n}\left(Z_{m}\right)}^{n_{m}}\left(z_{m}^{\prime}\right)$ ensures that $\Delta_{\infty} \cap B_{r}^{\ddagger}(y) \ni z_{\infty}$. Hence $W_{\varepsilon}^{s}\left(z_{\infty}, \psi\right) \cap W_{\varepsilon}^{u}(x)$ is not one point set $\left\{z_{\infty}\right\}$, which contradicts the expansiveness (see Lemma 2.1).

Let $\Delta_{n}(z)$ denote the connected component of $z\left(z \in V^{+}\right)$in $\psi_{\psi^{n}(z)}^{-n}\left(B_{\delta / 2}^{\prime}\left(\psi^{n}(z)\right)\right.$. Then for any $0<\eta \leq r$ and $k^{\prime} \geq k$ there exists $n \geq k^{\prime}$ such that $B_{\eta}^{*}(z) \supset \Delta_{n}(z)$ $\left(z \in B_{r}^{\ddagger}(y)\right)$. Indeed, if there is $0<\eta \leq r$ so that for $n \geq k$ there exists $z_{n} \in B_{r}^{q}(y)$ such that $B_{n}^{*}\left(z_{n}\right) Ð \Delta_{n}\left(z_{n}\right)$, then we have $\Delta_{n}\left(z_{n}\right) \cap S_{\eta}^{*}\left(z_{n}\right) \neq \phi$ by Lemma 3.1, which implies $\Delta_{n, 8}\left(z_{n}\right) \cap S_{\eta}^{\ddagger}\left(z_{n}\right) \neq \phi$ since $\eta<\delta$.

If $z_{n} \rightarrow z_{\infty} \in B_{r}^{\ddagger}(y)$ and $\Delta_{n, \delta}\left(z_{n}\right) \rightarrow \Delta_{\infty} \in \mathcal{C}\left(S^{+}\right)$as $n \rightarrow \infty$. Then we have $\Delta_{\infty} \cap$ $S_{\eta}^{\ddagger}\left(z_{\infty}\right) \neq \phi$, and by Lemma 3.2, $\Delta_{\infty} \subset W_{\varepsilon}^{s}\left(z_{\infty}, \psi\right)$. Obviously $B_{\eta}^{\ddagger}\left(z_{\infty}\right) \subset B_{2 r}^{*}(y) \subset$ $W_{\mathrm{e}}^{u}(x)$, from which

$$
W_{\varepsilon}^{s}\left(z_{\infty}, \psi\right) \cap W_{\varepsilon}^{u}(x) \supset \Delta_{\infty} \cap B_{\eta}^{\ddagger}\left(z_{\infty}\right) \ni z_{\infty}
$$

By expansiveness (see Lemma 2.1) we can conclude

$$
\begin{equation*}
W_{\varepsilon}^{s}\left(z_{\infty}, \psi\right) \cap W_{\varepsilon}^{u}(x)=\left\{z_{\infty}\right\} \tag{1}
\end{equation*}
$$

Therefore $\Delta_{\infty} \cap B_{\eta}^{\ddagger}\left(z_{\infty}\right)=\left\{z_{\infty}\right\}$, which contradicts the fact that $\Delta_{\infty} \cap S_{\eta}^{\ddagger}\left(z_{\infty}\right) \neq \phi$.

We have shown that for any $0<\eta \leq r$ there exists $n \geq k^{\prime}$ such that $B_{\eta}^{*}(z) \supset \Delta_{n}(z)$ for $z \in B_{r}^{\ddagger}(y)$. Thus $\psi_{z}^{n}\left(\Delta_{n}(z)\right)=B_{\delta / 2}^{\ddagger}\left(\psi^{n}(z)\right)$. Since $S \in \mathcal{S}$ has interior points, the cardinal number of $B_{r}^{\ddagger}(y)$, Card $B_{r}^{\ddagger}(y)$, is infinite, which ensures that there exist m-distinct points z_{1}, \cdots, z_{m} in $B_{r}^{\ddagger}(y)$ for $m>0$. Since η is arbitrary, we can choose $0<\eta \leq r$ such that $B_{\eta}^{*}\left(z_{i}\right)(i=1, \cdots m)$ are mutually disjoint. Using Lemmas 2.5 and 3.2 we can easily check that there is $n \geq k$ such that $B_{\delta / 2}^{*}\left(\psi^{n}\left(z_{i}\right)\right)$ $\nexists \psi^{n}\left(z_{j}\right)$ for i, j with $i \neq j$. Hence $B_{\delta / 5}^{*}\left(z_{i}\right)(i=1, \cdots, m)$ are mutually disjoint. This contradicts the compactness of S^{+}since m is any positive number.

4. Proof of Proposition A

Let $Q=\left\{V_{1}, \cdots, V_{k}\right\}$ and $\psi: V^{+} \rightarrow V^{+}$be as in $\S 3$. In this section Proposition A will be proved. For the proof we need the following

Lemma 4.1. For $\varepsilon>0$ there is $0<\mu<\varepsilon$ such that if $\left\{x_{i}\right\} \subset V^{+}$converges to $x_{\infty} \in V^{+}$and $\left\{B_{i}\right\} \subset \mathcal{C}\left(S^{+}\right)$converges to $B_{\infty} \in \mathcal{C}\left(S^{+}\right)$and if $B_{i} \subset W_{\mu}^{\sigma}\left(x_{i}, \psi\right)$ for any $i \geq 1$, then $B_{\infty} \subset W_{\varepsilon}^{\sigma}\left(x_{\infty}, \psi\right)(\sigma=s, u)$.

Proof. Let ρ_{1} be as in $\S 2$ and δ_{0}, δ_{2} be as in $\S 3$. For $\varepsilon>0$ there are $0<\rho_{\mathrm{g}}<\rho_{1}, 0<\delta_{\mathrm{e}}<\delta_{0}$ and $0<\mu<\min \left\{\varepsilon, \delta_{\mathrm{e}}\right\}$ such that
($\left.\mathrm{A}_{\mathrm{\varepsilon}}\right) \quad d(x, y) \leq \delta_{\mathrm{e}}(x, y \in X)$ impies $d(x t, y s) \leq \varepsilon \quad$ for $\quad|t| \leq 3 \alpha$ and $|t-s| \leq \rho_{\mathrm{z}}$.
$\left(\mathrm{B}_{\mathrm{z}}\right) \quad$ if $d(x, y) \leq \mu\left(x, y \in S^{+}\right)$and there is $V_{j} \in C V$ with $x t \in B_{\delta_{2}}^{*}\left(V_{i}\right) \quad$ for $|t| \leq 3 \alpha$, then $y t \in D_{\rho_{\varepsilon}}^{j}$.
We give the proof for the case of $\sigma=s$ and then the proof of the case $\sigma=u$ is done in the same way. Since $B_{i} \rightarrow B_{\infty}$, for $z \in B_{\infty}$ we can find $y_{i} \in B_{i}$ with $y_{i} \rightarrow z(i \rightarrow \infty)$, and

$$
\begin{equation*}
d\left(\psi^{n}\left(x_{i}\right), \psi_{x_{i}}^{n}\left(y_{i}\right)\right) \leq \mu \quad(n \geq 0) . \tag{1}
\end{equation*}
$$

holds because $B_{i} \subset W_{\mu}^{s}\left(x_{i}, \psi\right)$. Since $d\left(x_{i}, y_{i}\right) \leq \mu$ for i, we have $d\left(x_{\infty}, z\right) \leq \mu$. Replace φ by ψ and use Lemma 2.3. Then there is $l_{1} \geq 1$ such that $\psi\left(x_{i}\right) \rightarrow$ $\psi^{l_{1}}\left(x_{\infty}\right)$ as $i \rightarrow \infty$ (take a subsequence if necessary), and so we write $\psi^{l_{1}}\left(x_{\infty}\right)=x_{\infty} t$, for some t with $\beta \leq t \leq \alpha$. Applying Lemma 2.4 for ψ we have

$$
\begin{equation*}
d\left(\psi^{l_{1}}\left(x_{\infty}\right), \psi_{x_{\infty}}^{l_{1}^{1}}(z)\right) \leq \mu \tag{2}
\end{equation*}
$$

Note that $d\left(x_{\infty}, z\right) \leq \mu$. Then from $\left(A_{\varepsilon}\right),\left(B_{\varepsilon}\right)$ we have $d\left(\psi^{j}\left(x_{\infty}\right), \psi_{x_{\infty}}^{j}(z)\right) \leq \varepsilon$ for $0 \leq j \leq l_{1}$.

Since $\psi\left(x_{i}\right) \rightarrow \psi^{l_{1}}\left(x_{\infty}\right)$, there is $l_{2} \geq 1$ such that $\psi^{2}\left(x_{i}\right)$ converges to $\psi^{l_{2}}\left(\psi^{l_{1}}\left(x_{\infty}\right)\right)$ as $i \rightarrow \infty$ (take a subsequence if necessary). Thus we have $d\left(\psi^{j}\left(x_{\infty}\right), \psi_{x_{\infty}}^{j}(z)\right) \leq \varepsilon$ for $l_{1} \leq j \leq l_{1}+l_{2}$ by $\left(A_{\varepsilon}\right)$ and $\left(B_{\varepsilon}\right)$ and so $d\left(\psi^{j}\left(x_{\infty}\right), \psi_{x_{\infty}}^{j}(z)\right) \leq \varepsilon\left(0 \leq j \leq l_{1}+l_{2}\right)$. In this fashion we see that the above inequality holds for all $j \geq 0$. Hence $\approx \in W_{\varepsilon}^{s}$
$\left(x_{\infty}, \psi\right)$ and therefore $B_{\infty} \subset W_{\varepsilon}^{s}\left(x_{\infty}, \psi\right)$.
The proof of the following lemma is very similar to that of Lemma 4.1 and so we omit the proof.

Lemma 4.2. For $\varepsilon>0$ there is $0<\mu<\varepsilon$ such that if $\left\{x_{i}\right\} \subset V^{+}$converges to $x_{\infty} \in V^{+}$and $\left\{B_{i}\right\} \subset \mathcal{C}\left(S^{+}\right)$converges to $B_{\infty} \in \mathcal{C}\left(S^{+}\right)$and if $\psi_{x_{i}}^{n}\left(B_{i}\right) \subset B_{\mu}^{\sharp}\left(\psi^{n}\left(x_{i}\right)\right)$ for $0 \leq n \leq i(-i \leq n \leq 0)$, then $B_{\infty} \subset W_{\varepsilon}^{s}\left(x_{\infty}, \psi\right)\left(B_{\infty} \subset W_{\mathrm{e}}^{n}\left(x_{\infty}, \psi\right)\right)$, where $i \in N$.

Remark 4.3. The above Lemmas 4.1 and 4.2 hold for the first return $\operatorname{map} \varphi: T^{+} \rightarrow T^{+}$.

We are ready to prove Proposition A. Let c_{1} be as in §2. Since $C_{\varepsilon}^{\sigma}(x) \subset$ $C_{\mathrm{g}^{\prime}}^{\sigma}(x)\left(x \in T^{+}\right)$if $0<\varepsilon<\varepsilon^{\prime}$, we may prove the proposition for $0<\varepsilon \leq c_{1} / 8$.

We first give the proof for $\sigma=s$. Take $0<\mu<\varepsilon$ as in Lemma 4.2. We can find $0<\delta \leq \mu$ as in Lemma 2.5, wihch is our requirement.

Indeed, take and fix $x \in T^{+}$. For simplicity write $x(j)=\phi^{j}(x)(j \geq 0)$. Since T^{+}is compact, we have $x(j) \rightarrow x_{\infty} \in T^{+}$as $j \rightarrow \infty$. From Proposition B it follows that int $W_{2 \mathrm{e}}^{u}\left(x_{\infty}\right)=\phi$. For $0<\eta \leq \delta / 2$ there is $m_{\eta}>0$ such that

$$
\begin{equation*}
\varphi_{x_{\infty}}^{-m_{n}}\left(B_{\eta / 2}^{\ddagger}\left(x_{\infty}\right)\right) \nsubseteq B_{2 \mu}^{\ddagger}\left(\boldsymbol{\varphi}^{-m_{\eta}}\left(x_{\infty}\right)\right) . \tag{1}
\end{equation*}
$$

We may assume that the number m_{η} is the smallest one satisfying (1). Since $x(j) \rightarrow x_{\infty}$, we choose a large number $j_{\eta} \geq m_{\eta}$ such that $d\left(x\left(j_{\eta}\right), x_{\infty}\right) \leq \eta / 2$ and

$$
\begin{equation*}
\operatorname{diam} \varphi_{x_{\infty}}^{-m_{n}}\left[B_{\eta}^{\ddagger}\left(x\left(j_{\eta}\right)\right] \geq 2 \mu\right. \tag{2}
\end{equation*}
$$

Since $T^{+} \subset V^{+}$and x_{∞} is an interior point in V^{+}, for $\eta>0$ small enough we can find a positive integer l_{η} such that $m_{\eta} \leq l_{\eta}<j_{\eta}$ and $\left.\varphi_{x_{\infty}}^{-m_{\eta}}\left[B_{\eta}^{\ddagger}\left(x\left(j_{\eta}\right)\right)\right)\right]=\psi_{x\left(j_{\eta}\right)}^{-l_{\eta}}\left[B_{\eta}^{\sharp}(x\right.$ $\left.\left.\left(j_{\eta}\right)\right)\right]$. From (2)

$$
\begin{equation*}
\operatorname{diam} \psi_{x\left(j_{\eta}\right)}^{-l_{\eta}}\left[B_{\eta}^{\ddagger}\left(x\left(j_{\eta}\right)\right)\right] \geq 2 \mu . \tag{3}
\end{equation*}
$$

Let $j_{n}^{\prime} \geq j_{n}$ be an integer such that $x\left(j_{n}\right)=\psi^{j_{n}^{\prime}}(x)$. Then (3) can be rewriteten as follows: we have

$$
\begin{equation*}
\operatorname{diam} \psi_{x\left(j_{\eta}\right)}^{\left.-l_{\eta}\right)}\left[B_{\eta}^{*}\left(\psi^{i_{\eta}^{\prime}}(x)\right] \geq 2 \mu\right. \tag{4}
\end{equation*}
$$

from which there exists $0<n_{\eta} \leq l_{\eta}$ such that for $0 \leq i<n_{\eta}$

$$
\begin{gather*}
\psi_{x\left(j_{\eta}\right)}^{-i}\left[B_{\eta}^{\ddagger}\left(\psi^{i_{\eta}^{\prime}}(x)\right)\right] \subset B_{\mu}^{*}\left(\psi^{i_{\eta}^{\prime}-i}(x)\right), \tag{5}\\
\psi_{x\left(j_{\eta}\right)}^{-n_{\eta}}\left[\left(B_{\eta}^{\ddagger}\left(\psi^{i_{\eta}^{\prime}}(x)\right)\right] \not \subset B_{\mu}^{\ddagger}\left(\psi^{i_{\eta}^{\prime}-n_{\eta}}(x)\right) .\right. \tag{6}
\end{gather*}
$$

Denote by $\Delta_{n_{\eta}}\left(\psi^{j_{\eta}^{\prime}-n_{\eta}}(x)\right)$ the connected component of $\psi^{j_{\eta}^{\prime}-n_{\eta}}(x)$ in the subset

$$
\begin{aligned}
& B_{\mu}^{\ddagger}\left(\psi^{i_{\eta}^{\prime}-n_{\eta}}(x)\right) \cap \psi_{\psi^{i} i_{\eta}-n_{\eta}+1(x)}^{-1}\left[B_{\mu}\left(\psi^{i_{\eta}^{\prime}-n_{\eta}+1}(x)\right)\right] \cdots \\
& \cdots \cap \psi_{\psi_{j}^{j_{n}^{\prime}-1}(x)}^{-n_{n}+1}\left[B_{\mu}^{\ddagger}\left(\psi^{\prime_{\eta}^{\prime-1}}(x)\right)\right] \cap \psi_{\psi^{j} j_{n}^{\prime}(x)}^{-n_{\eta}}\left[B_{\delta / 2}^{z}\left(\psi^{i_{\eta}^{\prime}}(x)\right)\right],
\end{aligned}
$$

and denote by $C\left(\psi^{j_{\eta}^{\prime}-n_{\eta}}(x)\right)$ the connected component of $\psi^{i_{\eta}^{\prime}-n_{\eta}}(x)$ in the subset

$$
B_{\mu}^{\ddagger}\left(\psi^{i_{\eta}^{\prime}-n_{\eta}}(x)\right) \cap \psi_{\psi_{i}^{j} j_{\eta}^{\prime}(x)}^{-n_{\eta}}\left[B_{\eta}^{\ddagger}\left(\psi^{i_{\eta}^{\prime}}(x)\right)\right] .
$$

Since $\eta \leq \delta / 2$, by (5) we have

$$
\begin{equation*}
\Delta_{n_{\eta}}\left(\psi^{i_{\eta}^{\prime}-n_{\eta}}(x)\right) \supset C\left(\psi^{\prime \prime_{n}-n_{\eta}}(x)\right) \tag{7}
\end{equation*}
$$

From (6) and Lemma 3.1

$$
C\left(\psi^{i_{\eta}^{\prime}-n_{\eta}}(x)\right) \cap S_{\mu}^{\ddagger}\left(\psi^{j_{\eta}^{\prime}-n_{\eta}}(x)\right) \neq \phi .
$$

Since $B_{\eta}^{\ddagger}\left(\psi^{i_{\eta}^{\prime}}(x)\right)$ is connected, by (7)

$$
\begin{equation*}
\Delta_{n_{\eta}}\left(\psi^{i_{\eta}^{\prime}-n_{\eta}}(x)\right) \cap S_{\mu}\left(\psi^{i_{\eta}^{\prime}-n_{\eta}}(x)\right) \neq \phi \tag{8}
\end{equation*}
$$

Put $\Delta(0)=\Delta_{n_{\eta}}\left(\psi^{i_{\eta}^{\prime}-n_{\eta}}(x)\right)$ and for $k>0$ let $\Delta(k)$ be the connected component of $\psi^{i_{n}^{\prime}-n_{\eta}-k}(x)$ in the subset

$$
\psi_{\psi^{i} i_{\eta}^{\prime-n} \eta^{-k+1}(x)}^{-1}[\Delta(k-1)] \cap B_{\mu}^{*}\left(\psi^{i_{\eta}^{\prime}-n_{\eta}-k}(x)\right) .
$$

Then we have

$$
\begin{aligned}
& \psi_{x}^{j_{\eta}-n_{\eta}+1}\left(\Delta\left(j_{n}^{\prime}-n_{\eta}\right)\right) \subset \psi_{\psi_{i}^{i_{n}^{\prime}-n_{\eta}}(x)}^{i}(\Delta(0)) \\
& \subset B_{\mu}^{p_{\mu}^{\prime}}\left(\psi^{i_{n}^{\prime}-n_{n}+1}(x)\right)
\end{aligned}
$$

for $0 \leq i \leq n_{\eta}-1$ and so

$$
\begin{equation*}
\psi_{x}^{i}\left(\Delta\left(j_{\eta}^{\prime}-n_{\eta}\right)\right) \subset B_{\mu}^{\ddagger}\left(\psi^{i}(x)\right) \quad\left(0 \leq i \leq j_{\eta}^{\prime}-1\right) \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi_{x}^{j_{n}^{\prime}}\left(\Delta\left(j^{\prime}-n_{\eta}\right)\right) \subset B_{\delta / 2}\left(\psi^{i_{n}^{\prime}}(x)\right) . \tag{10}
\end{equation*}
$$

To see the existence of $0 \leq i \leq j_{\eta}^{\prime}-n_{\eta}$ such that

$$
\begin{equation*}
\psi_{x}^{i}\left(\Delta\left(j_{\eta}^{\prime}-n_{\eta}\right)\right) \cap S_{\mu}^{\sharp}\left(\psi^{i}(x)\right) \neq \phi \tag{11}
\end{equation*}
$$

suppose that this relation is false (i.e. $\psi_{x}^{i}\left(\Delta\left(j_{\eta}^{\prime}-n_{\eta}\right)\right) \cap S_{j}^{i}\left(\psi^{i}(x)\right)=\phi(0 \leq i \leq$ $\left.j_{n}^{\prime}-n_{\eta}\right)$). Then we have $\Delta\left(j_{\eta}^{\prime}-n_{\eta}\right) \subset U_{8}^{*}(x)$. Since $\psi_{\psi(x)}^{-1}\left(\Delta\left(j_{n}^{\prime}-n_{\eta}-1\right)\right) \backslash B_{\mu}^{*}(x) \neq$ ϕ implies $\Delta\left(j_{\eta}^{\prime}-n_{\eta}\right) \cap S_{\mu}^{*}(x) \neq \phi$ by Lemma 3.1, this is inconsistent with the assumption. Thus $\psi_{\psi(x)}^{-1}\left(\Delta\left(j_{\eta}^{\prime}-n_{\eta}-1\right)\right) \subset B_{\mu}^{\ddagger}(x)$ and $\Delta\left(j_{\eta}^{\prime}-n_{\eta}\right)=\psi_{\psi(x)}^{-1}\left(\Delta\left(j_{\eta}^{\prime}-n_{\eta}\right.\right.$ $-1)$). This shows that $\psi_{x}\left(\Delta\left(j_{\eta}^{\prime}-n_{\eta}\right)\right)=\Delta\left(j_{\eta}^{\prime}-n_{\eta}-1\right)$. To obtain the conclusion we use induction on i. Suppose that there is $0 \leq i \leq j_{\eta}^{\prime}-n_{\eta}$ with

$$
\begin{equation*}
\psi_{x}^{i}\left(\Delta\left(j_{\eta}^{\prime}-n_{\eta}\right)\right)=\Delta\left(j_{\eta}^{\prime}-n_{\eta}-i\right) . \tag{12}
\end{equation*}
$$

By Lemma $3.1 \psi_{\psi^{i+1}(x)}^{-1}\left(\Delta\left(j_{\eta}^{\prime}-n_{\eta}-i-1\right)\right) \backslash B_{\mu}^{\ddagger}\left(\psi^{i+1}(x)\right) \neq \phi$ implies $\Delta\left(j_{\eta}^{\prime}-n_{\eta}-i\right)$ $\cap S_{\mu}^{\#}\left(\psi^{i}(x)\right) \neq \phi . \quad \psi_{x}^{i}\left(\Delta\left(j_{\eta}^{\prime}-n_{\eta}\right)\right) \cap S_{j}^{\ddagger}\left(\psi^{i}(x)\right)=\phi$ by hypothesis, thus contradict-
ing our assumption. Therefore $\psi_{\psi^{i+1}(x)}^{-1}\left(\Delta\left(j_{\eta}^{\prime}-n_{\eta}-i-1\right)\right) \subset B_{\mu}^{\ddagger}\left(\psi^{i+1}(x)\right)$ and so

$$
\Delta\left(j_{\eta}^{\prime}-n_{\eta}-i\right)=\psi_{\psi^{i+1}(x)}^{-1}\left(\Delta\left(j_{\eta}^{\prime}-n_{\eta}-i-1\right)\right)
$$

From (12)

$$
\psi_{x}^{i}\left(\Delta\left(j_{\eta}^{\prime}-n_{\eta}\right)\right)=\psi_{\psi^{i+1}(x)}^{-1}\left(\Delta\left(j_{\eta}^{\prime}-n_{\eta}-i-1\right)\right),
$$

and hence

$$
\psi_{x}^{?+1}\left(\Delta\left(j_{\eta}^{\prime}-n_{\eta}\right)\right)=\Delta\left(j_{\eta}^{\prime}-n_{\eta}-i-1\right)
$$

Since $\psi_{x}^{i}\left(\Delta\left(j_{\eta}^{\prime}-n_{\eta}\right)\right)=\Delta\left(j_{\eta}^{\prime}-n_{\eta}-i\right)\left(0 \leq i \leq j_{\eta}^{\prime}-n_{\eta}\right)$, we have

$$
\psi_{x}^{j_{n}^{\prime}-n_{\eta}}\left(\Delta\left(j_{\eta}^{\prime}-n_{\eta}\right)\right)=\Delta(0)=\Delta_{n_{\eta}}\left(\psi^{i_{\eta}^{\prime}-n_{\eta}}(x)\right) .
$$

Therefore our assumption is inconsistent with (8).
From (9), (10), (11) and Lemma 2.5 it follows that

$$
\begin{equation*}
\Delta\left(j_{\eta}^{\prime}-n_{\eta}\right) \cap S_{\delta}(x) \neq \phi \tag{13}
\end{equation*}
$$

Since $\Delta\left(j_{\eta}^{\prime}-n_{\eta}\right) \subset \Delta_{j_{n}^{\prime}}(x)$ and $\Delta_{j_{\eta}^{\prime}}(x) \cap S_{\delta}(x) \neq \phi$ and since $\Delta_{j_{\eta}^{\prime}}(x) \rightarrow \Delta_{\infty} \in \mathcal{C}\left(S^{+}\right)$as $\eta \rightarrow 0$, we have $\Delta_{\infty} \cap S_{\delta}(x) \neq \phi$. Notice that Δ_{∞} is connected because each $\Delta_{j^{\prime} \eta}$ is so. Since

$$
\psi_{x}^{i}\left(\Delta_{j_{\eta}^{\prime}}(x)\right) \subset B_{\mu}^{\sharp}\left(\psi^{i}(x)\right) \quad \text { for } \quad 0 \leq i \leq j_{\eta}^{\prime}
$$

we have $\Delta_{\infty} \subset W_{\varepsilon}^{s}\left(x_{\infty}, \psi\right)$ by Lemma 4.2. If $C_{\varepsilon}^{s}(x, \psi)$ and $C_{8}^{s}(x)$ denote the connected component of x in $W_{\varepsilon}^{s}(x, \psi)$ and $W_{\varepsilon}^{s}(x)$ respectively, then we have $\Delta_{\infty} \subset$ $C_{\varepsilon}^{s}(x, \psi)$. Thus $C_{\varepsilon}^{s}(x, \psi) \cap S_{\delta}^{\ddagger}(x) \neq \phi$. Since $W_{\varepsilon}^{s}(x, \psi) \subset W_{\varepsilon}^{s}(x, \varphi)$ for $x \in T^{+}$, $C_{\varepsilon}^{s}(x, \psi) \subset C_{\varepsilon}^{s}(x)$ and therefore $C_{\varepsilon}^{s}(x) \cap S_{\delta}^{\ddagger}(x) \neq \phi$.

The proof of $\sigma=u$ is done in the same fashion and so we omit it.
Remark 4.4. Let $x \in V^{+}$and denote by $C_{8}^{\sigma}(x, \psi)$ the connected component of x in $W_{\varepsilon}^{\sigma}(x, \psi)(\sigma=s, u)$. From the proof of Proposition A the following is concluded: for $\varepsilon>0$ there is $0<\delta \leq \varepsilon$ such that $C_{\varepsilon}^{\sigma}(x, \psi) \cap S_{\delta}(x) \neq \phi$ for $x \in V^{+}(\sigma=s, u)$.

5. Local connectedness of $\boldsymbol{C}_{\mathrm{g}}^{\sigma}(\boldsymbol{x})$

Let c_{1} be as in $\S 2$ and let $0<\varepsilon_{1}<c_{1} / 4$ be as in Lemma 4.1 for c_{1}. As before \mathcal{S} and \mathscr{I} denote families of local cross-sections.

Proposition C. $C_{\varepsilon}^{\sigma}(x)(\sigma=s, u)$ are locally connected for all $0<\varepsilon \leq \varepsilon_{1}$ and $x \in T^{+}$.

This was proved in K. Hiraide [5] for homeomorphisms. However the technique of [5] is adapted for the first return map $\varphi: T^{+} \rightarrow T^{+}$. For completeness we give a proof.

Fix $x \in T(T \in \mathscr{I})$ and let $\delta>0$ be as in Proposition A for $0<\varepsilon \leq \varepsilon_{1}$. To obtain the conclusion for $\sigma=s$, assume that $C_{\varepsilon}^{s}(x)$ is not locally connected. Then we see that there are $y \in C_{\varepsilon}^{s}(x)$ and $0<r \leq \delta / 2$ such that the connected component of y in $C_{\varepsilon}^{s}(x) \cap B_{r}^{\ddagger}(y)$ does not contain $C_{\varepsilon}^{s}(x) \cap B_{\lambda}^{\sharp}(y)$ for all $\lambda>0$. Denote by \mathcal{K} the set of all connected component in $C_{\varepsilon}^{s}(x) \cap B_{r}^{\ddagger}(y)$. Since $C_{\varepsilon}^{s}(x)$ is connected and $C_{\varepsilon}^{s}(x) \cap B_{r}^{\ddagger}(y) \subsetneq C_{\varepsilon}^{s}(x)$, we have by Lemma 3.1 that $K \cap S_{r}^{\ddagger}(y) \neq \phi$ for all $K \in \mathcal{K}$.

Fix $0<t<r$ and put $\mathcal{K}_{t}=\left\{K \in \mathcal{K}: K \cap B_{t}^{\ddagger}(y) \neq \phi\right\}$. Then it is easily checked that \mathcal{K}_{t} is an infinite set. Hence there is a sequence $\left\{K_{i}\right\}_{i \in N}$ in \mathcal{K}_{t} with $K_{i} \cap K_{j}=\phi$ for $i \neq j$ such that $K_{i} \rightarrow K_{\infty} \in \mathcal{C}\left(C_{\varepsilon}^{s}(x) \cap B_{r}^{\ddagger}(y)\right)$ as $i \rightarrow \infty$. Since each K_{i} is connected, so is K_{∞}. Hence K_{∞} is contained in a connected component in $C_{\varepsilon}^{s}(x) \cap B_{r}^{\ddagger}(y)$. Therefore we may assume that $K_{i} \cap K_{\infty}=\phi$ for all $i \in \boldsymbol{N}$.

Since $S\left(S \in \mathcal{S}\right.$ and $\left.T^{*} \subset S\right)$ is a disk, we have that $A=B_{r}^{*}(y) / U_{t}^{*}(y)$ is an annulus bounded by circles $S_{r}^{\ddagger}(y)$ and $S_{i}^{\ddagger}(y)$. Since $K_{i} \cap S_{i}^{\ddagger}(y) \neq \phi$, we take $a_{i} \in K_{i} \cap S_{r}^{\ddagger}(y)$. Denote by L_{i} the connected component of a_{i} in $A \cap K_{i}$. Since K_{i} is connected and $B_{t}^{\ddagger}(y) \cap K_{i} \neq \phi$, there is $b_{i} \in L_{i} \cap S_{i}^{\sharp}(y) \neq \phi$ by Lemma 3.1. Since $K_{i} \cap K_{j}=\phi$ for $i \neq j$, we have that $L_{i} \cap L_{j}=\phi, a_{i} \neq a_{j}$ and $b_{i} \neq b_{j}$. By compactness we may assume that $a_{i} \rightarrow a_{\infty} \in S_{(}^{\ddagger}(y), b_{i} \rightarrow b_{\infty} \in S_{i}^{\ddagger}(y)$ and $L_{i} \rightarrow L_{\infty} \in$ $\mathcal{C}(A)$ as $i \rightarrow \infty$. Then $a_{\infty}, b_{\infty} \in L_{\infty}$. Since $L_{i} \subset K_{i}$, it follows that $L_{\infty} \subset K_{\infty}$. Since $K_{i} \cap K_{\infty}=\phi$, we have that $L_{i} \cap L_{\infty}=\phi, a_{i} \neq a_{\infty}$ and $b_{i} \neq b_{\infty}$. Therefore by taking a subsequence of $\left\{a_{i}\right\}_{i \in N}$ if necessary, we can choose the arcs $a_{i} a_{\infty}$ in $S_{r}^{\ddagger}(y)$ from a_{i} to a_{∞} such that

$$
\begin{equation*}
a_{i} a_{\infty} \supseteq a_{2} a_{\infty} \supsetneq \cdots \geqslant a_{i} a_{\infty} \supsetneq \cdots . \tag{1}
\end{equation*}
$$

In the same way, choose the arcs $b_{i} b_{\infty}$ in $S_{i}^{\ddagger}(y)$ from b_{i} to b_{∞} such that

$$
\begin{equation*}
b_{1} b_{\infty} \supsetneq b_{2} b_{\infty} \supsetneq \cdots \text { ₹ } b_{i} b_{\infty} \supsetneq \cdots \tag{2}
\end{equation*}
$$

Since L_{i}, L_{i+1} and L_{∞} are connected and mutually disjoint, it is checked that the orientation of $a_{i} a_{\infty}$ from a_{i} to a_{∞} coincides with that of $b_{i} b_{\infty}$ from b_{i} to b_{∞}. Indeed, we can take mutually disjoint connected neighborhoods N_{i}, N_{i+1} and N_{∞} of L_{i}, L_{i+1} and L_{∞} in A respectively. Then there is an $\operatorname{arc} A_{i}$ in N_{i} from a_{i} to b_{i} such that $A_{i} \cap S_{r}^{\ddagger}(y)=\left\{a_{i}\right\}$ and $A_{i} \cap S_{i}^{\ddagger}(y)=\left\{b_{i}\right\}$, and there is an arc A_{∞} in N_{∞} from a_{∞} to b_{∞} such that $A_{\infty} \cap S_{r}^{\sharp}(y)=\left\{a_{\infty}\right\}$ and $A_{\infty} \cap S_{l}^{\ddagger}(y)=\left\{b_{\infty}\right\}$. Since $N_{i} \cap N_{\infty}=\phi$, obviously $A_{i} \cap A_{\infty}=\phi$. Hence $A \backslash\left\{A_{i} \cup A_{\infty}\right\}$ is decomposed into two connected components U_{1} and U_{2}. Since $a_{i+1} \in U_{1} \cup U_{2}$ we may assume that $a_{i+1} \in U_{1}$. If the orientation of $a_{i} a_{\infty}$ differs from that of $b_{i} b_{\infty}$, then $b_{i+1} \in U_{2}$ by (1) and (2). In this case, every arc in N_{i+1} from a_{i+1} to b_{i+1} must intersect A_{i} or A_{∞}. This contradicts the fact that N_{i}, N_{i+1} and N_{∞} are mutually disjoint. Therefore the orientation of $a_{i} a_{\infty}$ must coincide with that of $b_{i} b_{\infty}$.

For $i \geq 2$, take $z_{i} \in L_{i}$ such that $d\left(y, z_{i}\right)=t+(r-t) / 2$, since $L_{i} \subset K_{i} \subset C_{\varepsilon}^{s}(x)$, obviously $z_{i} \in C_{\varepsilon}^{s}(x) \cap C_{\varepsilon}^{u}\left(z_{i}, \psi\right)$. Hence $C_{\varepsilon}^{s}(x) \cap C_{\varepsilon}^{u}\left(z_{i}, \psi\right)=\left\{z_{i}\right\}$ by expansive-
ness. Since $z_{i} \in L_{i}$ and $L_{i-1} \cup L_{i+1} \subset C_{\varepsilon}^{s}(x)$, we have that $\left(L_{i-1} \cup L_{i+1}\right) \cap\left(C_{\mathrm{e}}^{u}\left(z_{i}, \psi\right)\right.$ $\left.\cup L_{i}\right)=\phi$. Hence we can take a connected neighborhood N_{i-1} of L_{i-1} in A and a connected neighborhood N_{i+1} of L_{i+1} in A such that $N_{i-1} \cap N_{i+1}=\phi$ and (N_{i-1} $\left.\cup N_{i+1}\right) \cap\left(C_{\mathrm{e}}^{u}\left(z_{i}, \psi\right) \cup L_{i}\right)=\phi$. Then there is an $\operatorname{arc} A_{i-1}$ in N_{i-1} from a_{i-1} to b_{i-1} such that $A_{i-1} \cap S_{i}^{\ddagger}(y)=\left\{a_{i-1}\right\}$ and $A_{i-1} \cap S_{t}^{\ddagger}(y)=\left\{b_{i-1}\right\}$, and there is an arc A_{i+1} in N_{i+1} from a_{i+1} to b_{i+1} such that $A_{i+1} \cap S_{r}^{\ddagger}(y)=\left\{a_{i+1}\right\}$ and $A_{i+1} \cap S_{i}^{\ddagger}(y)=$ $\left\{b_{i+1}\right\}$. Obviously $\left(A_{i-1} \cup A_{i+1}\right) \cap\left(C_{\mathrm{e}}^{u}\left(z_{i}, \psi\right) \cup L_{i}\right)=\phi$. Denote by $a_{i-1} a_{i+1}$ the subarc in $a_{i-1} a_{\infty}$ from a_{i-1} to a_{i+1} and by $b_{i-1} b_{i+1}$ the subarc in $b_{i-1} b_{\infty}$ from b_{i-1} to b_{i+1}. Then we have

$$
\Gamma=A_{i-1} \cup A_{i+1} \cup a_{i-1} a_{i+1} \cup b_{i-1} b_{i+1}
$$

is a simple closed curve in A. From the relation betwee the orientations of $a_{i-1} a_{\infty}$ and $b_{i-1} b_{\infty}$, it follows that Γ bounds a disk D in A. Then we see that z_{i} is an interior point of D. Since $r \leq \delta / 2$, we have $C_{\varepsilon}^{u}\left(z_{i}, \psi\right) \cap S_{r}^{u}(y) \neq \phi$ (see $C_{8}^{s}(x, \psi) \cap S_{\delta}(x) \neq \phi$ in the proof of Proposition A). By the connectedness of $C_{\mathrm{e}}^{u}\left(z_{i}, \psi\right)$ we have $\Gamma \cap C_{\mathrm{e}}^{u}\left(z_{i}, \psi\right) \neq \phi$. Since $\left(A_{i-1} \cup A_{i+1}\right) \cap C_{\mathrm{z}}^{u}\left(z_{i}, \psi\right)=\phi$, it is clear that

$$
C_{\mathrm{e}}^{u}\left(z_{i}, \psi\right) \cap a_{i-1} a_{i+1} \neq \phi \quad \text { or } \quad C_{\mathrm{g}}^{u}\left(z_{i}, \psi\right) \cap b_{i-1} b_{i+1} \neq \phi
$$

Without loss of generality we have

$$
w_{i} \in C_{\mathrm{g}}^{u}\left(z_{i}, \psi\right) \cap a_{i-1} a_{i+1} \neq \phi
$$

Since $\operatorname{diam}\left(a_{i} a_{\infty}\right) \rightarrow 0$ as $i \rightarrow \infty$, we see that $w_{i} \rightarrow a_{\infty}$ as $i \rightarrow \infty$. Since $L_{i} \rightarrow L_{\infty}$, we may assume that $z_{i} \rightarrow z_{\infty} \in L_{\infty}$ as $i \rightarrow \infty$. That $d\left(y, z_{\infty}\right)=t+(r-t) / 2$ and $w_{i} \in C_{z}^{u}$ $\left(z_{i}, \psi\right)$ ensures $a_{\infty} \in W_{c_{1}}^{u}\left(z_{\infty}, \psi\right)$ (see Lemma 4.1). Since $a_{\infty}, z_{\infty} \in L_{\infty} \subset K_{\infty} \subset C_{g}^{s}$ (x), we obtain by expansiveness that $a_{\infty}=z_{\infty}$. This contradicts the facts that $a_{\infty} \in S_{r}^{*}(y)$ and $d\left(y, z_{\infty}\right)=t+(r-t) / 2$. Therefore $C_{\varepsilon}^{s}(x)$ is locally connected. In the same way, the conclusion for $\sigma=u$ is obtained.

Remark 5.1. Proposition C is true for $C_{\mathrm{z}}^{\sigma}(x, \psi)\left(x \in V^{+}\right)$.

6. Proof of Theorem

In this section our Theorem will be proved. Let α_{0} and c_{1} be as in $\S 2$ respectively. Let $0<\varepsilon_{1} \leq \min \left\{\alpha_{0} / 2, c_{1} / 4\right\}$ be as in $\S 5$.

Lemma 6.1. Let $0<\varepsilon \leq \varepsilon_{1}$ and A and B be non-empty subsets of T^{+}. If $W_{\eta}^{s}(x) \cap W_{\varepsilon}^{u}(y) \neq \phi$ for any $(x, y) \in A \times B$, then $W_{\varepsilon}^{s}(x) \cap W_{\varepsilon}^{u}(y)$ consists of exactly one point $[x, y]$ and in fact $[]:, A \times B \rightarrow S^{+}$is a continuous map.

Proof. Take $z_{1}, z_{2} \in W_{\varepsilon}^{s}(x) \cap W_{\varepsilon}^{u}(y)$. Then $d\left(\varphi^{m}(x), \varphi_{x}^{m}\left(z_{i}\right)\right) \leq \varepsilon(i=1,2)$ for any $m \geq 0$, and so $d\left(\varphi_{x}^{m}\left(z_{i}\right), \varphi_{x}^{m}\left(z_{2}\right)\right) \leq 2 \varepsilon \leq \alpha_{0}$. Since $\varphi^{j}\left(z_{1}\right)=\varphi^{j-1}\left(z_{1}\right) t_{j-1}$ and $\phi^{j}\left(z_{2}\right)=\phi^{j-1}\left(z_{2}\right) t_{j-1}^{\prime}\left(\beta \leq t_{j}, t_{j-1}^{\prime} \leq \alpha\right)$ by definition, there exist $\left\{a_{i}\right\}$ and $\left\{b_{i}\right\}$
$(i=1,2)$ such that

$$
\varphi_{x}^{m}\left(z_{1}\right)=z_{1}\left(\sum_{i=0}^{m}\left(t_{i}+a_{i}\right)\right), \quad\left|a_{i}\right| \leq \rho
$$

and

$$
\varphi_{x}^{m}\left(z_{2}\right)=z_{2}\left(\sum_{i=0}^{m}\left(t_{1}^{\prime}+b_{i}\right)\right), \quad\left|b_{i}\right| \leq \rho .
$$

We can easily caluculate

$$
\begin{equation*}
\left|\sum_{i=0}^{m}\left(t_{i}+a_{i}\right)-\sum_{i=0}^{m-1}\left(t_{i}+a_{i}\right)\right|=\left|t_{m}+a_{m}\right| \leq \alpha+\rho<\alpha_{0} \tag{*}
\end{equation*}
$$

and

$$
\left|\sum_{i=0}^{m}\left(t_{i}^{\prime}+b_{i}\right)-\sum_{i=0}^{m-1}\left(t_{i}^{\prime}+b_{i}\right)\right|=\left|t_{m}^{\prime}+b_{m}\right| \leq \alpha+\rho<\alpha_{0} .
$$

Since $\varphi^{j}\left(z_{1}\right)=\varphi^{j+1}\left(z_{1}\right) t_{j}$ and $\varphi^{j}\left(z_{2}\right)=\varphi^{j+1}\left(z_{2}\right) t_{j}^{\prime}\left(-\alpha \leq t_{j}, t_{j}^{\prime} \leq-\beta\right)$, for $m<0$ as above we can write

$$
\varphi_{x}^{m}\left(z_{1}\right)=z_{1}\left(\sum_{i=-1}^{m}\left(t_{i}+a_{i}\right)\right), \quad\left|a_{i}\right| \leq \rho
$$

and

$$
\phi_{x}^{m}\left(z_{2}\right)=z_{2}\left(\sum_{i=-1}^{m}\left(t_{i}^{\prime}+b_{i}\right)\right), \quad\left|b_{i}\right| \leq \rho .
$$

For this case ($*$) holds. By Lemma 2.1 here we have that $z_{1}=z_{2} t$ for some $|t|<\zeta / 3$, from which $z_{1}=z_{2}$.

To show that [,]: $A \times B \rightarrow S^{+}$is continuous, assume that a sequence $\left\{\left(x_{i}, y_{i}\right)\right\}_{i \in N}$ in $A \times B$ converges to $(x, y) \in A \times B$ and put $z_{i}=\left[x_{i}, y_{i}\right]$. Then there are a subsequence $\left\{z_{j}\right\}$ of $\left\{z_{i}\right\}$ and $z_{\infty} \in S^{+}$such that $z_{j} \rightarrow z_{\infty}$ as $j \rightarrow \infty$. Since $\check{z}_{j} \in W_{\varepsilon}^{s}\left(x_{i}\right)$, it follows from Remark 4.3 thét $z_{\infty} \in W_{c}^{s}(x)$. In the same way we have $z_{\infty} \in W_{c_{1}}^{u}(y)$. Since $c_{1}<\alpha \leq \alpha_{0} / 2$, we see that $W_{c_{1}}^{s}(x) \cap W_{c_{1}}^{u}(y)$ consists of one point. Hence $W_{c_{1}}^{s}(x) \cap W_{c_{1}}^{u}(y) \supset W_{\varepsilon}^{s}(x) \cap W_{\varepsilon}^{u}(y)=\{[x, y]\}$, and therefore $z_{\infty}=[x, y]$. Continuity of [,] was proved.

Lemma 6.2. $\quad C_{\varepsilon}^{\sigma}(x)\left(0<\varepsilon \leq \varepsilon_{1}\right)$ is arcwise connected and locally arcwise connected $(\sigma=s, u)$.

Proof. Combining Proposicion C with Theorem 5.9 of [3], we see that $C^{\sigma}(x)$ is a peano space. Then Theorem 6.29 of [3] completes the proof.

Lemma 6.3. Let $0<\varepsilon \leq \varepsilon_{1}$. For each pair (y, z) of distinct points in $C_{\varepsilon}^{\sigma}(x)$ $(\sigma=s, u)$ there exists an arc from y to z in $C_{\varepsilon}^{\sigma}(x)$. Furthermore such an arc is unique.

Proof. The first statement follows from Lemma 6.2. We prove the second statement for $\sigma=s$. To do this, we assume that there are two arcs from y to z in $C_{8}^{s}(x)$. Then we can find a simple closed curve Γ in $C_{8}^{s}(\lambda)$. Choose r with $0<r \leq \varepsilon / 2$ by Lemma 2.8 such that $\varphi_{x}\left(B_{r}^{z}(x)\right) \subset B_{\varepsilon}^{\sharp}(\varphi(x))$ for all $x \in T^{+}$. Let c_{1} be as in §2. Then we can find $N \in \boldsymbol{N}$ such that $\varphi_{x}^{n}\left(W_{c_{1}}^{s}(x)\right) \subset W_{r}^{s}\left(\varphi^{n}(x)\right)$ for all $n \geq N$. Since $\Gamma \subset C_{\varepsilon}^{s}(x) \subset W_{c_{1}}^{s}(x)$, we have $\varphi_{x}^{n}(\Gamma) \subset W_{r}^{s}\left(\varphi^{n}(x)\right) \subset B_{r}^{*}\left(\phi^{n}(x)\right)$ for all $n \geq N$. Since $B_{r}^{\ddagger}\left(\varphi^{N}(x)\right)$ is a disk and $\varphi_{x}^{N}(\Gamma)$ is a simple closed curve in $B_{r}^{\ddagger}\left(\varphi^{N}(x)\right)$, we see that $\varphi_{x}^{N}(\Gamma)$ bounds a disk D in $B_{r}^{\ddagger}\left(\varphi^{N}(x)\right)$.

Now we claim that $\varphi_{\varphi}^{i} \Phi_{(x)}(D) \subset B_{r}^{\ddagger}\left(\phi^{N+i}(x)\right)$ for all $i \geq 0$. Indeed, $D \subset B_{\varepsilon}^{\ddagger}\left(\phi^{N}\right.$ (x)) by the choice of r. Since $\varphi_{x}^{N+1}(\Gamma) \subset B_{r}^{\ddagger}\left(\varphi_{x}^{N+1}(x)\right)$ and $\varphi^{N+1}(\Gamma)$ is the boundary of $\varphi_{\varphi^{N}(x)}(D)$, it follows that $\varphi_{\varphi^{N}(x)}(D) \subset B_{r}^{\ddagger}\left(\varphi^{N+1}(x)\right)$. In the same way, we obtain $\varphi_{\varphi}^{i N}(x)(D) \subset B_{r}^{\ddagger}\left(\phi^{N+i}(x)\right)$ for all $i \geq 2$. Therefore the above claim holds and so $D \subset W_{r}^{s}\left(\varphi^{N}(x)\right)$, thus contradicting Proposition B (since $0<r \leq \varepsilon \leq c_{1} / 4$). Therefore an arc from y to z in $C_{s}^{s}(x)$ is unique. In the same way the conclusionfor $\sigma=u$ is obtained.

Let $\psi: V^{+} \rightarrow V^{+}$be the first return map defined in $\S 3$ and $C_{8}^{\sigma}(x, \psi)$ denote the connected component of x in $W_{8}^{\sigma}(x, \psi)$ as before. Notice that $C_{8}^{\sigma}(x, \psi) \subset$ $C_{\mathrm{e}}^{\sigma}(x)$ for $x \in T^{+}(\sigma=s, u)$ (since $W_{\mathrm{e}}^{\sigma}(x, \psi) \subset W_{\mathrm{q}}^{\sigma}(x)$).

Remark 6.4. Lemmas 6.2 and 6.3 hold for the first return map ψ.

Let y and z be distinct elements of $C_{\varepsilon}^{\sigma}(x)\left(C_{\varepsilon}^{\rho}(x, \psi)\right)$. Since there is an arc from y to z in $C_{8}^{\sigma}(x)\left(C_{\varepsilon}^{\sigma}(x, \psi)\right)$ and such an arc is unique by Lemma 6.3, we denote it by $\sigma_{\mathrm{e}}(y, z ; x)\left(\sigma_{\mathrm{e}}(y, z ; x, \psi)\right)$. Remark that $C_{\mathrm{z}}^{\sigma}(x) \subset C_{\varepsilon_{1}}^{\sigma}(x)$. Then we see easily that $\sigma_{\mathrm{e}}(y, z ; x)=\sigma_{\varepsilon_{1}}(y, z ; x)$. Hence we omit ε and write $\sigma(y, z ; x)=$ $\sigma_{\mathrm{e}}(y, z ; x)$. We denote by $I C_{\varepsilon}^{\sigma}(x)$ the union of all open arcs in $C_{\mathrm{z}}^{\sigma}(x)$ and define

$$
B C_{\mathrm{z}}^{\sigma}(x)=C_{\mathrm{q}}^{\sigma}(x) \backslash\left(I C_{\mathrm{z}}^{\sigma}(x) \cup\{x\}\right) .
$$

x belongs to $I C_{\varepsilon}^{\sigma}(x)$. For ψ we define $I C_{\varepsilon}^{\sigma}(x, \psi)$ and $B C_{\varepsilon}^{\sigma}(x, \psi)$ in the same fashion as above. Then for $0<\varepsilon \leq \varepsilon_{1}$ it holds that $B C_{\varepsilon}^{\sigma}(x) \neq \phi$ and

$$
C_{\mathrm{z}}^{\sigma}(x)=\bigcup_{b \in B C_{\mathrm{e}}^{\sigma}(x)} \sigma(x, b ; x)
$$

If A be an arc in $C_{\varepsilon}^{\sigma}(x)$ and if x is an end point of A, then there exists $b \in B C_{\varepsilon}^{\sigma}(x)$ such that $A \subset \sigma(x, b ; x)$.

Let a, b and c be elements of $C_{\varepsilon}^{\sigma}(x)$ such that $a \neq b$ and $a \neq c$. When $\sigma(a, b ; x) \cap \sigma(a, c ; x) \supseteqq\{a\}$, we write $\sigma(a, b ; x) \sim \sigma(a, c ; x)$. In this case, we see by Lemma 6.3 that $\sigma(a, b ; x) \cap \sigma(a, c ; x)$ is a subarc of both $\sigma(a, b ; x)$ and $\sigma(a, c ; x)$. From this fact it follows that " \sim " is an equivalence relation on $\left\{\sigma(x, b ; x) ; b \in B C_{8}^{\sigma}(x)\right\}$. We define

$$
P_{\varepsilon}^{\sigma}(x)=\#\left[\left\{\sigma(x, b ; x): b \in B C_{\varepsilon}^{\sigma}(x)\right\} / \sim\right]
$$

and define in the same fashion

$$
P_{\varepsilon}^{\sigma}(x, \psi)=\#\left[\left\{\sigma(x, b ; x, \psi) ; b \in B C_{\varepsilon}^{\sigma}(x, \psi) / \sim\right]\right.
$$

where \#[•] denotes the cardinal number of \cdot. Under the these notations we have $P_{\varepsilon}^{\sigma}(x)=P_{\varepsilon_{1}}^{\sigma}(x)\left(x \in T^{+}\right)$and $P_{\varepsilon}^{\sigma}(x, \psi)=P_{\varepsilon_{1}}^{\sigma}(x, \psi)\left(x \in V^{+}\right)$. Since $P_{\varepsilon}^{\sigma}(x)$ is independent of $\varepsilon\left(0<\varepsilon \leq \varepsilon_{1}\right)$, we omit ε and write $P^{\sigma}(x)=P_{\varepsilon}^{\sigma}(x)$.

Put $\operatorname{Sing}^{\sigma}(\varphi)=\left\{x \in T^{+}: P^{\sigma}(x) \geq 3\right\}$ and $\operatorname{Sing}^{\sigma}(\psi)=\left\{x \in V^{+} ; P^{\sigma}(x, \psi) \geq 3\right\}$. Then we have that $\operatorname{Sing}^{\sigma}(\varphi)$ is a finite set for $\sigma=s, u$ and that if $P^{\sigma}(x) \geq 3$ $\left(P^{\sigma}(x, \psi) \geq 3\right)$ for $\sigma=s$ or u, then $x \in \operatorname{Per}(\varphi)(\operatorname{Per}(\psi))$, where $\operatorname{Per}(\varphi)$ and $\operatorname{Per}(\psi)$ are the sets of all periodic points of φ and ψ respectively. Hence if $P^{\sigma}(x)$ $\left(P^{\sigma}(x, \psi)\right)$ is infinite, then $x \in \operatorname{Per}(\varphi)(\operatorname{Per}(\psi))$. Thus Lemma 6.3 ensures that $P^{\sigma}(x)\left(P^{\sigma}(x, \psi)\right)$ is finite for $x \in T^{+}\left(V^{+}\right)$(c.f. [5], Lemma 4.10).

Let $0<\varepsilon \leq \varepsilon_{1}, x \in T^{+}$and $y \in C_{\varepsilon}^{\sigma}(x) \backslash\{x\}(\sigma=s, u)$. We say that y is a branch point of $C_{\varepsilon}^{\sigma}(x)$ if there are distinct element a_{1}, a_{2} of $B C_{\varepsilon}^{\sigma}(x)$ such that $\sigma\left(x, a_{1} ; x\right) \cap$ $\sigma\left(x, a_{2} ; x\right)=\sigma(x, y ; x)$. In this case, we remark that $\sigma(x, y ; x) \subsetneq \sigma\left(x, a_{i} ; x\right)$ $(i=1,2)$. If y is a branch point of $C_{\mathrm{e}}^{\sigma}(x)$, then $y \in \operatorname{Sing}^{\sigma}(\varphi)$.

Lemma 6.5. There exists sufficiently small $\varepsilon_{2}>0$ such that for $0<\varepsilon \leq \varepsilon_{2}$, $C_{\varepsilon}^{\sigma}(x)$ has at most one branch point $(\sigma=s, u)$. If $P^{\sigma}(x) \geq 3$, then $C_{\varepsilon}^{\sigma}(x)$ has no branch points.

Using Lemma 6.5 we can show that $P^{\sigma}(x) \geq 2$ for $x \in T^{+}(\sigma=s, u) . \quad$ Moreover we have the following

Lemma 6.6. For any $\varepsilon>0$ there exists $0<\delta \leq \varepsilon$ such that

$$
S_{\delta}^{*}(x) \cap \sigma(x, a ; x) \neq \phi \quad(\sigma=s, u)
$$

for all $x \in T^{+}$and all $a \in B C_{\varepsilon}^{\sigma}(x)$.
Let $\varepsilon>0$ be sufficiently small and let $0<\delta \leq \varepsilon$ be as in Lemma 6.6. By Lemma 6.5, for every $x \in T^{+}$we can choose $0<\varepsilon(x)<\delta / 2$ such that $C_{\varepsilon}^{\sigma}(x) \cap$ $B_{\mathfrak{e}(x)}^{\mathfrak{z}}(x)$ has no branch points ($\left.\sigma=s, u\right)$ of $C_{\varepsilon}^{\sigma}(x)$ and then define

$$
S_{\mathrm{z}(x)}^{\sigma}(x)=\left\{a \in S_{\mathrm{E}(x)}^{\ddagger}(x) \cap C_{\mathrm{\varepsilon}}^{\sigma}(x): \sigma(x, a ; x) \backslash\{a\} \subset U_{\mathrm{E}(x)}^{\ddagger}(x)\right\} .
$$

Here we remark that $S_{\partial(x)}^{*}(x)$ is a circle for every $x \in T^{+}$. Obviously \# $\left[S_{\varepsilon(x)}^{\sigma}(x)\right]$ $=P^{\sigma}(x)$ for all $x \in T^{+}$and $\sigma=s, u$. The following ensures the existence of transversal singular foliations on a neighborhood of each point of T^{+}.

Lemma 6.7. For every $x \in T^{+}, S_{\varepsilon(x)}^{\sigma}(x)$ is a finite set with at least two elements $(\sigma=s, u)$. If $I_{1}^{s}, I_{2}^{s}, \cdots, I_{l}^{s}$ denote all open arcs in which $D_{\varepsilon}^{s}(x)(x)$ cut $S_{\varepsilon(x)}^{*}(x)$, then each element of $S_{\varepsilon(x)}^{u}(x)$ is contained in some I_{i}^{s} and distinct two elements of $S_{\mathrm{e}(x)}^{u}(x)$ is not contained in same I_{i}^{s} where $i=1,2, \cdots, l$.

By Lemma 6.7 we have $P^{s}(x)=P^{u}(x)$ for $x \in T^{+}$.

Lemma 6.8. There exists $\eta>0$ such that for every $x \in T^{+}$there is $0<\delta<\varepsilon(x)$ such that if

$$
y \in B_{\delta}(x) \backslash \bigcup_{a \in S_{\mathrm{e}(x)}^{\sigma}(x)}^{U} \sigma(x, a ; x)
$$

then $C_{\eta}^{\sigma}(y, \psi)$ is an arc $(\sigma=s, u)$.
Using Lemmas $6.1,6.3,6.7$ and 6.8 we can construct a singular foliated neighborhood U_{x} and transversal singular foliations on U_{x} for each $x \in T^{+}$. The details of the construction is described in K. Hiraide [5] and so we omit it.

References

[1] R. Bowen and P. Walters: Expansive one-parameter flows, J. Diff. Eq., 12 (1972), 180-193.
[2] R. Engelking: General topology, Warzawa, 1977.
[3] D.W. Hall and G.L. Spencer II: Elementary Topology, John Wily \& Sons, INC., New York, 1955.
[4] K. Hiraide: On homeomorphisms with Markov partitions, Tokyo J. Math., 8 (1985), 219-229.
[5] K. Hiraide: Expansive homeomorphisms of compact surfaces are pseudo Anosov, Osaka J. Math., 27 (1990), 117-162.
[6] H.B. Keynes and M. Sears: Real-expansive flows and topological dimension, Ergod. Th. \& Dynam. Sys. 1 (1981), 179-195.
[7] R. Mañé: Expansive homeomorphisms and topological dimension, Trans. Amer. Math. Soc., 252 (1979), 313-319.

