SINGULAR FOLIATIONS ON CROSS-SECTIONS OF EXPANSIVE FLOWS ON 3-MANIFOLDS

Masatoshi OKA

(Received September 11, 1989)

1. Introduction

The notion of cross-sections is one of useful methods to investigate the behaviors of flows. H.B. Keynes and M. Sears [6] constructed a family of cross-sections and a first return map for a non-singular flow. In this paper we shall construct singular foliations on cross-sections invariant under the first return maps of flows furnishing expansiveness on three dimensional closed manifolds.

Recently K. Hiraide [5] showed the existence of invariant singular foliations for expansive homeomorphisms of closed surfaces. We shall construct singular foliations on cross-sections by using the method mentioned in [5]. However the first return maps are not continuous and we shall prepare supplementary tools to get our conclusion.

Let X be a closed topological manifold with metric d. By (X, R) we denote a real continuous flow (abbrev. flow) without fixed points and the action of $t \in R$ on $x \in X$ is written xt. (X, R) is called an *expansive* flow if for any $\varepsilon > 0$ there exists $\delta > 0$ with the property that if $d(xt, yh(t)) < \delta$ $(t \in R)$ for a pair of points $x, y \in X$ and for an increasing homeomorphism $h: R \to R$ such that h(0) = 0 and h(R) = R, then y = xt for some $|t| < \varepsilon$. Every non-trivial expansive flow has no fixed points (see [1]). Hereafter the natural numbers, the integers and the real number will be denoted by N, Z and R respectively.

Let $SI = \{xt; x \in S \text{ and } t \in I\}$ for an interval I and $S \subset X$. A subset $S \subset X$ is called a *local cross-section* of time $\zeta > 0$ for a flow (X, R) if S is closed and $S \cap x[-\zeta, \zeta] = \{x\}$ for all $x \in S$. If S is a local cross-section of time ζ , the action maps $S \times [-\zeta, \zeta]$ homeomorphically onto $S[-\zeta, \zeta]$. By the interior S^* of S we mean $S \cap \text{int } (S[-\zeta, \zeta])$. Note that $S^*(-\varepsilon, \varepsilon)$ is open in X for any $\varepsilon > 0$. Put $\varepsilon_0 = \inf \{t > 0; xt = x \text{ for some } x \in X\}$. Under the above assumptions and notations we have the following

Fact 1.1 ([6], Lemma 2.4). There is $0 < \zeta < \varepsilon_0/2$ satisfying that for each $0 < \alpha < \zeta/3$ we can find a finite family $S = \{S_1, S_2, \dots, S_k\}$ of pairwise disjoint local cross-sections of time ζ and diameter at most α and a family of local corss-

sections $\mathcal{I} = \{T_1, T_2, \dots, T_k\}$ with $T_i \subset S_i^* \ (i=1, 2, \dots k)$ such that

$$X = T^{+}[0, \alpha] = T^{+}[-\alpha, 0] = S^{+}[0, \alpha] = S^{+}[-\alpha, 0]$$

where $T^+ = \bigcup_{i=1}^k T_i$ and $S^+ = \bigcup_{i=1}^k S_i$.

Take $\zeta > 0$ as in Fact 1.1 and fix $0 < \alpha < \zeta/3$. S and S are families of local cross-sections of time ζ as in Fact 1.1. Put $\beta = \sup \{\delta > 0; x(0, \delta) \cap S^+ = \phi \text{ for } x \in S^+\}$. Obviously $0 < \beta \le \alpha$. Take and fix ρ with $0 < \rho < \alpha$.

For $x \in T^+$ let $t \in \mathbb{R}$ be the smallest positive time such that $xt \in T^+$. Then obviously $\beta \le t \le \alpha$ and a map $\varphi(x) = xt$ is defined. It is easily checked that $\varphi: T^+ \to T^+$ is bijective.

For $S_i \in \mathcal{S}$ set $D^i_{\rho} = S_i[-\rho, \rho]$ and define a projective map $P^i_{\rho} \colon D^i_{\rho} \to S_i$ by $P^i_{\rho}(x) = xt$, where $xt \in S_i$ and $|t| \leq \rho$. Then P^i_{ρ} is continuous and surjective. We write $D^i_{\rho} = D_{\rho}$ and $P^i_{\rho} = P_{\rho}$ if there is no confusion. From continuity of (X, \mathbf{R}) we have

Fact 1.2. There exists $\delta_0 > 0$ such that if $d(x, y) \le \delta_0(x, y \in S^+)$ and $xt \in T_j$ $(|t| \le 3\alpha)$ for some $T_j \in \mathcal{I}$, then $yt \in D_\rho^j$.

We can set up a shadowing orbit of $y \in S^+$ relative to a φ -orbit of $x \in T^+$ as follows. If $d(x, y) \leq \delta_0$, then $y_x^1 = P_{\rho}(yt)$ for the time t with $\varphi(x) = xt$ by Fact 1.2. Whenever $\varphi^i(x)$ and y_x^i are defined such that $d(\varphi^i(x), y_x^i) < \delta_0$, we write $y_x^{i+1} = P_{\rho}(y_x^i, t)$ where $\varphi(\varphi^i(x)) = \varphi^i(x) t$. Thus we obtain a time delayed y shadowing orbit along a piece of the orbit of x. Also the negative powers of φ is constructed as above and so we obtain $\{y_x^i; i \in \mathbf{Z}\}$. For simplicity write

$$y = \varphi_x^0(y), \varphi_x(y) = \varphi_x^1(y)$$
 and $y_x^i = \varphi_x^i(y)$ $(i \in \mathbb{Z})$

and to avoid complication $\varphi_*^l(\varphi_x^k(y))$ instead of $\varphi_{\varphi^k(x)}^l(\varphi_x^k(y))$.

For $x \in T^+$ the η -stable (η -unstable) set

$$W_{\eta}^{s}(x) = \{ y \in S^{+}; d(\varphi^{i}(x), \varphi_{x}^{i}(y)) \leq \eta \quad \text{for all} \quad i \geq 0 \}$$

$$(W_{\eta}^{u}(x) = \{ y \in S^{+}; d(\varphi^{i}(x), \varphi_{x}^{i}(y)) \leq \eta \quad \text{for all} \quad i \leq 0 \})$$

is defined. Remark that $W_{\eta}^{\sigma}(x) \subset S^{+}$ for $x \in T^{+}$ $(\sigma = s, u)$.

The complex numbers will be denoted by C. For $p \in \mathbb{N}$, let $\pi_p : C \to C$ be the map which sends z to z^p . We define the domains $\mathcal{D}_p(p=1, 2, \cdots)$ of C by

$$\mathcal{D}_2 = \{z \in \mathbf{C} \colon |Re\ z| < 1, |Im\ z| < 1\},$$

 $\mathcal{Q}_1 = \pi_2(\mathcal{Q}_2)$ and $\mathcal{Q}_p = \pi_p^{-1}(\mathcal{Q}_1)$. It is easily checked that $\pi_p : \mathcal{Q}_p \to \mathcal{Q}_1$ is a *p*-fold branched cover for every $p \in \mathbb{N}$. Denote by \mathcal{H}_2 and $\mathcal{C}V_2$ the horizontal and vertical foliations on \mathcal{Q}_2 respectively. We define the decomposition \mathcal{H}_1 (resp. $\mathcal{C}V_1$) of \mathcal{Q}_1 as the projection of \mathcal{H}_2 (resp. $\mathcal{C}V_1$) by $\pi_2 : \mathcal{Q}_2 \to \mathcal{Q}_1$, and define the decom-

position $\mathcal{H}_{p}(\text{resp. }\mathcal{CV}_{p})$ of \mathcal{D}_{p} as the lifting of $\mathcal{H}_{1}(\text{resp. }\mathcal{CV}_{1})$ by $\pi_{p} \colon \mathcal{D}_{p} \to \mathcal{D}_{1}$.

Let $U_x(x \in T^+)$ be a neighborhood of x in S^+ . A decomposition \mathcal{F}_{U_x} of U_x is called a C^0 local singular foliation if every $L \in \mathcal{F}_{U_x}$ is arcwise connected and if there are $p(x) \in N$ and a C^0 chart $h_x: U_x \to C$ around x such that

- (1) $h_{\mathbf{x}}(x) = 0$,
- (2) $h_x(U_x) = \mathcal{D}_{b(x)}$,
- (3) h_x sends each $L \in \mathcal{Q}_{U_x}$ onto some element of $\mathcal{H}_p(x)$.

The number p(x) is called the number of separatrices at x. We asy that x is a regular point if p(x)=2, and x is a singular point with p(x)-singularities (or p(x)-prong singularity) if $p(x) \neq 2$. A neighborhood U_x of x equipped with a C^0 local singular foliation is called a C^0 singular foliated neighborhood.

Let \mathcal{F}_{U_x} and \mathcal{F}'_{U_x} be local singular foliations on U_x . We say that \mathcal{F}'_{U_x} is transverse to \mathcal{F}_{U_x} if \mathcal{F}_{U_x} and \mathcal{F}'_{U_x} have the same number p(x) at x and if there is a C^0 chart h_x : $U_x \to C$ such that

- $(1) \quad h_{\mathbf{x}}(\mathbf{x}) = 0,$
- $(2) \quad h_{\mathbf{x}}(U_{\mathbf{x}}) = \mathcal{Q}_{p(\mathbf{x})},$
- (3) h_z sends each $L \in \mathcal{F}_{U_z}$ onto some element of $\mathcal{H}_{p(z)}$,
- (4) h_x sends each $L' \in \mathcal{F}'_{U_x}$ onto element of $\mathcal{C}_{p(x)}$.

If there are C^0 transversal singular foliations on U_x , then U_x is called a C^0 transversal singular foliated neighborhood. Our aim is to prove the following

Theorem. Let (X, \mathbf{R}) be an expansive flow on a closed 3-manifold X. Then there is a sufficiently small η such that for every $x \in T^+$ there is a C^0 transversal singular foliated neighborhood U_x such that if $L \in \mathcal{F}_{U_x}(\mathcal{F}'_{U_x})$ contains $y \in T^+$, then $L = W^{\mathfrak{s}}_{\eta}(y) \cap U_x(W^{\mathfrak{s}}_{\eta}(y) \cap U_x)$.

For the proof we need that $W^{\sigma}_{\eta}(x)$ ($\sigma = s, u$) is arcwise connected. However it is difficult to directly verify the connectendness of $W^{\sigma}_{\eta}(x)$. In §4 we shall prove the following proposition, which plays an important role through the paper. We denote by $C^{\sigma}_{\eta}(x)$ the connected component of x in $W^{\sigma}_{\eta}(x)$ ($\sigma = s, u$). Let $S^{\sharp}_{\delta}(x)$ be a circle in S^+ with the radius δ and the center x.

Proposition A. For any $\varepsilon > 0$ there exists $\delta > 0$ such that for all $x \in T^+$

$$C_s^{\sigma}(x) \cap S_\delta^{\sharp}(x) \neq \phi \quad (\sigma = s, u)$$
.

Hereafter int $W_{\varepsilon}^{\sigma}(x)$ denotes the interior of $W_{\varepsilon}^{\sigma}(x)$ in S^+ . Proposition A is obtained by the following

Proposition B. There exists $c_1 > 0$ such that if $0 < \varepsilon \le c_1/4$, then

int
$$W_s^{\sigma}(x) = \phi$$
 $(x \in T^+, \sigma = s, u)$.

In §2 we shall prepare some notations and establish several properties for

the first return map φ . In §3 and §4 Proposition B and A will be proved. To find constants $c_1>0$ and $\delta>0$ in Propositions A and B we need to treat the first return map φ like an expansive homeomorphism. However φ is not continuous as mentioned above. So we shall introduce a new first return map ψ defined on an extended domain V^+ containing T^+ . It will be shown that $C^{\sigma}_{\epsilon}(x)$ ($\sigma=s$, u, $x\in T^+$) is locally connected for sufficiently small $\varepsilon>0$. In §6 the proof of our Theorem will be given.

2. Preliminaries

As before let X be a colsed topological manifold with metric d and (X, R) be an expansive flow on it. This section contains some lemmas that need subsequently. Under the notations in §1, we have the following.

Lemma 2.1 ([1], Theorem 3). (X, \mathbf{R}) is expansive if and only if for any $\varepsilon > 0$ there exists $\alpha > 0$ with the following property: if $\mathbf{t} = (t_i)_{i=-\infty}^{\infty}$ and $\mathbf{u} = (u_i)_{i=-\infty}^{\infty}$ are doubly infinite sequences of real numbers with $t_0 = u_0 = 0$, $0 < t_{i+1} - t_i \le \alpha$, $|u_{i+1} - u_i| \le \alpha$, $t_i \to \infty$ and $t_{-i} \to -\infty$ as $i \to \infty$, and if $x, y \in X$ satisfy $d(xt_i, yu_i) \le \alpha$ for any $i \in \mathbf{Z}$, then y = xt for some $|t| < \varepsilon$.

Let $\zeta > 0$ be as in Fact 1.1 and $\alpha_0 > 0$ be as in Lemma 2.1 for $\zeta/3$. For $0 < \alpha < \min{\{\alpha_0/2, \zeta/3\}}$ we construct as in Fact 1.1 families $\mathcal{S} = \{S_1, \dots, S_k\}$ and $\mathcal{I} = \{T_1, \dots, T_k\}$ of local cross-sections of time ζ . To simplify we set the following notations.

Convention For $Q \subset X$, $x \in X$ and $\delta > 0$

$$B_{\delta}(Q) = \{x \in X; d(x, Q) \leq \delta\},$$

$$U_{\delta}(Q) = \{x \in X; d(x, Q) < \delta\},$$

$$S_{\delta}(x) = \{y \in X; d(x, y) = \delta\},$$

and for $Q \subset S^+$

$$B_{\delta}^{\sharp}(Q) = B_{\delta}(Q) \cap S^{+},$$

 $U_{\delta}^{\sharp}(Q) = U_{\delta}(Q) \cap S^{+}.$

Here $B_{\delta}(x)$ and $U_{\delta}(x)$ mean $B_{\delta}(\{x\})$ and $U_{\delta}(\{x\})$ respectively. Let $\rho > 0$ be as in §1 and put $D_{\xi}^{i} = S_{i}[-\xi, \xi]$ ($0 < \xi \leq \rho$) and $P_{\xi}^{i} : D_{\xi}^{i} \to S_{i}$ denote the projection along the orbits. Sometimes we write $D_{\xi}^{i} = D_{\xi}$ and $P_{\xi}^{i} = P_{\xi}$. Put $\delta_{1} = \min\{d(S_{i}, S_{j}); S_{i}, S_{j} \in \mathcal{S}, i \neq j\}$ and take $0 < \delta_{2} < \delta_{1}$ such that $B_{\delta_{2}}^{*}(T_{i}) \subset S_{i}^{*}$ for $i = 1, \dots, k$, where S_{i}^{*} is the interior of S_{i} . Then we have

Lemma 2.2 ([6], Theorem 2.7). There exists $0 < c < \alpha$ such that $W_c^s(x) \cap W_c^u(x) = \{x\}$ for any $x \in T^+$.

To prove that Proposition B is true though φ is not continuous, we prepare

the following Lemmas 2.3~2.9.

Lemma 2.3 Let $\{x_n\} \subset T^+$ converge to $x \in T^+$ as $n \to \infty$ and fix $i \in \mathbb{Z}$. If a_i is an accumulation point of $\{\varphi^i(x_n)\}$, then there exists $k_i \in \mathbb{Z}$ such that $a_i = \varphi^{k_i}(x)$, where $k_i \ge i$ if $i \ge 0$ and $k_i \le i$ if i < 0.

This follows from the fact that each $T_i \in \mathcal{I}$ is closed.

Lemma 2.4 ([6], Lemma 2.9) Suppose that $x_n \to x$ ($x_n \in T^+$), $y_n \to y$ ($y_n \in S^+$) as $n \to \infty$ and each $\varphi_{x_n}^i(y_n)$ is defined for $0 \le i \le k (k \le i \le 0)$. If $\varphi^k(x_n) \to \varphi^{l_k}(x)$ as $n \to \infty$ for some integer l_k , then $\varphi_{x_n}^k(y_n) \to \varphi_x^{l_k}(y)$ as $n \to \infty$.

Let c be as in Lemma 2.2. We find $0 < \delta_3 < \delta_2$, $0 < \rho_1 < \rho$ and $0 < c_1 < \min \{c, \delta_3\}$ such that

- (A₁) if $d(x, y) < \delta_3(x, y \in X)$, then $d(xt, ys) \le c$ for $|t| \le 3\alpha$ and $|t-s| \le 2\rho_1$,
- (B₁) it $d(x, y) \le c_1(x, y \in S^+)$ and $xt \in T_j(|t| \le 3\alpha)$ for some $T_j \in \mathcal{I}$, then $yt \in D_{\rho_1}^j$.

The following is a lemma given for expansive homeomorphisms of a compact metric space by Mañé [7].

Lemma 2.5. For any $0 < \varepsilon \le c_1/2$, there exists $0 < \delta \le \varepsilon$ such that if $d(x, y) \le \delta$ $(x \in T^+, y \in S^+)$ and

$$\varepsilon \leq \max \{d(\varphi^i(x), \varphi^i_x(y)); 0 \leq i \leq n\} \leq c_1/2$$

then $d(\varphi^n(x), \varphi_x^n(y)) \ge \delta$.

Proof. If this is false, there exists $0 < \varepsilon_0 \le c_1/2$ such that for $n \in \mathbb{N}$ with $1/n \le \varepsilon_0$ there are $m_n \in \mathbb{N}$, $x_n \in T^+$ and $y_n \in S^+$ such that

$$(1) d(x_n, y_n) \leq 1/n,$$

(2)
$$\varepsilon_0 \leq \max \{d(\varphi^i(x_n), \varphi^i_{x_n}(y_n)); 0 \leq i \leq m_n\} \leq c_1/2,$$

(3)
$$d(\varphi^{m_n}(x_n), \varphi^{m_n}_{x_n}(y_n)) < 1/n$$
.

By (2) we have

(4)
$$\varepsilon_0 \leq d(\varphi^{l_n}(x_n), \varphi^{l_n}_{x_n}(y_n)) \leq c_1/2$$

for some $0 \le l_n < m_n$. Obviously $l_n \to \infty$ and $m_n - l_n \to \infty$ $(n \to \infty)$. Since T^+ and S^+ are compact, $\varphi^{l_n}(x_n) \to x \in T^+$ and $\varphi^{l_n}_{x_n}(y_n) \to y \in S^+$ as $n \to \infty$ (take subsequences if necessary). By (4),

(5)
$$\varepsilon_0 \leq d(x, y) \leq c_1/2.$$

Since $\{\varphi^{l_n}(x_n)\}$ converges to x, there are a subsequence $\{\varphi(\varphi^{l_n}(x_{n_i}))\}$ and $k_1>0$

such that $\varphi(\varphi^{l_{n_i}}(x_{n_i})) \rightarrow \varphi^{k_1}(x)$ as $i \rightarrow \infty$ (by Lemma 2.3). Lemma 2.4 ensures that $\varphi_*(\varphi^{l_{n_i}}_{x_{n_i}}(y_{n_i})) \rightarrow \varphi^{k_1}_x(y)$ as $i \rightarrow \infty$. While $\varphi^{k_1}(x)$ can be written as $\varphi^{k_1}(x) = xt_1$ for some t_1 with $\beta \leq t_1 \leq \alpha$. Using (5), (A₁) and (B₁), we have

$$d(\varphi^{j}(x), \varphi_{x}^{j}(y)) \le c$$
 for $0 \le j \le k_1$.

Obviously $\varphi(\varphi^{l_{n_i}}(x_{n_i})) = \varphi^{l_{n_i}+1}(x_{n_i})$ and $\varphi_*(\varphi^{l_{n_i}}_{x_{n_i}}(y_{n_i})) = \varphi^{l_{n_i}+1}_{x_{n_i}}(y_{n_i})$. Thus (2) and the inequality $0 \le l_n + 1 \le m_n$ imply

(6)
$$d(\varphi^{k_1}(x), \varphi_x^{k_1}(y)) \leq c_1/2$$
.

Choose $k_2 > 0$ and a subsequence of $\{\varphi^2(\varphi^{l_{n_i}}(x_{n_i}))\}$ which converges to $\varphi^{k_2}(\varphi^{k_1}(x))$. To avoid complication let

(7)
$$\varphi(\varphi^{l_{n_i}+1}(x_{n_i})) \to \varphi^{k_2}(\varphi^{k_1}(x)) \quad (i \to \infty),$$

then Lemma 2.4 implies that

(8)
$$\varphi_*(\varphi_{xn_i}^{l_{n_i}+1}(y_{n_i})) \to \varphi_*^{k_2}(\varphi_x^{k_1}(y)) \quad (i \to \infty).$$

From (6), (7), (8) and the fact that $\varphi^{k_2}(\varphi^{k_1}(x)) = \varphi^{k_1}(x) t_2$ ($\beta \le t_2 \le \alpha$) we have

$$d(\varphi^{j}(x), \varphi_{x}^{j}(y)) \leq c$$
 for $k_1 \leq j \leq k_1 + k_2$.

In this fashion we have

$$d(\varphi^{j}(x), \varphi_{x}^{j}(y)) \leq c$$
 for $j \geq 0$.

Note that $\{\varphi^{l_n}(x_n)\}$ converges to x as $n\to\infty$. To show the above inequality for j<0, we choose $k_{-1}<0$ and a subsequence $\{\varphi^{-1}(\varphi^{l_n}(x_{n_i}))\}$ such that $\varphi^{-1}(\varphi^{l_n}(x_{n_i}))\to\varphi^{k_{-1}}(x)$ as $i\to\infty$. Since $\varphi^{k_{-1}}(x)=xt_{-1}$ for some t_{-1} with $-\alpha\leq t_{-1}\leq -\beta$, by (5), (A₁) and (B₁) we have

$$d(\varphi^{j}(x), \varphi_{x}^{j}(y)) \leq c$$
 for $k_{-1} \leq j \leq 0$.

Since $l_n \uparrow \infty$, by (2)

(9)
$$d(\varphi^{k-1}(x), \varphi_x^{k-1}(y)) \leq c_1/2$$
.

Take $k_{-2} < 0$ n and a subsequence of $\{\varphi^{-1}(\varphi^{l_{n_i}-1}(x_{n_i}))\}$ that converges to $\varphi^{k_{-2}}(\varphi^{k_{-1}}(x))$ and write $\varphi^{-1}(\varphi^{l_{n-1}}(x_n)) \rightarrow \varphi^{k_{-2}}(\varphi^{k_{-1}}(x))$ for simplicity. Then we have

$$\varphi_*^{-1}(\varphi_{x_n}^{l_n-1}(y_n)) \to \varphi_*^{l_{n-2}}(\varphi_{x_n}^{l_{n-1}}(y)) = \varphi_{x_n}^{l_{n-1}+l_{n-2}}(y) \quad (i \to \infty)$$

and can write $\varphi^{k-2}(\varphi^{k-1}(x)) = (\varphi^{k-1}(x)) t_{-2}$ for some t_{-2} with $-\alpha \le t_{-2} \le -\beta$. Thus from (9), an (A₁) and (B₁)

$$d(\varphi^{j}(x), \varphi^{j}_{x}(y)) \le c$$
 for $k_{-1} + k_{-2} \le j \le k_{-1}$,

and on induction

$$d(\varphi^{j}(x), \varphi_{x}^{j}(y)) \leq c$$
 for $j < 0$.

Therefore y=x by Lemma 2.2 and thus contradicting (5).

Lemma 2.6. Let A be a connected subset of S^+ . For $0 < \varepsilon \le c_1/4$, there exists $0 < \delta \le \varepsilon$ such that if $A \subset B^{\bullet}_{\delta}(x)$ $(x \in A \cap T^+)$, $\varphi^i_x(A) \cap S^{\bullet}_{\varepsilon}(\varphi^i(x)) \neq \varphi$ for some i with $0 \le i \le n$ and $\bigcap_{i=0}^{n} \varphi^{-1}_{\varphi^i(x)}[B^{\bullet}_{2\varepsilon}(\varphi^i(x))] \supset A$, then $\varphi^n_x(A) \cap S^{\bullet}_{\delta}(\varphi^n(x)) \neq \varphi$.

Proof. Take δ with $0 < \delta \le \varepsilon$ as in Lemma 2.5. Then conclusion is easily obtained.

Lemma 2.7. Let c_1 be as above. Then for $0 < r \le c_1$ there exists $N \in \mathbb{N}$ such that

$$\varphi_x^n(W_{c_1}^s(x)) \subset W_r^s(\varphi^n(x))$$

and

$$\varphi_x^{-n}(W_{c_1}^u(x)) \subset W_r^u(\varphi^{-n}(x))$$

for $x \in T^+$ and $n \ge N$.

Proof. We prove for the case of $W^s_{c_1}(x)$ for $x \in T^+$. If this is false, then there exists $0 < r_0 \le c_1$ such that for any $n \in \mathbb{N}$ there are $x_n \in T^+$ and $m_n \ge n$ such that

$$\varphi_{x_n}^{m_n}(W_{c_1}^s(x_n)) \subset W_{r_0}^s(\varphi^{m_n}(x_n)).$$

Then we can find $y_n \in W_{c_1}^s(x_n)$ such that for some $k_n \ge 0$

(1)
$$d(\varphi^{k_n+m}(x_n), \varphi_{x_n}^{k_n+m_n}(y_n)) > r_0.$$

If $\varphi^{k_n+m_n}(x_n) \to x \in T^+$ and $\varphi^{k_n+m_n}(y_n) \to y \in S^+$ as $n \to \infty$, by (1) we have

$$(2) d(x,y) \ge r_0.$$

Since $y_n \in W_{c_1}^s(x_n)$,

(3)
$$d(\varphi^{i+k_n+m_n}(x_n), \varphi_{x_n}^{i+k_n+m_n}(y_n)) \leq c_1$$

for $i \in \mathbb{Z}$ with $i+k_n+m_n \ge 0$. Putting i=0 in (3), we have

$$d(x,y) \leq c_1.$$

Since $\{\varphi(\varphi^{k_n+m_n}(x_n))\}$ converges to some $\bar{x} \in T^+$ (take a subsequence if necessary), we can write $\varphi^{l_1}(x) = \bar{x}$ for some $l_1 > 0$ by Lemma 2.3 and

(5)
$$\varphi^{l_1}(x) = xt, \quad \beta \leq t \leq \alpha.$$

Then Lemma 2.4 implies that $\varphi_*(\varphi_{x_n}^{k_n+m_n}(y_n)) \rightarrow \varphi_x^{l_1}(y)$ as $n \rightarrow \infty$. Since $\varphi_*(\varphi_{x_n}^{k_n+m_n}(y_n)) \rightarrow \varphi_x^{l_1}(y)$

870 М. Ока

 $(y_n) = \varphi_{x_n}^{1+k_n+m_n}(y_n)$, we have by (3) that

$$d(\varphi^{1+k_n+m_n}(x_n), \varphi_{x_n}^{1+k_n+m_n}(y_n)) \leq c_1,$$

from which

(6)
$$d(\varphi^{l_1}(x), \varphi^{l_1}_x(y)) \leq c_1.$$

By (4), (5), (A_1) and (B_1)

(7)
$$d(\varphi^{j}(x), \varphi_{x}^{j}(y)) \leq c \quad \text{for } 0 \leq j \leq l_{1}.$$

As above there are $l_2>0$ and a subsequence of $\{\varphi^2(\varphi^{k_n+m_n}(x_n))\}$ which converges to $\varphi^{l_2}(x)$ as $n\to\infty$. To avoid complication let $\varphi^2(\varphi^{k_n+m_n}(x_n))\to\varphi^{l_2}(x)$ as $n\to\infty$. Then we can write

$$\varphi^2(\varphi^{k_n+m_n}(x_n)) = \varphi^{1+k_n+m_n}(x_n) t_2^n \quad (\beta \leq t_2^n \leq \alpha).$$

Since the sequence $\{t_2^n\}$ converges to some $t \in [\beta, \alpha]$ (take a subsequence if necessary), we have

$$\varphi^{1+k_n+m_n}(x_n) t_2^n \to \varphi^{l_1}(x) t \quad (\beta \leq t \leq \alpha)$$

which implies

(8)
$$\varphi^{l_2}(x) = \varphi^{l_1}(x) t \quad (\beta \le t \le \alpha).$$

Lemma 2.4 ensures that $\varphi_*^2(\varphi_{x_n}^{k_n+m_n}(y_n)) \to \varphi_*^{l_2}(y)$ as $n \to \infty$, and by (6), (8), (A₁) and (B₁) we have $d(\varphi^j(x) \varphi_x^j(y)) \le c$ for $l_1 \le j \le l_2$. By (3)

(9)
$$d(\varphi^{2}(\varphi^{k_{n}+m_{n}}(x_{n})), \varphi_{*}^{2}(\varphi_{x_{n}}^{k_{n}+m_{n}}(y_{n}))) \leq c_{1},$$

and thus inductively $d(\varphi^{j}(x), \varphi_{x}^{j}(y)) \le c$ for $j \ge 0$.

Since $m_n \ge n$ for all n > 0, for j < 0 there exists $m_n > 0$ such that $j + k_n + m_n \ge 0$ and so $d(\varphi^j(x) \varphi^j_x(y)) \le c$ for $j \le 0$. Therefore $y \in W^s_c(x) \cap W^u_c(x)$ (i.e. x = y), contradicting (2).

Lemma 2.8. For any $\varepsilon > 0$ there exists r > 0 such that $\varphi_x(B_r^{\dagger}(x)) \subset B_{\varepsilon}^{\dagger}(\varphi(x))$ for any $x \in T^+$.

Proof. If this is false, then there exists $\mathcal{E}_0 > 0$ such that for any $n \in \mathbb{N}$ there is $x_n \in T^+$ such that $y_n \in B^{\mathfrak{k}}_{1/n}(x_n)$ and $d(\varphi(x_n), \varphi_{x_n}(y_n)) > \mathcal{E}_0$. Suppose that $x_n \to x_0 \in T^+$ and for some $l \ge 1$ $\varphi(x_n) \to \varphi^l(x_0)$ as $n \to \infty$. Then by Lemma 2.4 we have that $d(\varphi^{l_1}(x_0), \varphi^{l_1}_{x_0}(x_0)) \ge \mathcal{E}_0$ since $y_n \to x_0$ as $n \to \infty$. But $\varphi^{l_1}_{x_0}(x_0) = \varphi^{l_1}(x_0)$, thus contradicting.

The following is easily obtained from Lemmas 2.7 and 2.8.

Lemma 2.9 ([6], Lemma 3.3). For any ε with $0 < \varepsilon < c_1$ there exists e > 0

such that

$$W^{\sigma}_{c_1}(x) \cap B^{\sharp}_{\delta}(x) = W^{\sigma}_{\epsilon}(x) \cap B^{\sharp}_{\delta}(x) \quad (\sigma = s, u)$$

for any $x \in T^+$ and $0 < \delta \le e$.

3. Proof of Proposition B

Hereafter X is a 3-dimensional closed topological manifold and d is a metric on X. Each local cross-section of families $S = \{S_1, \dots, S_k\}$ and $\mathcal{I} = \{T_1, \dots, T_k\}$ defined in Fact 1.1 can be taken as a 2-dimensional disk. Hence there is a compatible metric (called a connected metric) on each local cross-section such that every \mathcal{E} -closed ball ($\mathcal{E} > 0$) is connected.

For the proof of Proposition B we define a new family $CV = \{V_1, \dots, V_k\}$ of local cross-sections satisfying

- (1) each V_i is a 2-dimensional disk,
- $(2) \quad T_i \subset V_i^* \subset V_i \subset S_i^* \quad (1 \le i \le k),$
- (3) $X = V^{+}[0, \alpha] = V^{+}[-\alpha, 0]$, where $V^{+} = \bigcup_{i=1}^{k} V_{i}$,

and as before define the first return map ψ ; $V^+ \rightarrow V^+$ as $\psi(x) = xt$ ($\psi^{-1}(x) = xt$), where t is the smallest positive (largest negative) time with $xt \in V^+$.

Let $\delta_1 > 0$ be as in §2. Take δ_2 with $0 < \delta_2 < \delta_1$ such that $B_{\delta_2}(V_i) \subset S_i^*$ $(i=1, \dots, k)$ and assume that $\delta_0 > 0$ satisfies Fact 1.2 (replacing T_i by V_i).

For $x \in V^+$ define the η^- stable set $W^s_{\eta}(x, \psi)$ and η^- unstable set of $W^u_{\eta}(x, \psi)$ as follows:

$$W_{\eta}^{s}(x, \psi) = \{ y \in S^{+}; d(\psi^{i}(x), \psi_{x}^{i}(y)) < \eta, i \ge 0 \},$$

 $W_{\eta}^{u}(x, \psi) = \{ y \in S^{+}; d(\psi^{i}(x), \psi_{x}^{i}(y)) < \eta, i \le 0 \}.$

Obviously $W^{\sigma}_{\eta}(x, \psi) \subset S^{+}(\sigma = s, u)$ and there exists $0 < c < \alpha$ such that $W^{s}_{\sigma}(x, \psi) \cap W^{u}_{\sigma}(x, \psi) = \{x\}$ for any $x \in V^{+}$ (see Lemma 2.2). Note that Lemmas 2.3, 2.4, 2.5 and 2.6 hold for ψ .

Let $\mathcal{C}(S^+)$ denote the set of all non-impty closed subsets of S^+ , then Hausdoff metric H is defined by

$$H(A,B) = \inf \{ \varepsilon > 0; N_{\varepsilon}(A) \supset B, N_{\varepsilon}(B) \supset A \} \quad (A,B \in \mathcal{C}(S^+))$$

where $N_{\epsilon}(A)$ denotes the \mathcal{E} -neighborhood of A in S^+ . Then $\mathcal{C}(S^+)$ is a compact space under H.

Lemma 3.1 (c.f. [2]). Let Y be a compact connected metric space. If A is a non-empty closed subset of Y with $A \neq Y$, then every connected component in A intersects to the boundary of A in Y.

We denote by $D_n(x)$ $(x \in V^+)$ the connected component of x in the domain

of ψ_x^{-n} . Put $D_{n,\delta}(x) = D_n(x) \cap B_\delta^*(x)$ and let $\Delta_{n,\delta}(x)$ be the connected component of x in $B_\delta^*(x) \cap \psi_{\psi_n(x)}^{-n}[D_{n,\delta/2}(\psi_n^n(x))]$.

Lemma 3.2. Let $0 < \varepsilon \le c_1/4$. There exists $0 < \delta \le \varepsilon$ such that if $\{x_i\}_{i \in \mathbb{Z}}$ is a sequence in V^+ and

(a) if there is non-upper bound subset $\{j\}$ of Z such that

$$\lim_{j \to \infty} x_j = x_\infty$$
 and $\lim_{j \to \infty} \Delta_{j,\delta}(x_j) = \Delta_\infty$,

then $\Delta_{\infty} \subset W_{\varepsilon}^{s}(x_{\infty}, \psi)$,

(b) if there is non-lower bound subset $\{j\}$ of Z such that

$$\lim_{j \to -\infty} x_j = x_{-\infty} \quad and \quad \lim_{j \to -\infty} \Delta_{j,\delta}(x_j) = \Delta_{-\infty}$$

then $\Delta_{-\infty} \subset W^{u}_{\mathfrak{g}}(x_{-\infty}, \psi)$.

Proof. For ε with $0 < \varepsilon \le c_1/4$ we can find $0 < \varepsilon' < \varepsilon$ and $\delta' > 0$ such that if $d(x, y) \ge \varepsilon(x, y \in S^+)$ and $|s-t| < \delta'(|s|, |t| < 2\alpha)$, then $d(xt, ys) \ge \varepsilon'$. Take δ with $0 < \delta \le \varepsilon'$ as in Lemma 2.6. Since $\Delta_{j,\delta}(x_j) \subset B^{\sharp}_{\delta}(x_j)$, Obviously $\Delta_{j,\delta}(x_j) \to \Delta_{\infty} \subset B^{\sharp}_{\delta}(x_{\infty}) \subset B^{\sharp}_{\varepsilon'}(x_{\infty})$ ($j \to \infty$). If $\Delta_{\infty} \subset W^{\sharp}_{\varepsilon}(x_{\infty}, \psi)$, then we can find $k_0 > 0$ such that $\psi^{\sharp}_{s_0}(\Delta_{\infty}) \subset B^{\sharp}_{\varepsilon}(\psi^{\sharp}_{\delta}(x_{\infty}))$.

Since $x_j \to x_\infty$ and $\Delta_{j,\delta}(x_j) \to \Delta_\infty$ as $j \to \infty$, there are $0 < \eta_0 \le k_0$ and $l > \eta_0$ such that $\psi_{x_l^{\eta_0}}^{\eta_0}(\Delta_{l,\delta}(x_l)) \oplus B_{\epsilon'}^{\sharp}(\psi^{\eta_0}(x_l))$. Hence $\psi_{x_l^{\eta_0}}^{\eta_0}(\Delta_{l,\delta}(x_l)) \oplus B_{\lambda}^{\sharp}(\psi^{\eta_0}(x_l))$ for some $\mathcal{E}' < \lambda < 2\mathcal{E}'$. Thus we can find $0 < \eta_1 \le \eta_0$ such that

$$\begin{array}{ll} \psi_{z_{l}}^{i}(\Delta_{l,\delta}(x_{l}))\!\subset\!B_{\lambda}^{\flat}(\psi^{i}(x_{l})) & (0\!\leq\!i\!\leq\!\eta_{1}\!-\!1) \text{ ,} \\ \psi_{z_{l}}^{\cdot}(\Delta_{l,\delta}(x_{l}))\!\subset\!B_{s'}^{\flat}(\psi^{\eta_{1}}\!(x_{l})) \text{ .} \end{array}$$

Let A_{η_1} denote the connected component of x_l in

$$\psi_{\psi^{\eta_1}\!(x_l)}^{-\eta_1}\left[\psi_{x_l}^{\eta_1}(\Delta_{l,\delta}(x_l))\cap B_{\varepsilon'}^{\$}(\psi^{\eta_1}\!(x_l))\right].$$

Then we have

(1)
$$\psi_{x_l}^i(A_{\eta_1}) \subset B_{\lambda}^{\mathfrak{g}}(\psi^i(x_l)) \quad \text{for } 0 \leq i \leq \eta_1.$$

Since $\psi_{x_l}^{\eta_1}(\Delta_{l,\delta}(x_l))$ is connected and $\psi_{x_l}^{\eta_1}(\Delta_{l,\delta}(x_l)) \subset B_{\varepsilon}^{\delta}(\psi^{\eta_1}(x_l))$, from Lemma 3.1 it follows that

(2)
$$\psi_{x_l}^{\eta_1}(A_{\eta_1}) \cap S_{\varepsilon'}^{\bullet}(\psi^{\eta_1}(x_l)) \neq \phi.$$

For $\eta_1 < \eta \le l$ define A_{η} as the connected component of x_l in $\psi_{\psi^{\eta}(x_l)}^{-\eta}[\psi_{x_l}^{\eta}(A_{\eta-1}) \cap B_{\varepsilon'}^{\eta}(\psi^{\eta}(x_l))]$. Then we have

$$\Delta_{I,\delta}(x_I) \supset A_{\eta_1} \supset A_{\eta_1+1} \supset \cdots \supset A_I$$

and by (1)

$$\psi_{x_l}^i(A_\eta) \subset B_\lambda^{\dagger}(\psi^i(x_l)) \subset B_{2\varrho'}^{\dagger}(\psi^i(x_l)) \quad (0 \le i \le \eta) .$$

Now we claim that $\psi_{x_l}^{\eta}(A_{\eta}) \cap S_{\delta}^{\sharp}(\psi^{\eta}(x_l)) \neq \phi$ for $\eta_1 < \eta \le l$. Indeed, if $A_{\eta} \neq A_{\eta-1}$, then $\psi_{x_l}^{\eta}(A_{\eta-1}) \subset B_{\epsilon'}^{\sharp}(\psi^{\eta}(x_l))$ and hence $\psi_{x_l}^{\eta}(A_{\eta}) \cap S_{\epsilon'}^{\sharp}(\psi^{\eta}(x_l)) \neq \phi$ (by Lemma 3.1). Since $0 < \delta \le \varepsilon'$, obviously $\psi_{x_l}^{\eta}(A_{\eta}) \cap S_{\delta}^{\sharp}(\psi^{\eta}(x_l)) \neq \phi$. For the case $A_{\eta} = A_{\eta-1}$ put $i_0 = \min \{i \ge \eta_1; A_i = A_{\eta}\}$. Clearly $\eta_1 \le i_0 < \eta$. If $i_0 = \eta_1$, then $\psi_{x_l}^{i_0}(A_{\eta}) \cap S_{\epsilon'}^{\sharp}(\psi^{i_0}(x_l)) \neq \phi$ by (2). If $i_0 > \eta_1$, then $A_{i_0} \neq A_{i_0-1}$, and hence $\psi_{x_l}^{i_0}(A_{\eta}) \cap S_{\epsilon'}^{\sharp}(\psi^{i_0}(x_l)) \neq \phi$. Since $A_{\eta} \subset \Delta_{l,\delta}(x_l) \subset B_{\delta}^{\sharp}(x_l)$, combining these facts with (3), we obtain $\psi_{x_l}^{\eta}(A_{\eta}) \cap S_{\delta}^{\sharp}(\psi^{\eta}(x_l)) \neq \phi$ by Lemma 2.6. Therefore the claim holds.

Since $l > \eta_1$, it follows that $\psi_{x_l}^l(A_l) \cap S_\delta^{\bullet}(\psi^l(x_l)) \neq \phi_l$. This contradicts the fact that $A_l \subset \Delta_{l,\delta}(x_l)$. Therefore (a) holds. In the same way (b) is proved.

Proof of Proposition B. We prove the case of $\sigma=u$. Fix $0<\varepsilon \le c_1/4$ and let $x \in T^+$. Let $0<\delta \le \varepsilon$ be as in Lemmas 2.5 and 3.2. Assume that int $W^u_{\varepsilon}(x)$ is not empty. If $y \in \text{int } W^u_{\varepsilon}(x)$, then there exists $0< r \le \delta$ such that $B^{\mathfrak{k}}_{2r}(y) \subset \text{int } W^u_{\varepsilon}(x)$.

If $B_{\delta/2}(\psi^n(z))$ is not contained in the domain of $\psi_{\psi^n(z)}^{-n}$ for $z \in B_r^{\mathfrak{k}}(y)$ and $n \in \mathbb{N}$, by Lemma 2.5 and connectedness of $B_{\delta/2}^{\mathfrak{k}}(\psi^n(z))$ we can find $z' \in D_{n,\delta/2}(\psi^n(z))$ such that $\psi_{\psi^n(z)}^{-n}(z') \in S_{\delta}^{\mathfrak{k}}(z) \cap \Delta_{j,\delta}(z)$. We claim that there is k > 0 such that $B_{\delta/2}^{\mathfrak{k}}(\psi^n(z)) \subset D_n(\psi^n(z))$ for $z \in B_r^{\mathfrak{k}}(y)$ and $n \geq k$. For, if this is false, then for $m \in \mathbb{N}$ there are $z_m \in B_r^{\mathfrak{k}}(y)$ and $n_m \geq m$ such that $B_{\delta/2}^{\mathfrak{k}}(\psi^n(z_m)) \oplus D_{n_m}(\psi^n(z_m))$. Hence we can find $z'_m \in D_{n_m,\delta/2}(\psi^n(z_m))$ such that $\psi_{\psi^n(z_m)}^{-n_m}(z_m) \in S_{\delta}^{\mathfrak{k}}(z_m)$. Let $z_m \to z_\infty \in B_r^{\mathfrak{k}}(y)$ and $\Delta_{n_m,\delta}(z_m) \to \Delta_\infty$ as $m \to \infty$ (take subsequences if necessary). Then we have $\Delta_\infty \subset W_r^{\mathfrak{k}}(z_\infty, \psi)$ by Lemma 3.2. Obviously $W_r^{\mathfrak{k}}(z_\infty, \psi) \cap W_r^{\mathfrak{k}}(x) \supset \Delta_\infty \cap B_r^{\mathfrak{k}}(y) \ni z_\infty$. The fact that $\Delta_{n_m,\delta}(z_m) \cap S_{\delta}(z_m) \ni \psi_{\psi^n(z_m)}^{-n_m}(z_m)(z'_m)$ ensures that $\Delta_\infty \cap B_r^{\mathfrak{k}}(y) \ni z_\infty$. Hence $W_r^{\mathfrak{k}}(z_\infty, \psi) \cap W_r^{\mathfrak{k}}(x)$ is not one point set $\{z_\infty\}$, which contradicts the expansiveness (see Lemma 2.1).

Let $\Delta_n(z)$ denote the connected component of z ($z \in V^+$) in $\psi_{\psi^n(z)}^{-n}(B_{\delta/2}^{\mathfrak{g}}(\psi^n(z))$. Then for any $0 < \eta \le r$ and $k' \ge k$ there exists $n \ge k'$ such that $B_{\eta}^{\mathfrak{g}}(z) \supset \Delta_n(z)$ ($z \in B_{\tau}^{\mathfrak{g}}(y)$). Indeed, if there is $0 < \eta \le r$ so that for $n \ge k$ there exists $z_n \in B_{\tau}^{\mathfrak{g}}(y)$ such that $B_{\eta}^{\mathfrak{g}}(z_n) \supset \Delta_n(z_n)$, then we have $\Delta_n(z_n) \cap S_{\eta}^{\mathfrak{g}}(z_n) = \phi$ by Lemma 3.1, which implies $\Delta_{n,\mathfrak{g}}(z_n) \cap S_{\eta}^{\mathfrak{g}}(z_n) = \phi$ since $\eta < \delta$.

If $z_n \to z_\infty \in B_r^{\sharp}(y)$ and $\Delta_{n,\delta}(z_n) \to \Delta_\infty \in \mathcal{C}(S^+)$ as $n \to \infty$. Then we have $\Delta_\infty \cap S_{\eta}^{\sharp}(z_\infty) \neq \phi$, and by Lemma 3.2, $\Delta_\infty \subset W_{\varepsilon}^s(z_\infty, \psi)$. Obviously $B_{\eta}^{\sharp}(z_\infty) \subset B_{2r}^{\sharp}(y) \subset W_{\varepsilon}^u(x)$, from which

$$W_{\mathfrak{g}}^{\mathfrak{s}}(z_{\infty}, \psi) \cap W_{\mathfrak{g}}^{\mathfrak{u}}(x) \supset \Delta_{\infty} \cap B_{\eta}^{\mathfrak{g}}(z_{\infty}) \ni z_{\infty}$$
.

By expansiveness (see Lemma 2.1) we can conclude

$$(1) W_{\mathfrak{g}}^{\mathfrak{s}}(z_{\infty},\psi)\cap W_{\mathfrak{g}}^{\mathfrak{u}}(x)=\{z_{\infty}\}.$$

Therefore $\Delta_{\infty} \cap B_{\eta}^{\bullet}(z_{\infty}) = \{z_{\infty}\}$, which contradicts the fact that $\Delta_{\infty} \cap S_{\eta}^{\bullet}(z_{\infty}) \neq \phi$.

We have shown that for any $0 < \eta \le r$ there exists $n \ge k'$ such that $B_{\eta}^{\bullet}(z) \supset \Delta_{n}(z)$ for $z \in B_{\tau}^{\bullet}(y)$. Thus $\psi_{z}^{n}(\Delta_{n}(z)) = B_{\delta/2}^{\bullet}(\psi^{n}(z))$. Since $S \in S$ has interior points, the cardinal number of $B_{\tau}^{\bullet}(y)$, Card $B_{\tau}^{\bullet}(y)$, is infinite, which ensures that there exist m-distinct points z_{1}, \dots, z_{m} in $B_{\tau}^{\bullet}(y)$ for m > 0. Since η is arbitrary, we can choose $0 < \eta \le r$ such that $B_{\eta}^{\bullet}(z_{i})$ $(i=1, \dots, m)$ are mutually disjoint. Using Lemmas 2.5 and 3.2 we can easily check that there is $n \ge k$ such that $B_{\delta/2}^{\bullet}(\psi^{n}(z_{i})) \Rightarrow \psi^{n}(z_{j})$ for i, j with $i \ne j$. Hence $B_{\delta/5}^{\bullet}(z_{i})$ $(i=1, \dots, m)$ are mutually disjoint. This contradicts the compactness of S^{+} since m is any positive number.

4. Proof of Proposition A

Let $CV = \{V_1, \dots, V_k\}$ and $\psi \colon V^+ \to V^+$ be as in §3. In this section Proposition A will be proved. For the proof we need the following

Lemma 4.1. For $\varepsilon>0$ there is $0<\mu<\varepsilon$ such that if $\{x_i\}\subset V^+$ converges to $x_\infty\in V^+$ and $\{B_i\}\subset \mathcal{C}(S^+)$ converges to $B_\infty\in\mathcal{C}(S^+)$ and if $B_i\subset W^\sigma_\mu(x_i,\psi)$ for any $i\geq 1$, then $B_\infty\subset W^\sigma_\sigma(x_\infty,\psi)$ $(\sigma=s,u)$.

Proof. Let ρ_1 be as in §2 and δ_0 , δ_2 be as in §3. For $\varepsilon > 0$ there are $0 < \rho_{\varepsilon} < \rho_1$, $0 < \delta_{\varepsilon} < \delta_0$ and $0 < \mu < \min \{\varepsilon, \delta_{\varepsilon}\}$ such that

- (A_e) $d(x, y) \le \delta_{e}(x, y \in X)$ implies $d(xt, ys) \le \varepsilon$ for $|t| \le 3\alpha$ and $|t-s| \le \rho_{e}$.
- (B_e) if $d(x, y) \le \mu$ $(x, y \in S^+)$ and there is $V_j \in CV$ with $xt \in B^{\bullet}_{\delta_2}(V_i)$ for $|t| \le 3\alpha$, then $yt \in D^{\bullet}_{\delta_2}$.

We give the proof for the case of $\sigma = s$ and then the proof of the case $\sigma = u$ is done in the same way. Since $B_i \to B_{\infty}$, for $z \in B_{\infty}$ we can find $y_i \in B_i$ with $y_i \to z$ $(i \to \infty)$, and

(1)
$$d(\psi^{n}(x_i), \psi^{n}_{x_i}(y_i)) \leq \mu \quad (n \geq 0).$$

holds because $B_i \subset W^s_{\mu}(x_i, \psi)$. Since $d(x_i, y_i) \leq \mu$ for i, we have $d(x_{\infty}, z) \leq \mu$. Replace φ by ψ and use Lemma 2.3. Then there is $l_1 \geq 1$ such that $\psi(x_i) \rightarrow \psi^{l_1}(x_{\infty})$ as $i \rightarrow \infty$ (take a subsequence if necessary), and so we write $\psi^{l_1}(x_{\infty}) = x_{\infty}t$, for some t with $\beta \leq t \leq \alpha$. Applying Lemma 2.4 for ψ we have

(2)
$$d(\psi^{l_1}(x_\infty), \, \psi^{l_1}_{x_\infty}(z)) \leq \mu.$$

Note that $d(x_{\infty}, z) \leq \mu$. Then from (A_{ε}) , (B_{ε}) we have $d(\psi^{j}(x_{\infty}), \psi^{j}_{x_{\infty}}(z)) \leq \varepsilon$ for $0 \leq j \leq l_{1}$.

Since $\psi(x_i) \to \psi^{l_1}(x_\infty)$, there is $l_2 \ge 1$ such that $\psi^2(x_i)$ converges to $\psi^{l_2}(\psi^{l_1}(x_\infty))$ as $i \to \infty$ (take a subsequence if necessary). Thus we have $d(\psi^j(x_\infty), \psi^j_{x_\infty}(z)) \le \varepsilon$ for $l_1 \le j \le l_1 + l_2$ by (A_{ε}) and (B_{ε}) and so $d(\psi^j(x_\infty), \psi^j_{x_\infty}(z)) \le \varepsilon$ $(0 \le j \le l_1 + l_2)$. In this fashion we see that the above inequality holds for all $j \ge 0$. Hence $z \in W^s_{\varepsilon}$

 (x_{∞}, ψ) and therefore $B_{\infty} \subset W_{\mathfrak{g}}^{\mathfrak{s}}(x_{\infty}, \psi)$.

The proof of the following lemma is very similar to that of Lemma 4.1 and so we omit the proof.

Lemma 4.2. For $\varepsilon > 0$ there is $0 < \mu < \varepsilon$ such that if $\{x_i\} \subset V^+$ converges to $x_\infty \in V^+$ and $\{B_i\} \subset C(S^+)$ converges to $B_\infty \in C(S^+)$ and if $\psi^n_{x_i}(B_i) \subset B^{\varepsilon}_\mu(\psi^n(x_i))$ for $0 \le n \le i \ (-i \le n \le 0)$, then $B_\infty \subset W^{\varepsilon}_{\varepsilon}(x_\infty, \psi) \ (B_\infty \subset W^{\varepsilon}_{\varepsilon}(x_\infty, \psi))$, where $i \in \mathbb{N}$.

REMARK 4.3. The above Lemmas 4.1 and 4.2 hold for the first return map $\varphi: T^+ \rightarrow T^+$.

We are ready to prove Proposition A. Let c_1 be as in §2. Since $C_{\epsilon}^{\sigma}(x) \subset C_{\epsilon}^{\sigma}(x)$ ($x \in T^+$) if $0 < \varepsilon < \varepsilon'$, we may prove the proposition for $0 < \varepsilon \le c_1/8$.

We first give the proof for $\sigma = s$. Take $0 < \mu < \varepsilon$ as in Lemma 4.2. We can find $0 < \delta \le \mu$ as in Lemma 2.5, which is our requirement.

Indeed, take and fix $x \in T^+$. For simplicity write $x(j) = \varphi^j(x)$ $(j \ge 0)$. Since T^+ is compact, we have $x(j) \to x_\infty \in T^+$ as $j \to \infty$. From Proposition B it follows that int $W_{2\epsilon}^u(x_\infty) = \phi$. For $0 < \eta \le \delta/2$ there is $m_{\eta} > 0$ such that

(1)
$$\varphi_{x_{\infty}}^{-m_{\eta}}(B_{\eta/2}^{\dagger}(x_{\infty})) \oplus B_{2\mu}^{\dagger}(\varphi^{-m_{\eta}}(x_{\infty})).$$

We may assume that the number m_{η} is the smallest one satisfying (1). Since $x(j) \rightarrow x_{\infty}$, we choose a large number $j_{\eta} \geq m_{\eta}$ such that $d(x(j_{\eta}), x_{\infty}) \leq \eta/2$ and

(2)
$$\operatorname{diam} \varphi_{x_{\infty}}^{-m_{\eta}} [B_{\eta}^{\sharp}(x(j_{\eta})] \geq 2\mu.$$

Since $T^+ \subset V^+$ and x_∞ is an interior point in V^+ , for $\eta > 0$ small enough we can find a positive integer l_η such that $m_\eta \le l_\eta < j_\eta$ and $\varphi_{x_\infty}^{-m_\eta}[B_\eta^{\sharp}(x(j_\eta)))] = \psi_{x(j_\eta)}^{-l_\eta}[B_\eta^{\sharp}(x(j_\eta))]$. From (2)

(3)
$$\operatorname{diam} \psi_{x(j_{\eta})}^{-l_{\eta}} [B_{\eta}^{\sharp}(x(j_{\eta}))] \ge 2\mu.$$

Let $j'_{\eta} \ge j_{\eta}$ be an integer such that $x(j_{\eta}) = \psi^{j'_{\eta}}(x)$. Then (3) can be rewriteten as follows: we have

(4)
$$\operatorname{diam} \psi_{x(j_n)}^{-l_n}[B_n^{\sharp}(\psi^{j'_n}(x))] \geq 2\mu,$$

from which there exists $0 < n_n \le l_n$ such that for $0 \le i < n_n$

(5)
$$\psi_{x(j_{\eta})}^{-i} [B_{\eta}^{\sharp}(\psi^{j'_{\eta}}(x))] \subset B_{\mu}^{\sharp}(\psi^{j'_{\eta}-i}(x)),$$

(6)
$$\psi_{x(j_{\eta})}^{-n_{\eta}}[(B_{\eta}^{\sharp}(\psi^{j'_{\eta}}(x))] \subset B_{\mu}^{\sharp}(\psi^{i'_{\eta}-n_{\eta}}(x)).$$

Denote by $\Delta_{n_n}(\psi^{j'_n-n_n}(x))$ the connected component of $\psi^{j'_n-n_n}(x)$ in the subset

$$\begin{split} B^{\$}_{\mu}(\psi^{j_{\eta}'-n_{\eta}}(x)) \cap \psi^{-1}_{\psi^{j_{\eta}}-n_{\eta}^{+1}(x)}[B_{\mu}(\psi^{j_{\eta}'-n_{\eta}+1}(x))] \cdots \\ \cdots \cap \psi^{-n_{\eta}+1}_{\psi^{j_{\eta}'-1}(x)}[B^{\$}_{\mu}(\psi^{j_{\eta}'-1}(x))] \cap \psi^{-n_{\eta}}_{\psi^{j_{\eta}'}(x)}[B^{\$}_{\delta/2}(\psi^{j_{\eta}'}(x))] \;, \end{split}$$

and denote by $C(\psi^{j'_{\eta}-n_{\eta}}(x))$ the connected component of $\psi^{j'_{\eta}-n_{\eta}}(x)$ in the subset

$$B^{\$}_{\mu}(\psi^{j'_{\eta}-n_{\eta}}(x))\cap\psi^{-n_{\eta}}_{\psi^{j'_{\eta}}(x)}[B^{\$}_{\eta}(\psi^{j'_{\eta}}(x))]$$
.

Since $\eta \leq \delta/2$, by (5) we have

(7)
$$\Delta_{n_{\eta}}(\psi^{j_{\eta}'-n_{\eta}}(x))\supset C(\psi^{j_{\eta}'-n_{\eta}}(x)).$$

From (6) and Lemma 3.1

$$C(\psi^{j'_{\eta}-n_{\eta}}(x)) \cap S^{*}_{\mu}(\psi^{j'_{\eta}-n_{\eta}}(x)) \neq \phi.$$

Since $B_{\eta}^{\sharp}(\psi^{i'\eta}(x))$ is connected, by (7)

(8)
$$\Delta_{n_n}(\psi^{j'_n-n_n}(x)) \cap S_{\mu}(\psi^{j'_n-n_n}(x)) = \phi.$$

Put $\Delta(0) = \Delta_{n_{\eta}}(\psi^{j'_{\eta}-n_{\eta}}(x))$ and for k>0 let $\Delta(k)$ be the connected component of $\psi^{j'_{\eta}-n_{\eta}-k}(x)$ in the subset

$$\psi_{\psi^{j_{\eta}'-n_{\eta}-k+1}(x)}^{-1}[\Delta(k-1)]\cap B_{\mu}^{\sharp}(\psi^{j_{\eta}'-n_{\eta}-k}(x))\;.$$

Then we have

$$\psi_{x^{\eta-n_{\eta}+1}}^{j_{\eta-n_{\eta}+1}}(\Delta(j_{\eta}'-n_{\eta})) \subset \psi_{\psi^{j_{\eta'-n_{\eta}(x)}}}^{i}(\Delta(0))$$
$$\subset B_{\mu}^{\mathfrak{g}}(\psi^{j_{\eta'-n_{\eta}+1}}(x))$$

for $0 \le i \le n_{\eta} - 1$ and so

(9)
$$\psi_x^i(\Delta(j_\eta'-n_\eta)) \subset B_\mu^\sharp(\psi^i(x)) \quad (0 \le i \le j_\eta'-1)$$

and

(10)
$$\psi_x^{j'_{\eta}}(\Delta(j'-n_{\eta})) \subset B_{\delta/2}(\psi^{j'_{\eta}}(x)).$$

To see the existence of $0 \le i \le j_n' - n_n$ such that

(11)
$$\psi_x^i(\Delta(j_\eta'-n_\eta)) \cap S_\mu^*(\psi^i(x)) \neq \phi,$$

suppose that this relation is false (i.e. $\psi_x^i(\Delta(j'_{\eta}-n_{\eta})) \cap S_{\mu}^{\sharp}(\psi^i(x)) = \phi \ (0 \le i \le j'_{\eta}-n_{\eta})$). Then we have $\Delta(j'_{\eta}-n_{\eta}) \subset U_{\varepsilon}^{\sharp}(x)$. Since $\psi_{\psi(x)}^{-1}(\Delta(j'_{\eta}-n_{\eta}-1)) \setminus B_{\mu}^{\sharp}(x) = \phi$ implies $\Delta(j'_{\eta}-n_{\eta}) \cap S_{\mu}^{\sharp}(x) = \phi$ by Lemma 3.1, this is inconsistent with the assumption. Thus $\psi_{\psi(x)}^{-1}(\Delta(j'_{\eta}-n_{\eta}-1)) \subset B_{\mu}^{\sharp}(x)$ and $\Delta(j'_{\eta}-n_{\eta}) = \psi_{\psi(x)}^{-1}(\Delta(j'_{\eta}-n_{\eta}-1))$. This shows that $\psi_x(\Delta(j'_{\eta}-n_{\eta})) = \Delta(j'_{\eta}-n_{\eta}-1)$. To obtain the conclusion we use induction on i. Suppose that there is $0 \le i \le j'_{\eta}-n_{\eta}$ with

(12)
$$\psi_x^i(\Delta(j_n'-n_n)) = \Delta(j_n'-n_n-i).$$

By Lemma 3.1 $\psi_{\psi^{i+1}(x)}^{-1}(\Delta(j'_{\eta}-n_{\eta}-i-1))\setminus B_{\mu}^{*}(\psi^{i+1}(x)) \neq \phi$ implies $\Delta(j'_{\eta}-n_{\eta}-i)$ $\cap S_{\mu}^{*}(\psi^{i}(x)) \neq \phi$. $\psi_{x}^{i}(\Delta(j'_{\eta}-n_{\eta}))\cap S_{\mu}^{*}(\psi^{i}(x)) = \phi$ by hypothesis, thus contradict-

ing our assumption. Therefore $\psi_{\psi^{i+1}(x)}^{-1}(\Delta(j'_{\eta}-n_{\eta}-i-1))\subset B^{\bullet}_{\mu}(\psi^{i+1}(x))$ and so

$$\Delta(j'_{\eta}-n_{\eta}-i)=\psi_{\psi^{i+1}(x)}^{-1}(\Delta(j'_{\eta}-n_{\eta}-i-1))$$
.

From (12)

$$\psi_x^i(\Delta(j'_{\eta}-n_{\eta}))=\psi_{\psi^{-i+1}(x)}^{-1}(\Delta(j'_{\eta}-n_{\eta}-i-1))$$
,

and hence

$$\psi_x^{i+1}(\Delta(j'_{\eta}-n_{\eta})) = \Delta(j'_{\eta}-n_{\eta}-i-1)$$
.

Since $\psi_x^i(\Delta(j_{\eta}'-n_{\eta})) = \Delta(j_{\eta}'-n_{\eta}-i) \ (0 \le i \le j_{\eta}'-n_{\eta})$, we have

$$\psi_x^{j_\eta'-n_\eta}(\Delta(j_\eta'-n_\eta))=\Delta(0)=\Delta_{n_\eta}(\psi^{j_\eta'-n_\eta}(x)).$$

Therefore our assumption is inconsistent with (8).

From (9), (10), (11) and Lemma 2.5 it follows that

$$\Delta(j'_{\eta}-n_{\eta})\cap S_{\delta}(x) \neq \phi.$$

Since $\Delta(j'_{\eta}-n_{\eta})\subset\Delta_{j'_{\eta}}(x)$ and $\Delta_{j'_{\eta}}(x)\cap S_{\delta}(x)\neq\phi$ and since $\Delta_{j'_{\eta}}(x)\to\Delta_{\infty}\in\mathcal{C}(S^{+})$ as $\eta\to 0$, we have $\Delta_{\infty}\cap S_{\delta}(x)\neq\phi$. Notice that Δ_{∞} is connected because each $\Delta_{j'_{\eta}}$ is so. Since

$$\psi_x^i(\Delta_{j'_{\eta}}(x)) \subset B^{\sharp}_{\mu}(\psi^i(x))$$
 for $0 \le i \le j'_{\eta}$,

we have $\Delta_{\infty} \subset W^s_{\epsilon}(x_{\infty}, \psi)$ by Lemma 4.2. If $C^s_{\epsilon}(x, \psi)$ and $C^s_{\epsilon}(x)$ denote the connected component of x in $W^s_{\epsilon}(x, \psi)$ and $W^s_{\epsilon}(x)$ respectively, then we have $\Delta_{\infty} \subset C^s_{\epsilon}(x, \psi)$. Thus $C^s_{\epsilon}(x, \psi) \cap S^s_{\delta}(x) \neq \phi$. Since $W^s_{\epsilon}(x, \psi) \subset W^s_{\epsilon}(x, \varphi)$ for $x \in T^+$, $C^s_{\epsilon}(x, \psi) \subset C^s_{\epsilon}(x)$ and therefore $C^s_{\epsilon}(x) \cap S^s_{\delta}(x) \neq \phi$.

The proof of $\sigma = u$ is done in the same fashion and so we omit it.

REMARK 4.4. Let $x \in V^+$ and denote by $C_{\varepsilon}^{\sigma}(x, \psi)$ the connected component of x in $W_{\varepsilon}^{\sigma}(x, \psi)$ ($\sigma = s, u$). From the proof of Proposition A the following is concluded: for $\varepsilon > 0$ there is $0 < \delta \le \varepsilon$ such that $C_{\varepsilon}^{\sigma}(x, \psi) \cap S_{\delta}(x) \neq \phi$ for $x \in V^+$ ($\sigma = s, u$).

5. Local connectedness of $C_{\epsilon}^{\sigma}(x)$

Let c_1 be as in §2 and let $0 < \varepsilon_1 < c_1/4$ be as in Lemma 4.1 for c_1 . As before S and S denote families of local cross-sections.

Proposition C. $C_{\varepsilon}^{\sigma}(x)$ ($\sigma = s, u$) are locally connected for all $0 < \varepsilon \le \varepsilon_1$ and $x \in T^+$.

This was proved in K. Hiraide [5] for homeomorphisms. However the technique of [5] is adapted for the first return map $\varphi: T^+ \to T^+$. For completeness we give a proof.

Fix $x \in T$ ($T \in \mathcal{I}$) and let $\delta > 0$ be as in Proposition A for $0 < \varepsilon \le \varepsilon_1$. To obtain the conclusion for $\sigma = s$, assume that $C_{\varepsilon}^s(x)$ is not locally connected. Then we see that there are $y \in C_{\varepsilon}^s(x)$ and $0 < r \le \delta/2$ such that the connected component of y in $C_{\varepsilon}^s(x) \cap B_{\tau}^{\varepsilon}(y)$ does not contain $C_{\varepsilon}^s(x) \cap B_{\tau}^{\varepsilon}(y)$ for all $\lambda > 0$. Denote by \mathcal{K} the set of all connected component in $C_{\varepsilon}^s(x) \cap B_{\tau}^{\varepsilon}(y)$. Since $C_{\varepsilon}^s(x)$ is connected and $C_{\varepsilon}^s(x) \cap B_{\tau}^{\varepsilon}(y) \subseteq C_{\varepsilon}^s(x)$, we have by Lemma 3.1 that $K \cap S_{\tau}^{\varepsilon}(y) = \phi$ for all $K \in \mathcal{K}$.

Fix 0 < t < r and put $\mathcal{K}_t = \{K \in \mathcal{K} : K \cap B_i^*(y) \neq \phi\}$. Then it is easily checked that \mathcal{K}_t is an infinite set. Hence there is a sequence $\{K_i\}_{i \in N}$ in \mathcal{K}_t with $K_i \cap K_j = \phi$ for $i \neq j$ such that $K_i \rightarrow K_\infty \in \mathcal{C}(C_i^s(x) \cap B_r^*(y))$ as $i \rightarrow \infty$. Since each K_i is connected, so is K_∞ . Hence K_∞ is contained in a connected component in $C_i^s(x) \cap B_r^*(y)$. Therefore we may assume that $K_i \cap K_\infty = \phi$ for all $i \in N$.

Since $S(S \in \mathcal{S} \text{ and } T^* \subset S)$ is a disk, we have that $A = B_i^*(y)/U_i^*(y)$ is an annulus bounded by circles $S_i^*(y)$ and $S_i^*(y)$. Since $K_i \cap S_i^*(y) \neq \phi$, we take $a_i \in K_i \cap S_i^*(y)$. Denote by L_i the connected component of a_i in $A \cap K_i$. Since K_i is connected and $B_i^*(y) \cap K_i \neq \phi$, there is $b_i \in L_i \cap S_i^*(y) \neq \phi$ by Lemma 3.1. Since $K_i \cap K_j = \phi$ for $i \neq j$, we have that $L_i \cap L_j = \phi$, $a_i \neq a_j$ and $b_i \neq b_j$. By compactness we may assume that $a_i \rightarrow a_\infty \in S_i^*(y)$, $b_i \rightarrow b_\infty \in S_i^*(y)$ and $L_i \rightarrow L_\infty \in \mathcal{C}(A)$ as $i \rightarrow \infty$. Then a_∞ , $b_\infty \in L_\infty$. Since $L_i \subset K_i$, it follows that $L_\infty \subset K_\infty$. Since $K_i \cap K_\infty = \phi$, we have that $L_i \cap L_\infty = \phi$, $a_i \neq a_\infty$ and $b_i \neq b_\infty$. Therefore by taking a subsequence of $\{a_i\}_{i \in N}$ if necessary, we can choose the arcs $a_i a_\infty$ in $S_i^*(y)$ from a_i to a_∞ such that

$$(1) a_i a_{\infty} \supseteq a_2 a_{\infty} \supseteq \cdots \supseteq a_i a_{\infty} \supseteq \cdots.$$

In the same way, choose the arcs $b_i b_{\infty}$ in $S_i^{\sharp}(y)$ from b_i to b_{∞} such that

$$(2) b_1 b_{\infty} \supseteq b_2 b_{\infty} \supseteq \cdots \supseteq b_i b_{\infty} \supseteq \cdots.$$

Since L_i , L_{i+1} and L_{∞} are connected and mutually disjoint, it is checked that the orientation of a_i a_{∞} from a_i to a_{∞} coincides with that of b_i b_{∞} from b_i to b_{∞} . Indeed, we can take mutually disjoint connected neighborhoods N_i , N_{i+1} and N_{∞} of L_i , L_{i+1} and L_{∞} in A respectively. Then there is an arc A_i in N_i from a_i to b_i such that $A_i \cap S_r^{\sharp}(y) = \{a_i\}$ and $A_i \cap S_r^{\sharp}(y) = \{b_i\}$, and there is an arc A_{∞} in N_{∞} from a_{∞} to b_{∞} such that $A_{\infty} \cap S_r^{\sharp}(y) = \{a_{\infty}\}$ and $A_{\infty} \cap S_r^{\sharp}(y) = \{b_{\infty}\}$. Since $N_i \cap N_{\infty} = \phi$, obviously $A_i \cap A_{\infty} = \phi$. Hence $A \setminus \{A_i \cup A_{\infty}\}$ is decomposed into two connected components U_1 and U_2 . Since $a_{i+1} \in U_1 \cup U_2$ we may assume that $a_{i+1} \in U_1$. If the orientation of a_i a_{∞} differs from that of b_i b_{∞} , then $b_{i+1} \in U_2$ by (1) and (2). In this case, every arc in N_{i+1} from a_{i+1} to b_{i+1} must intersect A_i or A_{∞} . This contradicts the fact that N_i , N_{i+1} and N_{∞} are mutually disjoint. Therefore the orientation of a_i a_{∞} must coincide with that of b_i b_{∞} .

For $i \ge 2$, take $z_i \in L_i$ such that $d(y, z_i) = t + (r - t)/2$, since $L_i \subset K_i \subset C_{\varepsilon}^s(x)$, obviously $z_i \in C_{\varepsilon}^s(x) \cap C_{\varepsilon}^u(z_i, \psi)$. Hence $C_{\varepsilon}^s(x) \cap C_{\varepsilon}^u(z_i, \psi) = \{z_i\}$ by expansive-

ness. Since $z_i \in L_i$ and $L_{i-1} \cup L_{i+1} \subset C_{\varepsilon}^s(x)$, we have that $(L_{i-1} \cup L_{i+1}) \cap (C_{\varepsilon}^u(z_i, \psi) \cup L_i) = \phi$. Hence we can take a connected neighborhood N_{i-1} of L_{i-1} in A and a connected neighborhood N_{i+1} of L_{i+1} in A such that $N_{i-1} \cap N_{i+1} = \phi$ and $(N_{i-1} \cup N_{i+1}) \cap (C_{\varepsilon}^u(z_i, \psi) \cup L_i) = \phi$. Then there is an arc A_{i-1} in A_{i-1} from A_{i-1} to A_{i-1} such that $A_{i-1} \cap S_{\varepsilon}^*(y) = \{a_{i-1}\}$ and $A_{i-1} \cap S_{\varepsilon}^*(y) = \{b_{i-1}\}$, and there is an arc A_{i+1} in A_{i+1} from A_{i+1} to $A_{i+1} \cap S_{\varepsilon}^*(y) = \{a_{i+1}\}$ and $A_{i+1} \cap S_{\varepsilon}^*(y) = \{b_{i+1}\}$. Obviously $(A_{i-1} \cup A_{i+1}) \cap (C_{\varepsilon}^u(z_i, \psi) \cup L_i) = \phi$. Denote by $A_{i-1} \cap A_{i+1}$ the subarc in $A_{i-1} \cap A_{i+1}$ the subarc in $A_{i-1} \cap A_{i+1}$ the subarc in $A_{i-1} \cap A_{i+1}$ from $A_{i-1} \cap A_{i+1}$ the subarc in $A_{i-1} \cap A_{i+1}$ the subarc in $A_{i-1} \cap A_{i+1}$ from $A_{i-1} \cap A_{i+1}$ the subarc in $A_{i-1} \cap A_{i+1}$ from $A_{i-1} \cap A_{i+1}$ the subarc in $A_{i-1} \cap A_{i+1}$ from $A_{i-1} \cap A_{i+1}$ from $A_{i+1} \cap A_{i$

$$\Gamma = A_{i-1} \cup A_{i+1} \cup a_{i-1} a_{i+1} \cup b_{i-1} b_{i+1}$$

is a simple closed curve in A. From the relation betwee the orientations of $a_{i-1} a_{\infty}$ and $b_{i-1} b_{\infty}$, it follows that Γ bounds a disk D in A. Then we see that z_i is an interior point of D. Since $r \leq \delta/2$, we have $C_{\varepsilon}^{u}(z_i, \psi) \cap S_{r}^{u}(y) \neq \phi$ (see $C_{\varepsilon}^{s}(x, \psi) \cap S_{\delta}(x) \neq \phi$ in the proof of Proposition A). By the connectedness of $C_{\varepsilon}^{u}(z_i, \psi)$ we have $\Gamma \cap C_{\varepsilon}^{u}(z_i, \psi) \neq \phi$. Since $(A_{i-1} \cup A_{i+1}) \cap C_{\varepsilon}^{u}(z_i, \psi) = \phi$, it is clear that

$$C_{\varepsilon}^{u}(z_{i}, \psi) \cap a_{i-1} a_{i+1} \neq \phi$$
 or $C_{\varepsilon}^{u}(z_{i}, \psi) \cap b_{i-1} b_{i+1} \neq \phi$.

Without loss of generality we have

$$w_i \in C^u(z_i, \psi) \cap a_{i-1} a_{i+1} \neq \phi$$
.

Since diam $(a_i \ a_\infty) \to 0$ as $i \to \infty$, we see that $w_i \to a_\infty$ as $i \to \infty$. Since $L_i \to L_\infty$, we may assume that $z_i \to z_\infty \in L_\infty$ as $i \to \infty$. That $d(y, z_\infty) = t + (r - t)/2$ and $w_i \in C_\varepsilon^u$ (z_i, ψ) ensures $a_\infty \in W_{c_1}^u(z_\infty, \psi)$ (see Lemma 4.1). Since $a_\infty, z_\infty \in L_\infty \subset K_\infty \subset C_\varepsilon^s$ (x), we obtain by expansiveness that $a_\infty = z_\infty$. This contradicts the facts that $a_\infty \in S_r^{\sharp}(y)$ and $d(y, z_\infty) = t + (r - t)/2$. Therefore $C_\varepsilon^s(x)$ is locally connected. In the same way, the conclusion for $\sigma = u$ is obtained.

REMARK 5.1. Proposition C is true for $C_{\varepsilon}^{\sigma}(x, \psi)$ $(x \in V^{+})$.

6. Proof of Theorem

In this section our Theorem will be proved. Let α_0 and c_1 be as in §2 respectively. Let $0 < \varepsilon_1 \le \min \{\alpha_0/2, c_1/4\}$ be as in §5.

Lemma 6.1. Let $0 < \varepsilon \le \varepsilon_1$ and A and B be non-empty subsets of T^+ . If $W^s_{\eta}(x) \cap W^u_{\varepsilon}(y) = \phi$ for any $(x, y) \in A \times B$, then $W^s_{\varepsilon}(x) \cap W^u_{\varepsilon}(y)$ consists of exactly one point [x, y] and in fact $[\ ,\]: A \times B \to S^+$ is a continuous map.

Proof. Take $z_1, z_2 \in W^s_{\varepsilon}(x) \cap W^u_{\varepsilon}(y)$. Then $d(\varphi^m(x), \varphi^m_{\varepsilon}(z_i)) \leq \varepsilon (i=1, 2)$ for any $m \geq 0$, and so $d(\varphi^m_{\varepsilon}(z_i), \varphi^m_{\varepsilon}(z_i)) \leq 2\varepsilon \leq \alpha_0$. Since $\varphi^j(z_1) = \varphi^{j-1}(z_1) t_{j-1}$ and $\varphi^j(z_2) = \varphi^{j-1}(z_2) t'_{j-1}(\beta \leq t_j, t'_{j-1} \leq \alpha)$ by definition, there exist $\{a_i\}$ and $\{b_i\}$

880 М. Ока

(i=1,2) such that

$$\varphi_x^m(z_1) = z_1(\sum_{i=0}^m (t_i + a_i)), \quad |a_i| \le \rho$$

and

$$\varphi_x^m(z_2) = z_2(\sum_{i=0}^m (t_1'+b_i)), \quad |b_i| \leq \rho.$$

We can easily caluculate

$$|\sum_{i=0}^{m} (t_i + a_i) - \sum_{i=0}^{m-1} (t_i + a_i)| = |t_m + a_m| \le \alpha + \rho < \alpha_0$$

(*)

and

$$|\sum_{i=0}^{m} (t'_i + b_i) - \sum_{i=0}^{m-1} (t'_i + b_i)| = |t'_m + b_m| \le \alpha + \rho < \alpha_0$$
.

Since $\varphi^{j}(z_1) = \varphi^{j+1}(z_1) t_j$ and $\varphi^{j}(z_2) = \varphi^{j+1}(z_2) t'_j (-\alpha \le t_j, t'_j \le -\beta)$, for m < 0 as above we can write

$$\varphi_z^m(z_1) = z_1(\sum_{i=-1}^m (t_i + a_i)), \quad |a_i| \leq \rho$$

and

$$\varphi_x^m(z_2) = z_2(\sum_{i=-1}^m (t_i'+b_i)), \quad |b_i| \leq \rho.$$

For this case (*) holds. By Lemma 2.1 here we have that $z_1=z_2t$ for some $|t|<\zeta/3$, from which $z_1=z_2$.

To show that $[\ ,\]: A\times B\to S^+$ is continuous, assume that a sequence $\{(x_i,y_i)\}_{i\in N}$ in $A\times B$ converges to $(x,y)\in A\times B$ and put $z_i=[x_i,y_i]$. Then there are a subsequence $\{z_j\}$ of $\{z_i\}$ and $z_\infty\in S^+$ such that $z_j\to z_\infty$ as $j\to\infty$. Since $z_j\in W^s_\varepsilon(x_i)$, it follows from Remark 4.3 that $z_\infty\in W^s_\varepsilon(x)$. In the same way we have $z_\infty\in W^u_{\varepsilon_1}(y)$. Since $c_1<\alpha\le\alpha_0/2$, we see that $W^s_{\varepsilon_1}(x)\cap W^u_{\varepsilon_1}(y)$ consists of one point. Hence $W^s_{\varepsilon_1}(x)\cap W^u_{\varepsilon_1}(y)\supset W^s_\varepsilon(x)\cap W^u_\varepsilon(y)=\{[x,y]\}$, and therefore $z_\infty=[x,y]$. Continuity of $[\ ,\]$ was proved.

Lemma 6.2. $C_{\varepsilon}^{\sigma}(x)$ $(0 < \varepsilon \leq \varepsilon_1)$ is arcwise connected and locally arcwise connected $(\sigma = s, u)$.

Proof. Combining Proposition C with Theorem 5.9 of [3], we see that $C^{\sigma}(x)$ is a peano space. Then Theorem 6.29 of [3] completes the proof.

Lemma 6.3. Let $0 < \varepsilon \le \varepsilon_1$. For each pair (y, z) of distinct points in $C_{\varepsilon}^{\sigma}(x)$ $(\sigma = s, u)$ there exists an arc from y to z in $C_{\varepsilon}^{\sigma}(x)$. Furthermore such an arc is unique.

Proof. The first statement follows from Lemma 6.2. We prove the second statement for $\sigma = s$. To do this, we assume that there are two arcs from y to z in $C_{\varepsilon}^{s}(x)$. Then we can find a simple closed curve Γ in $C_{\varepsilon}^{s}(\iota)$. Choose r with $0 < r \le \varepsilon/2$ by Lemma 2.8 such that $\varphi_{x}(B_{r}^{\sharp}(x)) \subset B_{\varepsilon}^{\sharp}(\varphi(x))$ for all $x \in T^{+}$. Let c_{1} be as in §2. Then we can find $N \in \mathbb{N}$ such that $\varphi_{x}^{n}(W_{c_{1}}^{s}(x)) \subset W_{r}^{s}(\varphi^{n}(x))$ for all $n \ge N$. Since $\Gamma \subset C_{\varepsilon}^{s}(x) \subset W_{c_{1}}^{s}(x)$, we have $\varphi_{x}^{n}(\Gamma) \subset W_{r}^{s}(\varphi^{n}(x)) \subset B_{r}^{\sharp}(\varphi^{n}(x))$ for all $n \ge N$. Since $B_{r}^{\sharp}(\varphi^{N}(x))$ is a disk and $\varphi_{x}^{N}(\Gamma)$ is a simple closed curve in $B_{r}^{\sharp}(\varphi^{N}(x))$, we see that $\varphi_{x}^{N}(\Gamma)$ bounds a disk D in $B_{r}^{\sharp}(\varphi^{N}(x))$.

Now we claim that $\varphi_x^i \sigma_{(x)}(D) \subset B_r^{\sharp}(\varphi^{N+i}(x))$ for all $i \geq 0$. Indeed, $D \subset B_{\varepsilon}^{\sharp}(\varphi^N(x))$ by the choice of r. Since $\varphi_x^{N+1}(\Gamma) \subset B_r^{\sharp}(\varphi_x^{N+1}(x))$ and $\varphi^{N+1}(\Gamma)$ is the boundary of $\varphi_{\varphi^N(x)}(D)$, it follows that $\varphi_{\varphi^N(x)}(D) \subset B_r^{\sharp}(\varphi^{N+1}(x))$. In the same way, we obtain $\varphi_x^i \sigma_{(x)}(D) \subset B_r^{\sharp}(\varphi^{N+i}(x))$ for all $i \geq 2$. Therefore the above claim holds and so $D \subset W_r^s(\varphi^N(x))$, thus contradicting Proposition B (since $0 < r \leq \varepsilon \leq c_1/4$). Therefore an arc from y to z in $C_{\varepsilon}^s(x)$ is unique. In the same way the conclusion for $\varphi = u$ is obtained.

Let $\psi \colon V^+ \to V^+$ be the first return map defined in §3 and $C_{\varepsilon}^{\sigma}(x, \psi)$ denote the connected component of x in $W_{\varepsilon}^{\sigma}(x, \psi)$ as before. Notice that $C_{\varepsilon}^{\sigma}(x, \psi) \subset C_{\varepsilon}^{\sigma}(x)$ for $x \in T^+(\sigma = s, u)$ (since $W_{\varepsilon}^{\sigma}(x, \psi) \subset W_{\varepsilon}^{\sigma}(x)$).

REMARK 6.4. Lemmas 6.2 and 6.3 hold for the first return map ψ .

Let y and z be distinct elements of $C_{\epsilon}^{\sigma}(x)$ ($C_{\epsilon}^{\sigma}(x, \psi)$). Since there is an arc from y to z in $C_{\epsilon}^{\sigma}(x)$ ($C_{\epsilon}^{\sigma}(x, \psi)$) and such an arc is unique by Lemma 6.3, we denote it by $\sigma_{\epsilon}(y, z; x)$ ($\sigma_{\epsilon}(y, z; x, \psi)$). Remark that $C_{\epsilon}^{\sigma}(x) \subset C_{\epsilon_{1}}^{\sigma}(x)$. Then we see easily that $\sigma_{\epsilon}(y, z; x) = \sigma_{\epsilon_{1}}(y, z; x)$. Hence we omit ϵ and write $\sigma(y, z; x) = \sigma_{\epsilon}(y, z; x)$. We denote by $IC_{\epsilon}^{\sigma}(x)$ the union of all open arcs in $C_{\epsilon}^{\sigma}(x)$ and define

$$BC_{\varepsilon}^{\sigma}(x) = C_{\varepsilon}^{\sigma}(x) \setminus (IC_{\varepsilon}^{\sigma}(x) \cup \{x\}).$$

x belongs to $IC_{\mathfrak{e}}^{\sigma}(x)$. For ψ we define $IC_{\mathfrak{e}}^{\sigma}(x,\psi)$ and $BC_{\mathfrak{e}}^{\sigma}(x,\psi)$ in the same fashion as above. Then for $0<\varepsilon\leq\varepsilon_1$ it holds that $BC_{\mathfrak{e}}^{\sigma}(x)\neq\phi$ and

$$C_{\mathfrak{e}}^{\sigma}(x) = \bigcup_{b \in BC_{\mathfrak{e}}^{\sigma}(x)} \sigma(x, b; x).$$

If A be an arc in $C_{\varepsilon}^{\sigma}(x)$ and if x is an end point of A, then there exists $b \in BC_{\varepsilon}^{\sigma}(x)$ such that $A \subset \sigma(x, b; x)$.

Let a, b and c be elements of $C_{\varepsilon}^{\sigma}(x)$ such that $a \neq b$ and $a \neq c$. When $\sigma(a, b; x) \cap \sigma(a, c; x) \supseteq \{a\}$, we write $\sigma(a, b; x) \sim \sigma(a, c; x)$. In this case, we see by Lemma 6.3 that $\sigma(a, b; x) \cap \sigma(a, c; x)$ is a subarc of both $\sigma(a, b; x)$ and $\sigma(a, c; x)$. From this fact it follows that " \sim " is an equivalence relation on $\{\sigma(x, b; x); b \in BC_{\varepsilon}^{\sigma}(x)\}$. We define

$$P_{\varepsilon}^{\sigma}(x) = \#[\{\sigma(x,b;x): b \in BC_{\varepsilon}^{\sigma}(x)\}/\sim]$$

and define in the same fashion

$$P_{\varepsilon}^{\sigma}(x,\psi) = \#[\{\sigma(x,b;x,\psi); b \in BC_{\varepsilon}^{\sigma}(x,\psi)/\sim],$$

where $\sharp[\cdot]$ denotes the cardinal number of \cdot . Under the these notations we have $P_{\varepsilon}^{\sigma}(x) = P_{\varepsilon_1}^{\sigma}(x)$ $(x \in T^+)$ and $P_{\varepsilon}^{\sigma}(x, \psi) = P_{\varepsilon_1}^{\sigma}(x, \psi)$ $(x \in V^+)$. Since $P_{\varepsilon}^{\sigma}(x)$ is independent of $\varepsilon(0 < \varepsilon \le \varepsilon_1)$, we omit ε and write $P^{\sigma}(x) = P_{\varepsilon}^{\sigma}(x)$.

Put $\operatorname{Sing}^{\sigma}(\varphi) = \{x \in T^+: P^{\sigma}(x) \geq 3\}$ and $\operatorname{Sing}^{\sigma}(\psi) = \{x \in V^+: P^{\sigma}(x, \psi) \geq 3\}$. Then we have that $\operatorname{Sing}^{\sigma}(\varphi)$ is a finite set for $\sigma = s$, u and that if $P^{\sigma}(x) \geq 3$ ($P^{\sigma}(x, \psi) \geq 3$) for $\sigma = s$ or u, then $x \in \operatorname{Per}(\varphi)$ ($\operatorname{Per}(\psi)$), where $\operatorname{Per}(\varphi)$ and $\operatorname{Per}(\psi)$ are the sets of all periodic points of φ and ψ respectively. Hence if $P^{\sigma}(x)$ ($P^{\sigma}(x, \psi)$) is infinite, then $x \in \operatorname{Per}(\varphi)$ ($\operatorname{Per}(\psi)$). Thus Lemma 6.3 ensures that $P^{\sigma}(x)$ ($P^{\sigma}(x, \psi)$) is finite for $x \in T^+(V^+)$ (c.f. [5], Lemma 4.10).

Let $0 < \varepsilon \le \varepsilon_1$, $x \in T^+$ and $y \in C^{\sigma}_{\varepsilon}(x) \setminus \{x\}$ ($\sigma = s, u$). We say that y is a branch point of $C^{\sigma}_{\varepsilon}(x)$ if there are distinct element a_1 , a_2 of $BC^{\sigma}_{\varepsilon}(x)$ such that $\sigma(x, a_1; x) \cap \sigma(x, a_2; x) = \sigma(x, y; x)$. In this case, we remark that $\sigma(x, y; x) \subseteq \sigma(x, a_i; x)$ (i=1, 2). If y is a branch point of $C^{\sigma}_{\varepsilon}(x)$, then $y \in \operatorname{Sing}^{\sigma}(\varphi)$.

Lemma 6.5. There exists sufficiently small $\varepsilon_2 > 0$ such that for $0 < \varepsilon \le \varepsilon_2$, $C_{\varepsilon}^{\sigma}(x)$ has at most one branch point $(\sigma = s, u)$. If $P^{\sigma}(x) \ge 3$, then $C_{\varepsilon}^{\sigma}(x)$ has no branch points.

Using Lemma 6.5 we can show that $P^{\sigma}(x) \ge 2$ for $x \in T^{+}(\sigma = s, u)$. Moreover we have the following

Lemma 6.6. For any $\varepsilon > 0$ there exists $0 < \delta \le \varepsilon$ such that

$$S_{\delta}^{\bullet}(x) \cap \sigma(x, a; x) \neq \phi \quad (\sigma = s, u)$$

for all $x \in T^+$ and all $a \in BC_{\varepsilon}^{\sigma}(x)$.

Let $\varepsilon > 0$ be sufficiently small and let $0 < \delta \le \varepsilon$ be as in Lemma 6.6. By Lemma 6.5, for every $x \in T^+$ we can choose $0 < \varepsilon(x) < \delta/2$ such that $C^{\sigma}_{\varepsilon}(x) \cap B^{\varepsilon}_{\varepsilon(x)}(x)$ has no branch points $(\sigma = s, u)$ of $C^{\sigma}_{\varepsilon}(x)$ and then define

$$S^{\sigma}_{\mathfrak{e}(\mathbf{x})}(\mathbf{x}) = \{a \in S^{\sharp}_{\mathfrak{e}(\mathbf{x})}(\mathbf{x}) \cap C^{\sigma}_{\mathfrak{e}}(\mathbf{x}) \colon \sigma(\mathbf{x}, a; \mathbf{x}) \setminus \{a\} \subset U^{\sharp}_{\mathfrak{e}(\mathbf{x})}(\mathbf{x})\} \ .$$

Here we remark that $S^{\sharp}_{\mathfrak{d}(x)}(x)$ is a circle for every $x \in T^+$. Obviously $\#[S^{\sigma}_{\mathfrak{d}(x)}(x)] = P^{\sigma}(x)$ for all $x \in T^+$ and $\sigma = s$, u. The following ensures the existence of transversal singular foliations on a neighborhood of each point of T^+ .

Lemma 6.7. For every $x \in T^+$, $S^{\sigma}_{\epsilon(x)}(x)$ is a finite set with at least two elements $(\sigma = s, u)$. If $I_1^s, I_2^s, \dots, I_l^s$ denote all open arcs in which $D^s_{\epsilon(x)}(x)$ cut $S^*_{\epsilon(x)}(x)$, then each element of $S^u_{\epsilon(x)}(x)$ is contained in some I^s_i and distinct two elements of $S^u_{\epsilon(x)}(x)$ is not contained in same I^s_i where $i=1, 2, \dots, l$.

By Lemma 6.7 we have $P^{s}(x)=P^{u}(x)$ for $x \in T^{+}$.

Lemma 6.8. There exists $\eta > 0$ such that for every $x \in T^+$ there is $0 < \delta < \varepsilon(x)$ such that if

$$y \in B_{\delta}(x) \setminus \bigcup_{a \in S^{\sigma}_{\mathfrak{g}(x)}(x)} \sigma(x, a; x)$$

then $C_{\eta}^{\sigma}(y, \psi)$ is an arc $(\sigma = s, u)$.

Using Lemmas 6.1, 6.3, 6.7 and 6.8 we can construct a singular foliated neighborhood U_x and transversal singular foliations on U_x for each $x \in T^+$. The details of the construction is described in K. Hiraide [5] and so we omit it.

References

- [1] R. Bowen and P. Walters: Expansive one-parameter flows, J. Diff. Eq., 12 (1972), 180-193.
- [2] R. Engelking: General topology, Warzawa, 1977.
- [3] D.W. Hall and G.L. Spencer II: Elementary Topology, John Wily & Sons, INC., New York, 1955.
- [4] K. Hiraide: On homeomorphisms with Markov partitions, Tokyo J. Math., 8 (1985), 219-229.
- [5] K. Hiraide: Expansive homeomorphisms of compact surfaces are pseudo Anosov, Osaka J. Math., 27 (1990), 117-162.
- [6] H.B. Keynes and M. Sears: Real-expansive flows and topological dimension, Ergod. Th. & Dynam. Sys. 1 (1981), 179-195.
- [7] R. Mañé: Expansive homeomorphisms and topological dimension, Trans. Amer. Math. Soc., 252 (1979), 313-319.

Science University of Tokyo Faculty of Science & Technology Department of Mathematics Noda, Chiba 278 Japan