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Introduction

The study of the index of minimal surfaces in Euclidean space has been
quite active in these several years. Fischer-Colbrie [7], Gulliver and Lawson
[8], [9] have proved independently that a complete oriented minimal surface
in Rz has finite index if and only if it has finite total curvature. More recently
Tysk [16] has proved that the index of a complete oriented minimal surface in
Rz is bounded from above by an explicit constant times the total curvature.
For the situation in higher codimensions, see [2], [6] and [13].

In this paper we study the lower bound for the index of complete oriented
minimal surfaces in i?3. In view of the above mentioned result due to Fischer-
Colbrie et al., we may restrict our attention to the surfaces with finite total cur-
vature. It is well known that such a surface is conformally equivalent to a
compact Riemann surface with finitely many punctures and the Gauss map
of the surface extends to the compactified surface as a holomorphic map. We
then give a lower bound for the index in terms of an invariant of the extended
Gauss map and the genus of the surface. As a corollary of this result, we give
a lower bound for the index in terms of the total curvature of the surface, when
all the critical values of the extended Gauss map are contained in some great
circle of the target unit sphere. By applying these results we show that the
index of the &-end catenoid and the Costa's surface are not less than 2k-Z and
3 respectively. We also prove that if M is a complete oriented minimal sur-
face of genus zero and is not one of the plane, the Enneper's surface and the
catenoid, then the index of M is not less than three. Finally we prove that the
index of the β-end catenoid is actually equal to 2k-Z by explicitly solving the
eigenvalue problem associated to the Jacobi operator.

The author wishes to thank Professors H. Ozeki and A. Kasue for their con-
stant encouragement and advice. He also thanks H. Naito for useful conversa-
tions.
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1. Preliminaries

Let M be a two-dimensional Riemannian manifold. For a function q on M

we consider the operator L=—Δ+?, acting on functions on M, where Δ is

the Laplace-Beltrami operator. We denote by Q the quadratic form associated

to L. Thus for a function u with compact support

u9u)=\ (\du\2+qu2)dA,
J M

(
M

where dA is the area element of M. For a relatively compact domain Ω in

M, we define Ind(£, Ω), the index of L in Ω, as the number of negative eigen-

values (counted with multiplicities) of the Dirichlet eigenvalue problem

Lu = Xu in Ω , & = 0 on 9Ω .

It can also be defined as the maximal dimension of a subspace of Co(Ω) on

which Q is negative definite. We now define Ind (L, M)> the index of L in M,

as the supremum of the numbers Ind (L, Ω) over all relatively compact domains

in M.

If M is an oriented minimal surface in R3, the associated Jacobi operator

L is given by L=— Δ — | 5 | 2 , where B is the second fundamental form of M.

The equation Lu=0 is called the Jacobi equation. We define Ind(M), the

index of M, as the index of L in M.

At this point we recall the well-known fact that isothermal coordinates

for the induced metric together with the orientation give rise to a complex struc-

ture on M.

Let G: M-» S2aR3 be the Gauss map of M, where S2 is the unit sphere

in Rz. Then G is a holomorphic map with respect to the complex structure on

M just mentioned and that on S2 induced by the stereographic projection form

the north pole (see [14]). We note that the formula \B\2=\dG\2 holds.

We now let M be a complete oriented minimal surface in R3 with finite

total curvature. By a theorem of Osserman [14], M is conformally equivalent

to a compact Riemann surface with finitely many punctures and the Gauss map

G extends to the compactified surface as a holomorphic map. We denote by

M and G the compactified surface and the extended Gauss map respectively.

We fix a conformal metric on M and consider the operator L= — A—\dG\2.

Then we have

(1.1) Ind(M) = Ind(I ,λ ϊ )

(see Fischer-Colbrie [7, Corollary 2, p. 131]).
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2. The number of nodal domains of solutions of the Jacobi equa-
tion and a lower bound for the index

In this section we shall consider a slightly general situation as follows.
Let 2 be a compact Riemann surface and G: 2-> S2 a nonconstant holomor-
phic map. We fix a conformal metric on Σ and consider the operator LG=
— Δ— \dG |2. We note that Ind(LG, Σ) and the kernel of LG are independent
of the particular choice of a metric on Σ. The following proposition is an
immediate consequence of the celebrated Courant's nodal domain theorem
(see [4]). If u is a solution of an elliptic equation on a surface, the set u~\0) is
called the nodal line of u and each connected component of Σ—^"^O) is calied
a nodal domain of u.

Proposition 2.1. Let ube a nontrivίal solution of the equation LGu=0 and
N the number of nodal domains of u. Then

(2.1) Ind(L
c,

Proof. Let Ind(Z,G, Σ)=z. Then u is an (/+l)-th eigenfucntion (that
is, an eigenfunction belonging to the (/+l)-th eigenvalue) of LG. The nodal
domain theorem then says that the number of nodal domains of u is not greater
than ί + 1 , that is, N<i-{-l, or i>N—l, getting the desired result.

The next lemma assures the existence of nontrivial solutions of the equa-
tion LGu—Q.

Lemma 2.2. For a fixed vector a^R3, the function u=a G satisfies the
equation LGu=0. Moreover, z/αΦO then i/ΦO.

Proof. The first assertion follows from the fact that the holomorphic map
G satisfies the equation AG+ | dG \ 2G = 0. To show the second assertion
assume αΦO and # G=0. Then the image of G is contained in a great circle
of S2. By the holomorphicity, G is a constant map, a contradiction.

REMARK. The lemma shows that V={a G\a^R3} is a three-dimensional
subspace of the kernel of LG.

Let u=a>G for a^R3— {0}. We note that the nodal line ίΓ^O) is nothing
but the inverse image by G of the great circle S1, which is determined as the
intersection of the plane a X=0 and S2, where X=(X\ X2, X3) is the standard
coordinates on R3.

We now study the inverse image by G of a great circle of *S2. Let S1 be a
great circle of S2. We denote by {q19 •••, qs} the set of all the critical values of
G contained in S1, which we assume to be nonempty. Let G~\qi)={p[i), •••,
p(

t\}} for z'=l, ••-,$. We .denote by bψ the branching order of G zXpψ. Set
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£=Σf- i tέ and δ = Σ ι i J ^ ί ) In the following two lemmas and their proofs we
shall use some terminologies from graph theory, for which we refer the reader
to [1].

Lemma 2.3. Under the above situation, G^S1) is an embedded pseudograph
oήΣ, consisting of t vertices ip^} and b-\-t edges.

Proof. We may assume qu •••,?, lie on S1 in this order. By the definition
of branching order, G can be expressed relative to local coordinates z (resp. w)
around p^p (resp. qt) as

to = G(z) = a*$"+1.

Hence there exist precisely bψ-\-\ lifts of the arc ?f ίf +1, starting f rom^ 0 (here
and in the following we interpret as ?,+i=?i, etc.). The terminal point of each lift
is among p{i+1\ •• ,$ '*ϊ ) . We consider these lifts of the arcs ffiίί+i, ί = l , •••,£,
as edges. Since G is a local homeomrophism away from the branch points,
each edge has no self-intersections and any two edges do not intersect at their
interiors. Thus, G'XS1) is an embedded pseudograph on Σ. It is easy to
verify that the pseudograph so obtained has the required number of edges.

For a great circle S1 of S2> we denote by iV(Σ, G, S1) the number of con-
nected components of Σ—G'XS1). To estimate ΛΓ(Σ, G, S1), we need the fol-
lowing topological lemma.

Lemma 2.4. Let Γ be an embedded pseudograph on the compact orientάble
surface S of genus g. Suppose that Γ has v vertices and e edges, and S—T has N
components. Then

(2.2) ^ _ £ + j V > 2 - 2 £ .

Proof. The proof is by induction on g and is a slight modification of that
of Theorem 4.20 in [1]. For £=0, by the Euler's formula for an embedded
pseudograph on the sphere, we have v—eJ

rN=\+k, where k is the number of
connected components of Γ. Since k> 1, (2.2) holds for £=0.

We now let £>0. Then the surface S has g handles. Draw a curve C
around a handle of S so that C contains no vertices of Γ. We must consider
the following two cases:

Case (i). C intersects with no edges of Γ.
We cut the handle along C and cap the two resulting holes. Then we obtain
a new embedded pseudograph T1 ( = Γ as abstract pseudoj-raphs) on the com-
pact surface Sx of genus g—l. Suppose that S1—Γ1 has Nλ components.
Then it is easy to see that N^N+1. By the inductive hypothesis, we have
ϋ - ^ + i V 1 > 2 - 2 ( ^ - l ) . Hence v-e+N>3-2g and (2.2) holds in this case.

Case (ii). C intersects with edges of Γ.
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By perturbing C if necessary, we may assume that the total number of inter-

sections of C with edges of Γ is finite, say k. Suppose that C intersects with

m edges of Γ. At each of the k intersections of C with the edges of Γ we add

a new vertex. And each subset of C lying between consecutive new vertices is

identified as a new edge. Moreover, m edges of Γ which intersect with C is

subdivided into m-\-k new edges. Let the new embedded pseudograph so formed

be denoted by Γ\. Suppose that Γ\ has vλ vertices and ex edges, and S—T1

has Nλ components. Then vx~v-\-k and e1=e-\-2k. Each portion of C that

became an edge of Γ\ is in a component of S—Γ. It is easy to see that the

addition of such an edge divides that component into at most two components.

Since there are k such edges, we have N^N+k. We now cut the handle

along C and cap the two resulting holes. Then we obtain a new embedded

pseudograph Γ2 on the compact surface S2 of genus g—1. Suppose that Γ2

has v2 vertices and e2 edges, and S2—Γ2 has N2 components. Since the vertices

and edges resulting from the curve C have been divided into two copies, we

have v2=v1+k = v+2k and e2=e1+k = e+3k. Moreover, N2 = N1+2<N+

k-\-2. By the inductive hypothesis, we have v2—e2-\-N2>2—2(g— 1). Hence

(v+2k)-(e+3k)+(N+k+2)>2-2(g-\). Thus, v-e+N>2-2g, getting the

desired result.

In the next proposition we adopt the following notation for simplicity. For

a subset i c Σ , we set

where δ(G, p) is the branching order of G at p.

Proposition 2.5. Let S1 be a great circle of S2. Then

(2.3) JV(Σ, G, S^tyG, G'\S1))+2-2g,

where g is the genus of Σ.

Proof. Consider G'1^1) as an embedded pseudograph on Σ as in Lemma

2.3. (2.3) follows by applying Lemma 2.4.

Theorem 2.6. Let Σ be a compact Riemann surface of genus g and

G: Σ-^ S2 a nonconstant holomorphic map. Then the inequality

(2.4) Ind(Lβ> X)>b{G, G-\Sι))+\-2g

holds for any great circle S1 of *Sk

2.

Proof. Let a be a nonzero vector in Rz orthogonal to the plane spanned

by S1 and set u=a*G. By Lemma 2.2, u is a nontrivial solution of the equa-

tion LGu=0. The number of nodal domains of u is nothing but iV(Σ, G, S1).
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(2.4) now follows by combining (2.1) and (2.3).

3. Lower bounds for the index of minimal surfaces in R3 and
examples

The following theorem is a rephrasement of Theorem 2.6 (see the last
paragraph in § 1, in particular, (1.1)).

Theorem 3.1. Let M be a complete oriented nonplanar minimal surface in
R3 of genus g with finite total curvature and G: M-^> S2 the extended Gauss map,
where M is the compactίfied surface. Then the inequality

lnd{M)>b(G, G-\S1))+l-2g

holds for any great circle S1 of S2.

Corollary 3.2. Let M and G be as in Theorem 3.1. Suppose that all the
critical values of G are contained in some great circle of S2. Then

>_φ-\ (-K)dA-ί,
In JM

where K is the Gauss curvature of M.

Proof. By the Riemann-Hurwitz formula, the total branching order of G
is 2(n— l+g)y where n is the degree of G. Apply Theorem 3.1 and substitute

{-K)dA.

Corollary 3.3. Let M be a complete oriented minimal surface in R3 of
genus zero. Suppose that M is not one of the plane, the Enneper's surface and the
catenoid. Then

I n d ( M ) > 3 .

Proof. We may assume that the total curvature of M is finite. By the
assumption the total curvature of M is not more than — Sπ, or equivalently
the degree of the extended Gauss map, say G} is not less than two. Then it is
easy to verify, using the Riemann-Hurwitz formula, that G has at least two
critical values. Take any two of them and let S1 be the great circle of S2 pass-
ing through these two values. Then G^S1) include at least two branch points
of G and thus b(G9 G-\S1))>2. Apply Theorem 3.1.

REMARK. Lopez and Ros [12] have proved that the Enneper's surface and
the catenoid are the only complete oriented minimal surfaces in R3 with index
one. The above corollary improves their result when the genus of the surface
is zero.
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EXAMPLE 3.4 (β-end catenoid). Let Mk be the β-end catenoid, k>2, which
was discovered by Jorge and Meeks [11]. Mk is a complete oriented minimal
surface of genus zero with total curvature — 4π(k— 1) and k embedded ends.
Let Π: S2->C U {<*>} be the stereographic projection from the north pole. Then
the extended Gauss map G: Mk=C\J {oo}->52 is given by

The critical values of G are precisely (0, 0, ±1) (i.e., the north and south poles),
which are clearly contained in a great circle of S2. Applying Corollary 3.2, we
obtain

We note that the inequality (2.3) becomes equation in this case.
Actually we can show that

by explicitly solving the eigenvalue problem associated to the Jacobi operator
of M* (see §4).

EXAMPLE 3.5 (Costa's surface). Let M be the Costa's surface [3]. M is a
complete oriented minimal surface in Rd of genus one with total curvature
— 127Γ and three ends. It was proved by Hoffman and Meeks [10] that M
was embedded. Let L be the square lattice in C generated by 1 and i and P
the Weierstrass ^-function for L. Then the extended Gauss map G\ Xϊ=
CJL-+ S2 is given by

where [z] is the point in M corresponding to z^C and a = 2\/2πP(l/2).
We note that a is a positive real constant. The branching of Pr is shown in
the following table, where Zj ( j = l , 2, 3,4) are as in Figure 1 and b is some
positive real constant.

Table 1.

branch point

0

* 1

* 2

# 3

* 4

branching order

2

1

1

1

1

value

o o

b

-b

ib

-ib
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Let S1 be the great circle of S2, corresponding to the real axis of the complex
plane via Π. It passes through the critical values Π~ *(()), ΐl~\a/b) and Π"^—a/b)
of G. The corresponding branch points are [0], [#J and [#2] with branching
order 2, 1 and 1 respectively. Applying Theorem 3.1, we obtain

Ind(M)>3.

We note that the set G^S^RP')'1 (real axis U {«>})] is actually as in Figure
2 (see [5, p. 38]) and the inequality (2.3) becomes equation in this case also.

ί/2

0

i

\

1

z<

z, z2

>z3

iβ

1/2 1
0 k

- 9 0 °

z,

/

60°

1/2 1

Fig. 1. The segments zozj (j = l, 2, 3, 4) Fig. 2. The loci of real values of P' are
have the same length. shown as the thick lines.

4. The eigenvalue problem associated to the Jacobi operator of
the k-end catenoid

Let G: 20=C fU {°°}->S2 be the holomorphic map of degree n defined by
TL'G(z)=zn, where n is a positive integer. Then

G M _ / 2 R e ( / ) 2Im(g-)
\z\2»+l '

We fix an arbitrary conformal metric ώ?=μ\dz\2 on 2 0 and consider the eigen-
value problem

(4.1) on Σ o .

Let (r, θ) be the polar coordinates on C. Then the Laplace-Beltrami operator
is expressed as

8Θ2J '

and by a direct computation, we have
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Hence in these coordinates (4.1) is equivalent to

d2u , 1 du , 1 92M(4.2) ^ -

For real number a and nonnegative integer i, we define

a(a+ί) - (ct+i-1) if i ^ l ,

1 if ί = 0 .

The hypergeometric function F(a, b; c; x) is a real analytic function of *, |Λ;| <1,
defined by

where c is not a nonpositive integer. F{a, b; c\ x) satisfies the hypergeometric
differential equation

x(l-x)C^+ic-(a+b+l)x}^~-aby = 0 .

For nonnegative integers p and q, we set

and

We note that ^ ( ^ + 2 - ^ + 1 , —^ - ^ + 1 ; — (1 — ί)) is a polynomial of t of de-
\ n n 2 /

gree >̂. By a direct computation, we obtain

Lemma 4.1. φp,q{t) and vPtq(r) satisfy the ordinary differential equations

,4.3, ( 1 _ 1 ^ _ 2 ( ^

(44) ^ + 1 ̂  1 fλ

 8raV>>~2 g 'V - 0
( ^ 9r 2 + r ar + Γ(r* +l) i r2/1 '

respectively, where X=—(p+-2-}(p+— + l).
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L e m m a 4.2. vp>q(r) cos qθ and vPtQ(r) sin qθ satisfy (4.1) with

Proof. Let « be one of the two functions above. By (4.4),

3 2 « , 1 du Sn2r2"-2

 = £ __ 1 Q2u

Qr2 r dr (r2a+lfU r2 r2 dθ2

Therefore u satisfies (4.2) (or (4.1)) in C- {0} with \=±(p+2- r ,
2 V n ' \ n

It is easy to see that u is smooth at z=0 and <χ>. Hence u satisfies (4.1) on the

whole Σ o .

Lemma 4.3. {vp.q(r)} p=o,L2," forms a complete orthogonal system in

9« -i A 9 9*1—1

Proof. Setting t= , we have dt— -dr. Hence it suffices to

prove that {^,9(O}^=o,i,2, •• forms a complete orthogonal system inL 2 ((—1, 1), dt).

The orthogonality follows easily from (4.3). The vertification of the comple-

teness is also standard, so we omit it.

The next lemma follows easily from Lemma 4.3.

L e m m a 4.4. ίvp>q(r) cos qθ, vp>q(r) sin qθ}^=0,1,2,-.. forms a complete or-

thogonal system in L2(Σ0, \dG\2dA), where dA is the area element of the metric ds2.

In summary we have proved the following proposition.

Proposition 4.5. The eigenvalues of (4.1) are exhausted by

* = 0,l,2, .

The eigenspace belonging to \ i is spanned by

{vp>q(r) cos qθ, vPtQ(r) sin qθ}pn+q=i.

In particular, the multiplicity of λ, is given by

p if i =f

if i = pn.

Theorem 4.6. Let Σ o and G be as in the beginning of this section. Then

lnd(LG, 2o) = 2 n - l .
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Proof. We denote by Q the quadratic form associated to LG (see § 1) and

by R the Rayleigh quotient associated to the problem (4.1). Thus for a func-

tion

R(u)=[ \du\2dAl[ u2\dG\?dA.

We note that Q(u,u)<0 if and only if R(u)<l for any uΦO. Therefore, by

a variational characterization of the eigenvalues of (4.1), Ind(LG, Σo) is equal to

the number of the eigenvalues (counted with multiplicities) of (4.1) which is

less than one. Hence lnd(LG, Σo)—Σϊ-1 w, =2w— 1, getting the desired result.

REMARK. It will be of some interest to observe that the dimension of the

kernel of LG is three for all n.

Corollary 4.7. Let Mk be the k-end catenoίd {see Example 3.4). Then

After the completion of this paper we learned that Choe [17] obtained

independently some of the results in this paper.
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